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Abstract: With the development of deep learning, image translation has made it possible to output more realistic and
highly accurate images. Especially, with the advent of Generative Adversarial Network (GAN), it became pos-
sible to perform general purpose learning in various image translation tasks such as “drawings to paintings”,
“male to female” and “day to night”. In recent works, several models have been proposed that can do unsuper-
vised learning which does not require an explicit pair of source domain image and target domain image, which
is conventionally required for image translation. Two models called “CycleGAN” and “DiscoGAN” have ap-
peared as state-of-the-art models in unsupervised learning-based image translation and succeeded in creating
more realistic and highly accurate images. These models share the same network architecture, although there
are differences in detailed parameter settings and learning algorithms. (in this paper we will collectively refer
to them as “learning techniques”) Both models can do similar translation tasks, but it turned out that there is
a large difference in translation accuracy between particular image domains. In this study, we analyzed dif-
ferences in learning techniques of these models and investigated which learning techniques affect translation
accuracy. As a result, it was found that the difference in the size of the feature map, which is the input for the
image creation, affects the accuracy.

1 INTRODUCTION

Humans can easily perform analogies between two
different domains in photographs, images, and the
like. For example, you can easily imagine what sce-
nery the landscape you saw during the day will be in
the evening. As described above, in this paper, we call
“image translation” to convert to another form and
style while holding semantic information of the image
before conversion between two image domains1.

A Study which becomes the root of image trans-
lation was done from around 2001(Hertzmann et al.,
2001). Especially since the approach using Convo-
lutional Neural Networks in Deep Learning has ap-
peared, we succeeded in creating more accurate ima-
ges(Gatys et al., 2016; Johnson et al., 2016; Yoo et al.,
2016). In recent years, approaches using Genera-
tive Adversarial Network (GAN) have appeared, and
more advanced image translation has become pos-
sible. “pix2pix”(Isola et al., 2016) allows general-
purpose learning in arbitrary pairs, such as aerial pho-
tographs to maps, monochrome images to color ima-

1Sometimes called “Domain Transfer”.

Figure 1: Result of pink hair to blond hair(64×64).

ges, by using any two image domain data sets expli-
citly paired together. Therefore, more realistic and
highly accurate images can be created.

By contrast, there is also a GAN approach that
allows image translation with unsupervised learning
that does not require explicit pairs of images (Taig-
man et al., 2016; Kim et al., 2017; Zhu et al., 2017).
“DiscoGAN”(Kim et al., 2017) has appeared as a
state-of-the-art unsupervised learning model capable
of performing highly accurate image translation. It
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does not require an explicit pair of images and you
only have to prepare arbitrary image domains. “Cy-
cleGAN”(Zhu et al., 2017) does not require explicit
pairs as well, and translation can be done with high
accuracy between various image domains. Regar-
ding the above two models, except for differences in
detailed learning techniques, the networks share the
same architecture. Both can perform high-precision
translation among arbitrary image domains, however
it was found that there is a large difference in transla-
tion accuracy among certain image domains.

Therefore, in this study, we investigate factors af-
fecting translation accuracy by using the two models
and consider ways to improve a model for a particular
domain.

2 PRELIMINARY EXPERIMENT

Figure 1 shows the output results of two models in the
task of translating from the source domain (pink hair)
to the target domain (blond hair), using illustration for
both domains. As can be seen from the results, Cycle-
GAN is translated into blond hair while maintaining
semantic information of the input image (in this case,
the shape of the illustration). On the other hand, in the
case of DiscoGAN, images with completely different
shapes from the input image were output. Further-
more, the same image is output in all three results.
This phenomenon is called “mode collapse”, which
means that it generates only images similar to a parti-
cular image for any input, which is a serious problem
in the GAN(Goodfellow, 2016).

In this way, when illustration was targeted for
image domain translation, it was found that there was
a difference in the results of DiscoGAN and Cycle-
GAN. Despite the same network architecture, why did
the result change so much? We will conduct experi-
ments and identify the cause in Section 5.

3 RELATED WORK

3.1 Generative Adversarial
Network(GAN)

Generative Adversarial Network (GAN)(Goodfellow
et al., 2014) is a generative model of unsupervised
learning proposed by Goodfellow et al. Particularly
in image generation, GAN can generate a realistic and
highly accurate image.

Figure 2: Two-dimensional graphed MNIST dataset.

There are two main networks in the GAN, and
these are configured as “Adversarial Network” which
optimize in conflict.

One is a generator G, and the goal of this network
is to learn the distribution px(x) for the training data
x. The generator randomly samples the vector z from
the prior distribution pz(z) such as uniform distribu-
tion and Gaussian distribution. Then, the generator
outputs G(z) and maps it to the generation distribu-
tion pg(G(z)).

The other is a discriminator D, which is a function
aimed at discriminating whether the input data is
training data (real) or data generated by a generator
(fake).

Given the fact that GAN is “Adversarial Net-
work”, the goal of the two networks can be paraphra-
sed as that the generator optimizes so as to generate
data which makes the discriminator mistakenly recog-
nize what it has generated as “real”. Then, the discri-
minator optimizes to be able to distinguish “real” and
“fake” clearly.

Therefore, the objective function can be formula-
ted as the following minimax optimization.

min
G

max
D

V (D,G) = Exxx∼pxxx(xxx)[logD(xxx)]

+Ezzz∼pzzz(zzz)[log(1−D(G(zzz))]

For the input data, the discriminator derives the pro-
bability that it is training data (real). From Equation
1, the discriminator is aimed at maximization. There-
fore, D(xxx) becomes large and (1−D(G(zzz))) also be-
comes large when the discriminator can be well dis-
criminated. On the other hand, if the generator can
successfully fool the discriminator, D(G(zzz)) gets big-
ger so (1−D(G(zzz))) gets smaller.

GAN can be useful in various aspects such as ge-
nerating an image matching the context of the input
text, repairing a missing part of the image, and pre-
dicting the scene a few seconds after an input image.
In addition, although the original GAN(Goodfellow
et al., 2014) is made up of perceptrons, a model cal-
led Deep Convolutional Generative Adversarial Net-
works(DCGAN)(Radford et al., 2015) that adopts
CNN for the GAN network has been proposed to furt-
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her enhance learning efficiency and generation accu-
racy of GAN (Figure 3).

We can assume various categories over each trai-
ning data. For example, in the case of MNIST
(handwritten digits) image data set (LeCun and Cor-
tes, 2010), the digits correspond to the category.
When a set of training data is represented by a two-
dimensional graph as shown in Figure 2, it is assu-
med to be composed of mixed distributions formed by
“peaks” of multiple distributions where each category
concentrates. In the previous study, the range of the
horizontal axis corresponding to each peak is defined
as “mode”(Goodfellow, 2016). The generator learns
so that the distribution pg(G(z)) approaches the shape
of the distribution px(x) for each mode. If the genera-
tor relies on a mode that can reliably deceive the dis-
criminator, the “mode collapse” described in section
2 will occur. In order to the avoid this, it should gene-
rate data in each mode as px(x). In addition, because
we can assume various categories with the complex
structure on a real world dataset, it is much more com-
plicated than MNIST. Mode collapse is a major is-
sue in GAN, and recent studies have proposed several
methods to solve the problem.

3.2 Image Translation

The study which becomes the roots of the image
translation began when “Image Analogy”(Hertzmann
et al., 2001) appeared. This is a nonparametric met-
hod, which learns the filter that is applied to the con-
verted image from the pair of images before and af-
ter conversion and applies the same filter to any other
image. In recent years, studies based on CNN appro-
ach have been actively conducted(Gatys et al., 2016).

3.3 Image Translation using GAN

3.3.1 Supervised Learning

In this paper, “supervised learning” refers to lear-
ning using training data explicitly paired in two image
domains.

Yoo et al. proposed a GAN-based model that
can generate an image of clothes worn by a per-
son(target domain) from a model image wearing the
clothes(source domain) using paired training data.
“pix2pix”(Isola et al., 2016) can perform general
translation learning between various image domains if
the target image can be specified for any source image
as paired training data.

3.3.2 Unsupervised Learning

In contrast, several studies have been proposed that
take approaches in unsupervised learning. “Disco-
GAN”(Kim et al., 2017) does not require paired trai-
ning data. They proposed a model that allows image
translation between two image domains only by de-
fining them. CycleGAN (Zhu et al., 2017) proposed
simultaneously can do the same thing.

DiscoGAN and CycleGAN share the same archi-
tecture although they have differences in detailed le-
arning technics. In this study, in order to investigate
the two models, we will describe the details of the
network algorithm in Section 4.

4 ANALYSIS OF DIFFERENCE
BETWEEN DISCOGAN AND
CYCLEGAN

4.1 Algorithm

As described in Section 1 and 3, the network architec-
ture of DiscoGAN and CycleGAN are identical (Fi-
gure 4). Therefore, we will explain the details of the
algorithm using DiscoGAN. Let us call two arbitrary
domains domain A and domain B respectively.

First, let us define the generator GAB that takes an
image xA of domain A and convert it to one of domain
B. In image translation, it is important to find a me-
aningful relationship (semantic information) between
both domains and to convert an element of the source
domain to the target domain while keeping the relati-
onship. In order to find the relationship, DiscoGAN
constrains the relation of each mode between domains
to bijection. Therefore, it is necessary to define GBA,
the inverse translation with which the mapping from
domain B to domain A can be performed. GBA cal-
culates its output xABA = GBA(xAB) using the image
xAB generated by GAB. Finally, we derive the loss
function LCONSTA of the difference between xA and
xABA using arbitrary distance function (mean square
error, cosine distance, etc.). As a result, we can iden-
tify the corresponding element in domain B given an
element in domain A. Next, we need to build the dis-
criminator DB of domain B to check the appropriate-
ness of the translation. DB is supposed to discriminate
whether an image is a training example xB taken from
the domain B (real) or a generated image xAB (fake)
using GAB and a training example xA drawn from the
domain A. In discrimination, the DB learns the feature
of the domain B and increases discrimination ability.
Therefore, GAB learns to generate xAB which is indis-
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Figure 3: DCGAN network(when handling images).

Figure 4: DiscoGAN(a) and CycleGAN(b) network(Kim et al., 2017)(Zhu et al., 2017). The part of the discriminator seems to
be a different structure. However, interpreting (b) as (c), we can understand that the two networks share the same architecture.

tinguishable from the real image xB. Therefore, the
objective functions of generators GAB and discrimina-
tor DB are as follows.

LGAB = −ExxxA∼pA [logDB(GAB(xxxA))]

+ LCONSTA (1)
LDB = −ExxxB∼pB [logDB(xxxB)]

− ExxxA∼pA [log(1−DB(GAB(xxxA)))]

(2)

Regarding the formulation, it is also necessary to
impose constraints for translation from domain B to
domain A in addition to the above formula. The rea-
son is that this formulation alone does not satisfy the
bijection condition. Figure 5(b) shows an example
in the case of performing image translation with the
original GAN. This suggests that multiple modes of
Domain A may map to a single mode of Domain B if
there are no constraints. This is a phenomenon called
“mode collapse” mentioned in Section 2. It is a phe-
nomenon that the generator depends on a “mode” by
which discriminator easy to be fooled, and any inputs
yield in the output similar to a particular image. Fi-
gure 5(c) is the result of posing LCONSTA . As a result,
we can identify the corresponding element in domain
B given an element in domain A. However, we have
not solved the mapping from multiple modes to single

mode. That is, the mode collapse has not been solved.
Therefore, formulation on translation from domain B
to domain A must be considered. The following is the
final objective function.

LG = LGAB +LGBA (3)
LD = LDA +LDB (4)

The parameters to be learned are GAB,GBA,DA,DB.
When these conditions are satisfied, the mapping
must be a bijection, and it becomes possible to have
correspondence between the domains.

From Figure 4, CycleGAN also has the same for-
mula as DiscoGAN. Only the name of the recon-
struction loss has changed2.

4.2 Elements of Models

In the following, we will describe the five learning
techniques which stand out as clear differences bet-
ween the two models from our analysis.

4.2.1 LSGAN

LSGAN (Mao et al., 2016) is a method for improving
learning stability and generation accuracy for GAN.
Regarding the objective function, the log likelihood

2Zhu et al. named this a cycle-consistency loss.
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Figure 5: Mode-to-mode mappings of our models. (a): ideal result, (b): a possible result when using original GAN, (c):
possible results when using LCONSTA (Kim et al., 2017).

is originally used, whereas the method of Mao et al.
uses the least squared error.

4.2.2 PatchGAN

PatchGAN (Isola et al., 2016) is a technique used for
improving learning efficiency and stabilizing image
translation by supervised3 learning. With this techni-
que, the discriminator is not given the whole image
but N×N patches to judge it as genuine or fake. Since
the normal discriminator is given the whole area of the
image, the number of the learning parameter becomes
large depending on the image size. Since PatchGAN
is given an image locally, the number of the learning
parameters can be kept low, and the discriminator is
strengthened by increasing the learning efficiency.

4.2.3 Buffer

SimGAN (Shrivastava et al., 2016) is a model that
can convert a synthetic image created for training data
into a more realistic image. In order to cope with lack
of training data, they used a simulator to create synt-
hetic images. However, there was a risk that the synt-
hetic images were not realistic enough, resulting un-
stable learning. SimGAN was proposed to mitigate its
risk. Buffer is used as a method of improving accu-
racy in this model. When giving an image to the dis-
criminator, it uses not only a newly generated image
but also an image generated in past (buffer) with a
certain probability.

4.2.4 Definition of LCONST

In DiscoGAN, LCONST is shown as an arbitrary dis-
tance function. For its implementation, mean square
error was used. On the other hand, CycleGAN uses
the L1 norm.

4.2.5 ResNet

In image recognition, it is said that the deeper the
layer of CNN becomes, the higher the recognition
accuracy will be. However, there was a problem that
recognition error increases if the layer is made too
deep. Deep Residual Learning (ResNet) (He et al.,

3Learning by explicit pairing of training data

Figure 6: Generator used in this study.

2016) is a method for constructing a deep network of
layers. Learning the residual between the outputs and
inputs of that layer rather than learning the optimal
output at a layer eliminates the need to use unneces-
sary weights. By doing this, it becomes possible to
extend the limit of the depth of the layer and to stabi-
lize learning.

5 EXPERIMENTS

5.1 Experimental Setups

In this study, we examine the influence of the presence
or absence of the five learning techniques on the ge-
neration accuracy in image translation. Using Disco-
GAN as a baseline model, experiments are conducted
with a total of 32 cases that defined by presence or
absence of learning techniques. For the data set, we
used 5000 pink hair portrait illustration images in the
source domain and 5000 blond ones in the target dom-
ain. The image size was 64×64 resolution.

Regarding the architecture of the generator and
discriminator, it is composed of multiple convoluti-
onal layers based on DCGAN(Radford et al., 2015).
Originally, the generator adopts a random vector for
input. In image translation, an encoder composed of a
convolution layer is built in order to handle an image
as input. Next, the vector output from the encoder
is taken as input and handled as a feature on the input
image. Then, by entering the vector to a decoder com-
posed of deconvolution, an image is generated. The
configurations of encoder and decoder are often col-
lectively called a generator (Figure 6). On the other
hand, the discriminator is composed of a convolution
layer in the same way as the original GAN.
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Table 1: Architecture of DiscoGAN and CycleGAN.
DiscoGAN CycleGAN

Net Layer C F S P BN A Net Layer C F S P BN A

G

c1 64 4 2 1 leaky

G

c1 32 7 1 3 ReLU
c2 128 4 2 1 leaky c2 64 4 2 1 ReLU
c3 256 4 2 1 leaky c3 128 4 2 1 ReLU
c4 512 4 2 1 leaky RN4 128 3 1 1 ReLU
dc5 256 4 2 1 ReLU RN5 128 3 1 1 ReLU
dc6 128 4 2 1 ReLU RN6 128 3 1 1 ReLU
dc7 64 4 2 1 ReLU RN7 128 3 1 1 ReLU
dc8 3 4 2 1 tanh RN8 128 3 1 1 ReLU

D

c1 512 4 2 1 leaky RN9 128 3 1 1 ReLU
c2 256 4 2 1 leaky RN10 128 3 1 1 ReLU
c3 128 4 2 1 leaky RN11 128 3 1 1 ReLU
c4 64 4 2 1 leaky RN12 128 3 1 1 ReLU
c5 1 4 1 0 identity unp13 64 2 2 0 identity

c13 64 3 1 1 ReLU
c convolution(down convolution) unp14 32 2 2 0 identity
dc deconvolution(up convolution) c14 32 3 1 1 ReLU
leaky leaky ReLU c15 3 7 1 3 tanh
identity identity mapping

D

c1 64 4 2 1 leaky
RN ResNet c2 128 4 2 1 leaky
unp unpooling c3 256 4 2 1 leaky
C...Channel, F...Filter Size, S...Stride, P...Padding,
BN... Batch Normalization, A...Activation Function c4 512 4 2 1 leaky

c5 1 3 1 1 identity

Table 2: Shape evaluation result. For each list of digits, set
the method to be applied to “1” and those not apply “0”.
From the left “PatchGAN, LSGAN, LCONSTA , ResNet, Buf-
fer”. We will use this notation hereafter.

Failure Success
00000 00101 01100 10101 01010 10011 11110
00001 00110 01101 11000 01011 10110 11111
00010 00111 10000 11001 01110 10111
00011 01000 10001 11100 01111 11010
00100 01001 10100 11101 10010 11011

Table 1 shows the details of each CNN structure.
For PatchGAN and ResNet, use DiscoGAN network
when not used, and use CycleGAN network when
used.

5.2 Experimental Result

Several representative examples out of 32 experimen-
tal results are shown in Figure 7.

Models are compared with each other by checking
whether xABA holds the form of the original input xA
after application of GAB and GBA. We call the met-
hod “shape evaluation”. We have visually evaluated
whether the shape of the original input xA is maintai-
ned at xABA from the Figure 7. It is assumed to be
“success” when the face outline, eyes, mouth were
reconstructed along the original input. On the other
hand, it is evaluated as “failure” when the mode col-
lapse occurs, when the shape of the face is malformed
or when a part of the part is missing. The results are
shown in Table 2.

Boldface items show failed patterns despite using
three or more learning techniques and successful pat-
terns despite using two or less learning techniques.
From these results, PatchGAN, LSGAN, ResNet can
be cited as methods having an important role in shape
reconstruction.

The condition for success can be summarized as
the following. In the case where PatchGAN is not
used, shape reconstruction will succeed if both LS-
GAN and ResNet are used. In the case where Pat-
chGAN is used, shape reconstruction is successful if

Table 3: Details of failure pattern.

Mode collapse No mode collapse
00000(0) 00110(1) 01101(1) 00011(1) 11100(2)
00001(0) 00111(1) 10000(1) 10001(1) 11101(2)
00010(1) 01000(1) 10100(1) 10101(1)
00100(0) 01001(1) 11000(2)
00101(0) 01100(1) 11001(2)

ResNet is used. All other cases failed. From these
results, it turns out that the most important learning
technique among the five techniques is ResNet.

From the above results, it seems that Buffer and
LCONST have no particular effect. As for LCONST , it
has no particular impact in this experiment, just as
Kim et al. stated that an arbitrary distance function
could be used. However, the effect of Buffer is unex-
plainable from the above result. We have found an
evidence that Buffer could contribute to avoid the
mode collapse, after classifying the failure patterns
based on the presence or absence of the mode col-
lapse. In this experiment, it is judged that mode col-
lapse occurs when an image similar to a particular
image is generated for two different input images.
The result is shown in Table 3.

In this table, the numbers in parentheses indicate
the number of techniques used in a model among
three techniques (PatchGAN, LSGAN, ResNet) that
are considered important. From the results, it can
be seen that mode collapse occurs if only one main
technique is used or not used at all. On the other
hand, when both PatchGAN and LSGAN are used,
mode collapse has not occurred. Buffer + ResNet
pattern and Buffer + PatchGAN pattern also did not
cause mode collapse, and the influence of Buffer on
major techniques was observed. However, as for Buf-
fer + ResNet, since the mode collapse pattern (00111)
also exists, it was found from this result that the ef-
fect of mode collapse prevention by combination of
PatchGAN and Buffer is significant.

6 DISCUSSION

Experimental results show that PatchGAN and LS-
GAN and ResNet are three important methods.
Among them, ResNet has an important role in both
shape reconstruction, and it is considered to be the
most important method among the five.

Although GAN originally uses random noise of
about 100 dimensions for input, this time we use ima-
ges for input. As seen in Figure 6, the input image is
compressed by the convolution layer (encoder), and
it is used as the input of the generator in the form of
a feature map. In this experiment, the training exam-
ples are 64×64 resolution images. When we use the
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Figure 7: Results. Top left: xAB. Top right: xABA. Bottom left: xAB(another input). Bottom right: xABA(another input).

DiscoGAN network, we will downsample them to a
very small feature map of 4× 4. Therefore, the di-
mension of the input space of the generator becomes
much lower than the training data distribution. That
makes mode collapse more likely and leads to genera-
tion failure. On the other hand, since CycleGAN with
ResNet employs a 16x16 feature map, mode collapse
is unlikely and the shape becomes stable.

From the above, we make one hypothesis. That
is, by increasing the size of the feature map output
by the encoder, shape reconstruction succsessful rate
may be improved. In order to verify these, two additi-
onal experiments are carried out. First, by using ima-
ges of 256×256 resolution as the input of DiscoGAN
(00000), we examine the influence of the image size
on the quality of the generated image (Figure 8(c)).
Next, by using images of 64× 64 resolution as the
input of DiscoGAN (00000), we examine the influ-
ence of the number of convolution layers on the qua-
lity of the generated image (Figure 8(d)). The encoder
parts of both DiscoGAN and CycleGAN are compo-
sed only of convolution layers that perform downsam-
pling, and the size of the feature map is determined
by the image size and the number of layers. In other
words, the two additional experiments are common in
that the feature map is extended rather than the ordi-
nary DiscoGAN. When the result of image translation
by additional experiment is better than that of origi-
nal DiscoGAN, it is understood that the difference in
accuracy between DiscoGAN and CycleGAN is attri-
buted to the size of the feature map used as input to
the decoder. The results are shown in Figure 9.

From the results, with 256× 256 resolution ima-
ges, the results were as good as CycleGAN. Although
the quality is poor as the result of reducing the layer,
the shape is stable without mode collapse. This result
is a category of “success” in this experiment. As a re-
sult, we can attribute the improvement to the size of
the feature map as stated in the hypothesis.

Also, from the Table 2, it turns out that the result
with ResNet alone is a failure (00010). This is be-
cause the filter size for convolution in Conv 1 of Table
1(CycleGAN) is large, which caused the loss of infor-
mation. In this regard, however, it will be successful if
only PatchGAN or LSGAN is added to ResNet. The-
refore it can be seen once again that these two are

largely attributed to image quality improvement.
As for the mode collapse, Table 3 shows that there

is an influence by buffer. In particular, the combina-
tion of PatchGAN and Buffer improves mode collapse
despite the small feature map, which shows that it is
an important technique.

The mode collapse is caused by imperfect nature
of the discriminator. Learning of discriminators can
be tricky. Suppose there are two modes, one in which
the discriminator can accurately discriminate real or
fake, and another in which the discriminator performs
poorly. The generator learns to rely on the second
mode to reliably fool the discriminator and thereafter
the distribution of generated data only includes the se-
cond mode.

Both PatchGAN and Buffer are approaches to dis-
criminators and are used as important learning techni-
ques to improve discriminator’s performance. Howe-
ver, as for Buffer, when two or more major techniques
were used, the quality was improved regardless of its
presence. PatchGAN is more important for quality
improvement.

7 CONCLUSION

In this study, we examined learning techniques that
are responsible to the difference in the image genera-
tion accuracy in a particular domain for the two image
translation models. Among them, ResNet was used
as the most influential one. It turned out that the fe-
ature map size is an important parameter. As for the
mode collapse, it was found that it can be improved by
using two or more major techniques or by combining
PatchGAN + Buffer.

CycleGAN is a model that is good at texture/style
translation. However, it performed poorly in tasks that
change shape and were cited as future tasks. Meanw-
hile, in DiscoGAN, there is a successful example of
a task to change shape, leaving very precise results.
However, the images belonging to the domain are re-
latively similar to each other, and DiscoGAN has not
succeeded in the case where there are various images
in the domain. For example, this model has succee-
ded tasks that change shapes, such as facial expressi-
ons and gender. Both of these use human faces and
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Figure 8: Feature map size output from encoder. In the additional experiments (c) and (d), the feature map size is larger than
that of the ordinary DiscoGAN(a).

Figure 9: Additional experiment results.

are relatively similar. As can be seen from these, we
consider that five learning techniques need to be ad-
justed not only by the generation accuracy but also
by the image domain to be handled. In this study we
conducted experimental verification focused on shape
evaluation, but we did not consider domain translation
accuracy (in this paper, it is an indicator whether it is
translated into blond hair or not). The indicator is dif-
ficult for this domain translation and we will treat it
as a future work.

Based on the result of the domain handled in this
study, we will try targeting illustrations in the future
and try to realize socially useful agents for creators
who deal with them.
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