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Abstract: In the paper the results of extracting and selection the features of EEG data and accelerometer for mental 

status evaluation are shown. We have used 14 channel wireless EEG-system Emotiv EPOC+ with 

accelerometer (motional data - MD) for short-term recording under several functional states for 10 healthy 

subjects: Functional rest (rest state), TOVA-test (mental load), Hyperventilation (physical load) and 

Aftereffect (after test state). We then extracted core features from EEG-only and MD-only data using principal 

component analysis. After that, supervised learning methods were used for mental state classification: EEG-

only core features for AF3, T7, O1, T8, AF4 channels, MD-only core features and EEG- MD integrated core 

features. Experimental results showed that integrated core features for mental status evaluation have higher 

prediction accuracy 92,0% for decision tree method.  

1 INTRODUCTION 

Evaluation of human mental status is a complex and 

complicated task. Electroencephalography (EEG) is 

well known method for assessing mental state and 

optimizing conventional performance: attention; 

workload; emotion (Wolpaw and Wolpaw, 2012).  

Acquisition of EEG signal in real-world 

conditions is characterized by the usage of mobile and 

wearables devices (Lin and Jung, 2017; So et al., 

2017; Sun et al., 2012). Combinations of different 

modalities sensors are used for assessing and 

controlling the subject’s function state (Silva et al., 

2014).  

Accelerometer is one of widely used sensors for 

assessing body movement artefact during ECG, EEG 

recording. An accelerometer signal is acquired in 

order to identify areas of the signal with motion 

artifacts (Y. Kishimoto et al., 2007). In (Wu et al., 

2017) operator’s mental workload is measured with 

EEG headset. EEG headset was composed of two 

electrodes and an accelerometer attached to the 

electrodes. When in some epoch the acceleration of 

the electrodes exceeds a certain value, EEG data 

corresponding to that epoch were removed from 

further analysis. 

Moreover, there are few works where 

accelerometer-only data were used to study 

neurological diseases (Kutilek et al., 2010). In 

(Danilov et al., 2008) the vestibular system is 

considered as important in virtually every aspect of 

our daily life. Head acceleration information is 

essential for our adequate behavior in three-

dimensional space not only through vestibular 

reflexes that act constantly on somatic muscles and 

autonomic organs, but also through various cognitive 

functions such as perception of self-movement, 

spatial perception and memory, visual spatial 

constancy, visual object motion perception. Thus, 

accelerometer data can be used for subject’s 

functional state classification in combination with 

other sensors. 

A small and light-weight wearable 

electrocardiograph (ECG) equipment with a three-

axis accelerometer (x, y and z-axis) was developed 

for prolonged monitoring of everyday stress (Okada 

et al., 2013). In that study, the waveform of 

acceleration data were used as the pattern for a 

subject’s movement or posture in long-term 

monitoring. In (Wu et al., 2015) two modalities of 

sensors: HRV recorders and accelerometers were 

integrated to monitor the stress levels in daily life. 

The accuracy of stress level classification was 
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improved by 4.9% on average in comparison with 

HRV-only feature set. Therefore, accelerometer data 

can be used in long-term monitoring as tool to 

identify areas of the signal with motion artifacts and 

subject’s activity classify. 

In our paper, we have used the Emotiv EPOC+ 

head set for gathering both motion and EEG data in 

short-term experiments under several functional 

states. The aim of the study is evaluation of feature in 

EEG-only, accelerometer-only and integrated feature 

spaces in series of short-term experiments. 

2 MATERIALS AND METHODS 

A series of experiments with headset Emotiv EPOC+ 

was carried out to study parameters which would 

describe different subject mental status. The Emotiv 

EPOC + headset provides information about the 

induced electrical activity of the brain from 14 

channels (David et al., 2014). This information 

contains the voltage value for each electrode with a 

sampling frequency of 128 Hz. Figure 1 depicted the 

layout of the electrodes is AF3, F7, F3, FC5, T7, P7, 

O1, O2, P8, T8, FC6, F4, F8, AF4 in standard 10-20 

scheme. In addition, the motion data from three-axis 

accelerometer integrated into the headset were 

collected. 

Each experiment contained five stages as 

presented in Table 1. During each of the stages the 

subject sits opposite the PC monitor and looks at the 

screen with instruction and tasks.  

Table 1: The cyclorama of the experiment. 

Stage Duration, sec 

1. Rest state (RS) 300 

2. TOVA test (T1) 180 

3. Hyperventilation load (HL) 180 

4. TOVA test (T2) 180 

5. Aftereffect (AE) 300 

 

Recording the stage of rest state involves 

biomedical signals data from the subject, who looks 

at the black screen and does nothing.  

The next stage is carried out with the TOVA test, 

which is the test of attention of variability - a psycho-

physiological test to evaluate conventional 

performance related to attention and control of the 

reaction. The Pebl software was used for the test 

procedure. During the test squares and circles appears 

alternately at the top and bottom of the computer 

screen. The task of the subject is to press a space on 

the keyboard when a square appears at the top of the 

screen (Mueller and Piper, 2014). 

The stage of hyperventilation is standard 

functional load, when the subject often breathes 

throughout the entire length of time, simulating 

breathing during heavy sport loads. 

Collected in each experiment raw EEG and 

accelerometer data were saved into storage with 

additional information about the subjects and events 

marks (Borisov et al., 2017). 

2.1 EEG Feature Engineering 

Collected during the experiments raw EEG data were 

processed in several steps of feature extraction and 

selection. The process of feature engineering is 

presented in Figure 1. 

 

Figure 1: EEG feature engineering. 

In the first step, all EEG data were transformed to 

the frequency domain. To separate EEG – rhythms 

from the signal, a second-order Butterworth bandpass 

filter were applied. Rhythms borders were: Theta (4-

7) Hz, Alpha (7-15) Hz, Beta-Low (15-25) Hz, Beta-

High (25-31) Hz. Discrete Fourier transform method 

was used for frequencies’ magnitudes extraction. As 

result, four coefficients are calculated for each of 14-

th channel. Each coefficient is sum of magnitudes for 

one of the rhythms. Thus, EEG data in frequency 

domain are described as 56-dimension feature space. 

After that, on the feature selection step (Egorova 

et al., 2014), principal component analysis method 

(PCA) (Jolliffe, 2014) in combination with linear 
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discriminant analysis (LDA) (McLachlan, 1992), are 

used for reducing 56-dimension feature space. Data 

sets for analysis contained EEG recordings for all 

subjects and the following pairs of stages: RS and HL; 

RS and T1; T1 and HL. 

LDA was used for evaluation of the principal 

components pairs (Kublanov et al., 2016). The pair of 

components with best accuracy and maximum 

described variance were selected as base for new 

feature space. 

Finally, information about PCA loadings were 

used for selecting EEG channels and frequency bands 

as EEG new feature space. After that, supervised 

learning methods were used for mental state 

classification. 

2.2 Accelerometer’s Feature Space 

The Emotiv EPOC + headset, in addition to 

information about the induced electrical activity of 

the brain, provide data from a three-axis 

accelerometer, which allows assessing the movement 

of the headset in space during the experiment. 

Accelerometer data is recorded to a separate file, each 

record contains the values of the acceleration for each 

axis and the data recording time. The scheme of the 

accelerometer axis is shown in Figure 2. 

 

Figure 2: Accelerometer axis orientation (“EMOTIV Epoc 

- 14 Channel Wireless EEG Headset,” n.d.). 

The three-axis accelerometer provides 

information on the magnitude of the acting 

accelerations along the three axes, respectively. The 

acceleration value for each axis is registered through 

equal time intervals. The signal measured by the 

accelerometer is a linear sum of three components 

(Machado et al., 2015): 

• Body Acceleration Component (BA) is 

acceleration resulting from body movement; 

• Gravitation Acceleration Component (GA) is 

acceleration resulting from gravity;  

• Noise inherent to the measuring system. 

GA provides information about the spatial orientation 

of the device, and the BA provides information about 

the movement of the device and subject’s head 

movement. The frequency spectrum of accelerations 

caused by human motion is located in the range from 

0 to 20 Hz. The gravitational component is located in 

the range from 0 to 0.3 Hz.  

The component containing instrumental noise is 

located generally in the range above 20 Hz. To isolate 

the motion component from the signal, a second-

order Butterworth window filter with frequencies 

from 0.3 to 20 Hz was applied (Mathie, 2003). In 

Figure 3 the accelerometer signals before and after 

filtering are represented. According to the article (Wu 

et al., 2015), the most revealing motion data (MD) 

features of the accelerometer signal are present in 

Table 2. 

Because of the discrete nature of the 

accelerometer signal, ZCR was calculated as the 

number of sections where the previous sign differs 

from the current sign. 

Activity - the value characterizing the change in the 

signal over time was calculated by the following 

formula (2): 

𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =∑√∆𝑥
2 + ∆𝑦

2
+ ∆𝑧

2

𝑛

𝑖=1

, (1) 

where ∆𝑥= (𝑥𝑖 − 𝑥𝑖−1); 

xi-1, xi are consecutive counts for x axis; 

∆y, ∆z are calculated in same way for y and z axles 

The average activity time is the ratio of the total 

activity time, which exceeds the average level by 

10%, to the number of stages exceeding this level. 

The level of 10% was chosen as the most informative. 

After calculating all features for each subject, the 

data was written into the matrix F by N, where F is 

the number of features, and N is the result of 

multiplication the number of stages by the number of 

subjects. 

3 RESULTS 

The results of feature selection for EEG in different 

data sets are shown in section 3.1. 

In section 3.2 results of classification for EEG-

only feature, accelerometer-only feature and 

integrated feature space are shown. 
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Figure 3: Accelerometer axes signal before and after filtering. 

Table 2: MD features of the accelerometer signal. 

MD feature Description 

Axis features 

Max Maximum value is the maximum acceleration value at a given time interval 

Min Minimum value is the minimum value of acceleration at a given time interval 

Average value The average value of acceleration at a given time interval 

STD Indicates the dispersion to the mean of the signal over time a given time interval 

ZCR Zero cross rate is the number of intersections by the zero signal.  

Energy Signal energy at a given time interval 

Non axis features 

Mean ZCR Mean zero cross rate for three axes for current stage 

Mean Energy Mean energy for three axes for current stage 

Activity Characteristic of signal change 

Average activity time Mean time of high-level activity 

 

3.1 EEG Feature Selection 

Here we show the results for all subjects and 

combination of stages in the following pair of data 

sets: 

1. HL and RS; 

2. T1 and RS; 

3. T1 and HL. 

3.1.1 Hyperventilation Load and Rest Data 

Set 

Figure 4 depicted cumulative sum of variance for 

principal components. The first two components 

explained 82% of total variance. 

 

Figure 4: Cumulative sum of variance for HL and RS. 
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After that, a classification was performed using 

LDA for component 1 and 2. Training data contains 

9 subjects for two classes RS and HL (functional rest 

and hyper ventilation load).  

Next step we calculate the prediction accuracy 

estimation on an independent data sets by doing 

cross-validation. During iterative procedure, we 

remove one of the subject in training set. Figure 5 

shows the result of classification. The average 

accuracy of classification 94%. 
 

 

Figure 5: Classification of subjects for HL and RS. 

We used the equation (2) for interpretation of 

LDA linear coefficients, where K – vector of 

constant, L – vector of linear coefficients, v – data 

vector. 

K + L*v = 0 (2) 
 

Figure 6 presents stats boxes for normalized linear 

coefficients L from (2) for independent sets for PCA 

scores 1 and 2. Component N-2 more significant for 

discrimination on data set with two classes of RS and 

HL. 

 

Figure 6: LDA’s linear coefficients boxes for HL-RS. 

Figure 7 (a) represents image plot of PCA-

loadings. Loadings are structured along the channels 

and rhythms of the EEG. For each channel, the values 

for Theta, Alpha, Beta-low and Beta-High EEG-

rhythms are presented. The EEG-rhythms order is 

shown in the figure. The values of the loading are 

normalized and a color scale is introduced. 

 

   

Component number 

                                    (a)                                         (b)      (c) 

Figure 7: Normalized PCA-loadings image plots. 

a) – image plot of PCA-loadings for HL and RS data set; 

b) – image plot of PCA-loadings for T1 and RS data set; 

c) – image plot of PCA-loadings for T1 and HL data set. 
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First component reflects variance caused by Theta 

and Alpha frequency band activity. Its concerns all 

EEG channel. Second component reflects variance 

caused by changing loadings for AF3, P7, T7, O1, T8, 

AF4 channels. 

3.1.2 TOVA and Hyper Ventilation Data Set 

Figure 8 depicted cumulative sum of variance for 

principal components. The first two components 

explained 86% of total variance. 

 

Figure 8: Cumulative sum of variance for HL and T1. 

In Figure 9 presented result of linear discriminant 

analysis on training set for TOVA and rest data set. 

The average accuracy of classification is 100%. 

 

Figure 9: Classification of subjects for RS and T1. 

Figure 10 depicts stats boxes for normalized linear 

coefficients L form (2) for independent sets for 

components 1 and 2. 

As we can see, the both components are equally 

significant for discrimination on data set with two 

classes of RS and T1 load. 

 

Figure 10: LDA’s linear coefficients boxes for T1-RS. 

In Figure 7 (b) showed image plot of loadings. 

First component reflects variance caused by Theta 

and Alpha frequency band activity. Its concerns all 

EEG channel. Second component reflects variance 

caused by changing loadings for AF3 and O1 

channels. 

3.1.3 TOVA and Hyper Ventilation Data Set 

Figure 11 presents cumulative sum of variance for 

principal components. The first two components 

explained 61 % of total variance. Sum of variances 

for 1 and 2 components a sufficient less in 

comparison with previous cases. 

 

Figure 11: Cumulative sum of variance for HL and T1. 

In this case, we try to classify subjects in spaces 

for all pair combination of components with LDA. 

The results with accuracy more than 70% depicted in 

Table 3, where sum of variance for pair based on 

Figure 12 data, weighted index is multiplication 

accuracy and sum of variance for pair.  
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Table 3: Pairs of components, accuracy and sum of 

variance. 

Component 

pair 

 

Accuracy 

Sum of 

variance for 

pair 

Weighted 

index 

1-7 0.83 0.39 0.32 

2-7 0.78 0.29 0.23 

1-2 0.72 0.61 0.44 

Perform classification using discriminant analysis 

for 1, 2 components with maximum of weighted 

index. Figure 13 depicted result of linear discriminant 

analysis on training set for TOVA and 

hyperventilation data set. 

 

Figure 12: Classification of subjects for HL and T1. 

Figure 13 shows stats boxes for normalized linear 

coefficients L form (1) for independent sets for 

components 1 and 2. As we can see, the both 

components are equally significant for discrimination 

on data set with two classes of RS and T1 load. 

 

Figure 13: LDA’s linear coefficients boxes HL-T1. 

Figure 7 (c) presented image plot of loadings. 

Second component reflects variance caused primary 

by Alpha and Betta frequency band activity for O1 

channel. Channels P7, F7 appears with significant 

less loadings weights. 

3.2 Classification in Integrated Feature 

Space 

Initially EEG feature vector contained 54 components 

for 14 channels their rhythms borders were: Theta (4-

7) Hz, Alpha (7-15) Hz, Beta-Low (15-25) Hz, Beta-

High (25-31) Hz. Based on results in section 3.1 AF3, 

T7, O1, T8, AF4 channels with Theta and Alpha 

frequency bound are selected for EEG feature space. 

Integrated features space was created from EEG 

selected features and accelerometer MD features as 

showed on Figure 15. 
 

 

Figure 14: Integrated feature vector. 

Full feature space for accelerometer as described 

in section 2 are used. It need to be mentioned we don’t 

use any weighted coefficients for selected EEG 

features in model generalization purpose (Wolpaw 

and Wolpaw, 2012).  

LDA, Naïve Bayes (NB) and Decision Trees (DT) 

classification methods are used for EEG feature 

space. LDA method applied to finding linear 

combinations of features that best distinguish object 

classes. NB method - special case of the Bayesian 

classifier. The method based on the assumption that 

the objects are described by the statistically 

independent variables. DT are nonparametric 

method. This method does not require any 

assumptions about the distribution of the variables in 

each class (Kublanov et al., 2017). 

The prediction accuracy evaluated on an 

independent sets by doing “leave one out” cross-

validation (Refaeilzadeh et al., 2009). Table 4 

contains the mean accuracy for 10 test data sets for all 

five stages. 

Table 4: Accuracy for EEG and MD feature space. 

 Accuracy, % 

Method EEG-only MD-only Integrated 

LDA 72.4 89.3 86.7 

NB 68.9 89.3 86.7 

DT 71.6 84.0 92.0 
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The best result for integrated feature space have 

higher prediction accuracy 92.0%, in comparison 

with EEG-only (72.4 %) mental status evaluation for 

AF3, T7, O1, T8, AF4 channels. The best results for 

MD-only data are 89.3% for LDA and NB methods. 

4 DISCUSSION AND 

CONCLUSION 

According to the results of the of EEG data analysis 

for various combinations of functional loads, the most 

informative channels for Theta and Alpha rhythms in 

the frontal, hip and occipital areas were identified. 

For three different classifiers, the best accuracy of 

classification of the five functional states in the EEG 

generated characteristic space is at the level of 72.4% 

for LDA method. 

In turn, the classification in the attribute space of 

the accelerometer, for the LDA and NB classifiers, 

allows to reach 89.3% accuracy of identification of 

five functional states. The processing of the joint 

indicative space of the EEG –MD integrated core 

features allowed to increase the classification 

accuracy to 92.0% for DT method. 

The results obtained in this paper reflect changes 

in the power levels of the EEG indices in various 

functional states, which makes it possible to 

characterize the functional state of a person. The 

decrease in the control effect of the cerebral cortex 

(alpha-rhythm activity) increases the amplitude of the 

average acceleration of the head movement. The 

rather high classification accuracy obtained for the 

signs of EEG signals isolated using the PCA method 

suggests that changes in physiological processes 

underlie these changes. 

An increase in the accuracy of classification (on 

19.6% in comparison with EEG-only feature), when 

using the characteristics of both feature spaces can 

mean that each of the signals carries information only 

about a part of the changes in functional processes. 

Thus, the task of determining the relationship 

between EEG signals and the accelerometer on a 

wider set of functional samples, when classifying 

different mental states of a person at short time 

intervals, is promising. 
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