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Abstract: Machine Learning in Healthcare shows great promise, but is often difficult to implement due to difficulties 

in collecting data. We used a 1-dimensional convolutional neural network(CNN) on limited data to show a 

practical application of deep learning in healthcare. We used only vital signs data that can be collected from 

low cost, readily available hardware designed for non-critical care settings, and a dynamic model that 

updates as more data is collected over time. Our data is derived from the MIMIC dataset. We use 320 

patients for testing and 2,990 for training the model. The CNN model predicted mortalities with up to a 

76.3% accuracy, and outperformed both recurrent neural network and multi-layer perceptron models. To our 

knowledge, the proposed methodology is the first of its kind to predict mortality risk scores based on only 

heart rate, respiratory rate, and blood pressure, three easily collectible data. 

1 INTRODUCTION 

1.1 Background on Severity Scores in 
Mortality Prediction 

Electronic Medical Records (EMR) have been a rich 

source of patient care data for predictive risk 

assessment models. Utilizing this data could 

significantly improve severity of illness assessments 

and assists clinicians in deciding interventions for 

patients. Several scores have been devised and tested 

to predict Mortality risk using the first 24 hours of 

patient physiological measurements after ICU 

admission. Widely used severity scores in clinical 

practice are APACHE II (Knaus et al., 1985) (Acute 

Physiology and Chronic Health Evaluation) and 

SAPS II (Le Gall, Lemeshow and Saulnier, 1993) 

(Simplified Acute Physiology Score). These scores 

have been modified over time to improve their 

predictive performance. The initial scores 

proposed—APACHE (Knaus et al., 1981), 

APACHE II (Knaus et al., 1985) and SAPS (Le Gall 

et al., 1984)—relied on assigning weights to 

physiological measures, decided by a panel of 

experts, whereas SAPS II (Le Gall, Lemeshow and 

Saulnier, 1993) was obtained through Statistical 

modelling techniques. Studies have been conducted 

to validate (Knaus et al., 1985) and compare (Nassar 

et al., 2012; Poole et al., 2012) the reliability of 

these severity scores for predicting risk, but even 

after revisions the probability of mortality is 

overestimated by these scores (Nassar et al., 2012; 

Poole et al., 2012). Further modifications on severity 

scores included APACHE IV and SAPS 3 scores, 

but their performance as evaluated in (Nassar et al., 

2012) was no better than the existing scores. 

Most of these scores are based on logistic regression 

models. Logistic regression models run on strict 

assumptions on dependent and independent variables 

which may not be always true. For instance, some 

interventions may impact patients in a non-linear 

way. Non-parametric methods have been used to 

overcome the constraints of logistic regression 

models. Studies have shown that non-parametric 

methods based on neural networks can perform at 

least to the baseline models given by logistic 

regression models (Dybowski et al., 1996; Clermont 

et al., 2001; Foltran et al., 2010; Kim, Kim and 

Park, 2011; Ribas et al., 2011). 

1.2 Background on Machine Learning 
in Healthcare 

In statistics and healthcare, Autoregressive 

Integrated Moving Average (ARIMA) models are 

widely used in time series forecasting. These models 

don’t assume any prior knowledge about underlying 

model and depends only on past data and error 
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values which makes them more robust and easy to 

explain. But these models are generated based on an 

assumption that time series are generated from linear 

processes which makes it inappropriate for real 

world problems. On the contrary, deep learning 

methods are self-adaptive with few prior 

assumptions. They are able to generalise the 

learnings from original data and are good for solving 

non-linear problems. Hence, ARIMA models are out 

of scope for this paper. There exists literature 

comparing traditional moving average models and 

Neural networks for time series forecasting 

(Guoqiang Zhang, B.Eddy Patuwo and MichaelY. 

Hu, 1998; Adebiyi, Adewumi and Ayo, 2014).  

Machine learning has been successfully used for 

many health-care related tasks, such as arrhythmia 

detection (Rajpurkar et al., 2017), clinical 

intervention prediction (Suresh et al., 2017), ICU 

transfer prediction (Yoon et al., 2016) and more. 

These models have proved to perform up to the 

benchmarks and even beat the benchmarks in some 

cases. Regression based algorithms, Super learners 

were developed to choose an optimal regression 

model from a given set of models (Dudoit and van 

der Laan, 2005) for improving severity scores. 

Reference (Pirracchio, 2016) gives a severity score 

based on a super learner validated on the MIMIC II 

data set.  

EMR data makes many machine learning prediction 

tools possible. It has encouraged the use of complex 

algorithms like Artificial Neural Networks and 

Decision Trees in healthcare problems. These new 

modelling approaches lead to many predictive 

models for different critical care settings (Ganzert et 

al., 2002; Moser, Jones and Brossette, 1999; Morik 

et al., 2000; Sierra et al., 2001; Kong, Milbrandt and 

Weissfeld, 2004; Kreke, Schaefer and Roberts, 

2004; Lucas, 2004). Reference (Kim, Kim and Park, 

2011) compares results of machine learning 

techniques for Mortality prediction models inside 

ICU. 

Deep Neural Networks (DNNs) have been shown to 

be effective in predicting mortality in paediatric 

healthcare settings (Aczon, Ledbetter et al, 2017) 

(Nguyen, Tran and Venkatesh, 2017). They are 

especially useful when dealing with high 

dimensional data, which is common in healthcare. 

Though Recurrent Neural Networks (RNNs) are 

used more often for time-series data, recently 

Convolutional Neural Networks (CNNs) have also 

been used with medical time series data to achieve 

state of the art results (Suresh et al., 2017).  

 

1.3 Limits on Available Data 

Though it is easy to develop machine learning 

models that can work after a patient has left the 

hospital, in non-critical care settings most data is 

inputted into EMR in an untimely manner after it is 

recorded (McGain et al., 2008). However, there are 

products that will monitor patients continuously and 

automatically send the data to a central server, 

specifically designed for non-critical care settings. 

Over the past 15 years, numerous vital signs 

monitoring systems have been developed for non-

critical care settings (Patel et al., 2012). These 

monitoring systems might not capture all the 

information that is captured inside the ICU, but they 

do capture body vital signs. 

On sharing of health care data, The Health 

Information Technology for Economic and Clinical 

Health (HITECH) Act(HITECH Act Enforcement 

Interim Final Rule | HHS.gov, 2009) promotes the 

meaningful use of EMR data. But this data comes 

with privacy concerns. There are strict laws 

governing the use of this data. The Health Insurance 

Portability and Accountability Act (HIPAA) 

regulations apply on all the health care providers to 

protect the patient information. Patients are given 

rights to control their medical data under the Act. 

All the data is owned by the patients and a written 

consent is required to use it. Any violation of the Act 

will attract both civil and criminal penalties. This 

makes it difficult for researchers and practitioners to 

make use or share the health care data for 

experiments.  

The potential impact of Machine Learning in 

healthcare is large, however it is difficult to 

implement machine learning solutions in real 

clinical settings. To be deployed to real settings, 

machine learning algorithms must use data that is 

accessible. For algorithms that rely on making 

predictions using extensive accurate, time-sensitive 

data, this is problematic. In non-critical care settings 

patient monitoring is not continuous. The data 

collected in such settings may be incomplete and 

may take hours before being reported to the system. 

Hence the above-mentioned machine learning 

models might not perform as desired because of 

incomplete data. To address this, in this paper we 

discuss a model using a CNN which predicts 

mortality risk in settings where access to data is 

limited. 
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2 METHODS 

2.1 Data Source 

We use data from the Medical Information Mart for 

Intensive Care (MIMIC-III) database (Johnson et al., 

2016). MIMIC-III is a deidentified publicly 

available dataset that contains detailed health 

records from approximately 40,000 critical care 

patients, including vital sign recordings. We 

consider only patients that have at least 12 hours of 

records where each hour has at least 1 recording for 

heart rate, respiratory rate, systolic blood pressure, 

and diastolic blood pressure. There are 1,814 of 

these patients who passed away during their hospital 

stay, which we consider to be the mortality class. 

The number of patients who have the requisite vital 

sign recordings but survive their stay in the hospital 

is larger, but we take only the first 1,814 of these 

patients, as ordered by the MIMIC database, into 

consideration so that the 2 classes are equal size. 

This leads us to use 3,628 patients in total, exactly 

half of which are survivors and the other half of 

which are mortalities. 

2.2 Data Preparation 

To simulate non-critical care settings, we consider 

only physiological vital sign data to make our 

predictions. For each patient, we construct a 5 x 47 

matrix where each row contains 47 readings 

corresponding to each hour of their stay. The 4 vital 

signs we use are heart rate, respiratory rate, systolic 

blood pressure, and diastolic blood pressure. The 

data is normalized per feature, such that the mean of 

each vital sign is 0, and the variance of each vital 

sign is 1. We then simulate the patient’s stay by 

creating a matrix that resembles the available data 

for each hour of their stay, for a total of up to 47 

separate matrices for each patient used as input to 

our model. This way we limit the threshold of data 

collected to 47 hours for each patient to make the 

prediction. We also add an additional row of the 

matrix to denote whether there is data yet recorded 

for each hour. This row is 0 for time values where 

no vital signs are yet recorded, and 1 for time values 

where vital signs are present. To make it real time 

and adaptive to variable time lengths, we increase 

the sample size by assuming a new sample for each 

hour of patient vitals recorded. This simulates a 

patient’s stay in a non-critical care setting (Figure 1). 

Each hour, their vital signs are recorded, and the 

model can be re-run using this new data for a more 

accurate estimate.  

 

 

Figure 1: Diagram of the final input to the model after data 

preparation. 

In the MIMIC dataset, some patients have more vital 

sign recordings per hour than others. In this case, we 

simply take the last vital sign recorded in that hour 

as the value to go in the matrix. 

At this point, there are 170,516 samples that 

correspond to a specific hour of a patient’s stay. We 

then take out 15,000 of these samples to use in the 

validation data set, and another 15,000 of these 

samples to use in the testing data set. We use the 

validation data set to tune our hyperparameters for 

the models, and the testing data when evaluating the 

models in section 3. The remaining 140,516 samples 

are used as the training data 

2.3 Convolutional Neural Networks 
(CNNs) 

2.3.1 Basic Structure 

Neural Networks employ the back-propagation 

algorithm to calculate optimum weights to predict 

the output class (Equation 1). The output of a single 

neuron is defined as 𝑎𝑗
𝑙 of jth row and lth layer, where 

wl are weights connected to the lth layer of neurons 

and sum is over all k neurons in the (l-1)th layer. The 

aim is to find weights, which ensure that for each 

input the output produced by the network is the same 

as the desired output vector. To minimise the error, 

gradient methods are used, and the errors are back 

propagated through chain rule. A comprehensive 

review is provided in (Lecun et al., 1998; 

Krizhevsky, Sutskever and Hinton, 2012a) 

 

𝑎𝑗
𝑙 =  𝜎 (∑ 𝑤𝑗𝑘

𝑙 𝑎𝑘
𝑙−1

𝑘

+ 𝑏𝑗
𝑙) 

 

(1) 

 

Convolutional neural networks (CNN) stand out as 

an example of neuroscientific principles influencing 

neural network architecture (Goodfellow, Bengio 
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and Courville, 2016). CNN Models enable us to 

exploit a multiple layer architecture for non-linear 

information processing, to extract features for 

classification tasks (LeCun et al., 1989). CNN 

architectures come in various forms but usually they 

consist of modules, which have a convolution, and 

pooling (subsampling) layer. These modules are 

stacked on top of each other to create deep learning 

models. The last of these modules are connected to a 

fully connected feed forward neural network to do 

the classification tasks. As given in (Lecun et al., 

1998) Figure. 2 illustrates a typical CNN Model. 

 

Figure 2: Illustration of typical CNN Architecture. 

In deep CNN layers, units in the deeper layer can 

indirectly interact with large portions of the input 

which lead it to learn the underlying 

structure/patterns of the input data without using 

hand designed features. This enables us to find 

features which we might miss out on using other 

types of models. Mathematically convolution can be 

defined by (Equation 2), where s(t) is the output, 

x(a) is the input weighted by the weighting function 

w(a). Convolution in CNN’s are defined by 

(Equation 3) where, hj
(m) is the output of the mth 

layer with weights w, input v, bias aj and 𝜃 the 

activation function. The function the layer learns 

contains local interactions and is equivariant. 

 

𝑠(𝑡) = (𝑥 ∗ 𝑤)(𝑡) =  ∑ 𝑥(𝑎)𝑤(𝑡 − 𝑎)

∞

𝑎= −∞

 
 

(2) 

 

ℎ𝑗
(𝑚)

= 𝜃 (∑ 𝑤𝑏,𝑗
(𝑚)

𝑠

𝑏=1

𝑣(𝑚−1)∗𝑛+𝑏
𝑇 + 𝑎𝑗

(𝑚)
) 

 

(3) 

 

 

Usually pooling layers provide summary statistics of 

nearby outputs in the feature map. The use of 

pooling layers enables us to make the representation 

become invariant to small translation of the input. 

The applications of CNNs are widely in image 

processing domain, but the CNN architecture can 

also be applied in time domain to make sense of 

temporal data. 

2.3.2 Model Architecture 

In our current architecture, we apply CNN on time 

domain on multivariate time series. The inspiration 

to use a CNN to predict mortality is attributed to the 

sparse interaction in the feature map, weight sharing, 

and equivariance CNNs offer. The sparse interaction 

enables us to process the input quickly in real time, 

weight sharing aids in finding patterns along the 

time axis and equivariance helps in handling the 

input changes which are carried forward in the 

output (Goodfellow, Bengio and Courville, 2016). 

Figure. 3 gives a high-level architecture of the 

proposed methodology. The network takes the 

normalised input time series (described above) as 

input and model outputs a mortality risk score. 

Processing Block: A Processing Block comprises of 

a convolution layer, activation function and a 

dropout layer.  

Convolution Layer: The convolution layers have 

equal filter sizes with variable kernel sizes and 

strides (Equation 4). Convolution is done only along 

the time dimension of the input vectors giving us a 

1-D CNN. The convolution layer input is padded to 

keep the output the same size as the input.  

 

𝑍𝑖,𝑗,𝑘 = 𝑐(𝐾, 𝑉, 𝑠)𝑖,𝑗 =   ∑[𝑉𝑙,(𝑗−1)∗𝑠 𝐾𝑖,𝑙,𝑚]

𝑙,𝑚

 (4) 

 

In (Equation 4) Z (output) is of the same format as V 

(input) and each value is addressed within row j and 

and channel i.  K gives the connection strength 

between Z and V. s is the stride which can down 

sample by skipping over some positions to reduce 

computational cost (Goodfellow, Bengio and 

Courville, 2016). 

Activation Layer: In the current architecture, the 

Rectified Linear Unit (ReLU) function (Equation 5) 

is used to transform the feature map non-linearly. It 

calculates: 

 

𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥) 

 

(5) 

ReLU have been found to greatly accelerate the 

convergence of stochastic gradient descent 

compared to the sigmoid or tanh functions 

(Krizhevsky, Sutskever and Hinton, 2012b). We 

apply ReLU in conjunction with the convolution 

layer. 
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Dropout Layer: To reduce overfitting, we employ a 

dropout layer in the processing block. Dropout 

(Srivastava et al., 2014) is a technique where we 

ignore randomly selected neurons from a layer 

during training. Essentially their (dropped out 

neurons) contributions to the activation of neurons 

downstream are removed during the forward pass 

and weight updates are not applied during the 

backward pass. This results in network which can 

generalize better. After calculating feature maps 

over multiple processing blocks, the feature map is 

flattened to connect it to a fully connected layer with 

a SoftMax activation function (𝑓𝑖(𝑗)) (Equation 7). 

This lets us calculate the probability of patient 

mortality. We optimise the cross-entropy objective 

function (Li) for a single example in the training set 

(Equation 6). 

 

𝐿𝑖 =  −𝑙𝑜𝑔 (
𝑒𝑓𝑦𝑖

∑ 𝑒𝑓𝑗
𝑗

) 

 

 

(6) 

 

Where,    𝑓𝑖(𝑗) =  (
𝑒

𝑧𝑗

∑ 𝑒𝑧𝑘𝑘
) 

 

 

(7) 

 

In our proposed architecture, we have actively 

avoided pooling layers in the processing blocks 

(Figure 3). One of the main reason for us to avoid 

pooling layer is the low sampling rate of the given 

physiological data. Pooling layers would abstract 

away from the nuance changes which are needed to 

distinguish between various effects in training the 

classifier effectively.  

Table 1: The hyperparameters used in each architecture. 

These hyperparameters were tuned by hand by trying 

many architectures and selecting the best one for each type 

of model. 

Model Layers # Hidden Units 

CNN 4 convolution 128 

RNN 2 LSTM 64 

MLP 4 dense 128 

 

 

Figure 3: The architecture of the network. Overall it 

contains 4 layers followed by fully connected layer and 

SoftMax. 

3 RESULTS 

We compare the one-dimensional CNN model with 

two other deep learning models: A multilayer 

perceptron (MLP) model, and a recurrent Long 

Short-Term Memory (RNN) model (Hochreiter S. 

Schmidhuber J., 1997). The hyperparameters used 

are shown in Table 1. As figure [4] shows, the CNN 

outperforms both models at most points in time. For 

some cases around hour 20, 25, and 41, the RNN 

model outperforms the CNN. We achieve an 

accuracy of 0.76 with the CNN model predicting 

based off 47 hours of data, compared to an accuracy 

of 0.71 with the MLP model and 0.72 with the RNN 

model. As the Figure shows, these results are 

somewhat sporadic—in some cases one model 

performs better than another. In general, the CNN is 

the most successful. 

x 4 
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Figure 4: Accuracy comparison of various models over 

time (hours). 

We also include a comparison with a Logistic 

Regression(LR) model using features selected by 

hand, specifically the maximum, minimum, mean, 

and standard deviation of each vital sign. The LR 

model is successful in predicting based on only a 

few hours of data, but LR fails to make sense of 

increasing data effectively, leading to an average 

accuracy of 0.61 and a peak accuracy of 0.69. This 

makes sense, as LR has no way of working with 

time as a dimension, but the deep learning methods 

can incorporate temporal position in their models 

effectively. 

 
Figure 5: ROC comparing deep learning models. 

Figure [5] shows the Receiver Operating 

Characteristic (ROC) curve (Hanley J McNeil B, 

1982) of the three deep learning models. We used 

the entire set of results from all hours for this figure. 

The CNN model has the highest Area Under the 

Curve (AUC), with 0.72. The RNN Model has an 

only slightly lower AUC at 0.70, followed by the 

MLP model with an AUC of 0.67. 

 

Figure 6: ROC comparing the CNN model using different 

time frames of data as input. 

Figure [6] shows the ROC curve using different 

amounts of data in the CNN model. The blue curve 

uses only six hours of data, and achieves a meagre 

AUC of 0.65. As more hours of data are used, the 

CNN model’s accuracy clearly improves, until with 

47 hours of data the CNN model achieves an AUC 

of 0.87. 

Table 2: The Area under receiver operating characteristic, 

mortality class precision, and mortality class recall for 

each model when using 47 hours of data. The largest 

number in each column is bolded. 

Model AUC Precision Recall 

CNN 0.87 0.7443 0.8188 

RNN 0.80 0.6940 0.7987 

MLP 0.84 0.8091 0.5597 

Logistic 

Regression 

0.79 0.8069 0.5138 

4 CONCLUSIONS 

We find 1-dimensional CNNs to be a promising 

model for predicting mortalities using variable 

length vital signs data. Using this model, we can 

assess patient risk each hour using minimal 

equipment, as only low-frequency vital signs are 

needed, and have patient risk scores that update 

automatically over time. The CNN can predict with 

60.3% accuracy after 12 hours of data collection, 

and 76.3% after 47 hours of data collection, and on 

average outperforms both an RNN model and a 

MLP model. A system like this could be helpful in 

0,5

0,55

0,6

0,65

0,7

0,75

0,8

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46

Prediction Accuracy Over Time

LR
CNN
MLP
RNN

HEALTHINF 2018 - 11th International Conference on Health Informatics

468



non-critical care settings, where patients may quietly 

deteriorate. 

5 FUTURE WORK 

Though this system currently has narrowly limited 

usefulness, because patients in non-critical care 

settings rarely pass away, in future work we intend 

to assemble a suite of risk assessment tools for 

patients in non-critical care settings based on the 

data that is unique to that setting. In the case that a 

patient in a non-critical care setting has a high 

predicted probability of mortality, this is a highly 

preventable death, and hospitals should be aware of 

the patient's condition and act accordingly. In the 

future, we would like to experiment with higher 

frequency sample data, to understand its impact on 

the results. 

 

We also want to experiment with Deconvolution 

networks to understand the behaviour of various 

layers activations (Zeiler et al., 2010). 

Deconvolution networks typically consists of un-

pooling and transposed convolution layers, the 

maximum activation of feature maps from each layer 

is passed through the earlier layers to reconstruct the 

inputs. This reconstructed input can give us an 

inkling on the patterns which can lead to mortality.  

It would be interesting to understand the activation 

patterns for patients with different conditions(Wang 

et al., 2016). This can lead to building diagnostic 

tools which can be implemented on the monitoring 

devices to classify conditions of patient deterioration 

in real time. 
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