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Abstract: This paper presents an analysis pipeline for automatically detecting cells in digitally reconstructed quantitative 

phase images acquired by digital holographic microscopy and for computing biophysical cell parameters. 

Using an intelligent, integrated image analysis approach, we optimize the overall analysis process which 

includes several time-consuming, manual steps. The proposed automatic approach shows promising results 

in an experimental comparison with the current manual evaluation process. 

1 INTRODUCTION 

Quantitative phase images acquired by a digital 

holographic microscopy (DHM) can be used for the 

analysis of biological cells, e.g. measuring their 

reaction to drugs or nanoparticles. Quantitative phase 

contrast methods provide contactless, minimally-

invasive imaging and thus examined cells are not 

altered, e.g., by fluorescent dyes. Due to the 

numerical reconstruction of quantitative phase 

images it is possible to determine biophysical 

parameters such as cell volume, dry mass and 

refractive index numerically (Kemper et al., 2013).  

The analysis of cells in digital quantitative phase 

images typically involves several time-consuming 

steps in the processing pipeline: In order to compute 

biophysical cell parameters with high accuracy and 

reliability, as described for example in (Kastl et al., 

2017), single cells are manually selected in a 

hologram, individually reconstructed and the physical 

cell parameters are separately determined via 

different software packages. A fast automated 

evaluation of a sufficient number of images for 

further statistical analysis with an adequate precision 

is currently not possible. Modern image processing 

and analysis provides techniques to automatically 

detect cells in microscopy images, which therefore 

allow removing the conventional time-consuming 

approach to manually select cells in quantitative 

phase images. In addition, digital image processing 

allows both, to compute morphological parameters of 

cells, and conduct automatic cell identification. 

Therefore, this paper presents a pipeline for 

automatically detecting appropriate cells in 

reconstructed quantitative phase images that is 

combined with an all-in-one computation of cell-

specific biophysical parameters in order to optimize 

the overall time-consumption of the analysis process.  

First, an introduction in digital holographic 

microscopy and the possibilities of computing cell 

physical parameters from quantitative phase images 

is given in sections 2.1 and 2.2. Then, for detecting 

individual cells in 2D reconstructed phase images, we 

present a suitable image segmentation concept. Based 

on the cell segmentation individual biophysical 

parameters such as dry mass and cell volume are 

determined for each cell automatically. We elaborate 

on this analysis step with more details in section 2.3. 

In section 3, we present experimental results from 

comparing our novel approach with the current 

manual evaluation process. Finally, conclusions are 

drawn in section 4. 

2 METHOD & 

IMPLEMENTATION 

In this section the underlying digital holographic 

microscopy (DHM) principle and the computation of 

biophysical cell parameters from quantitative phase 

images taken by DHM are described. In order to 
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accomplish the automatic computation the last 

subsection will deal with the required techniques of 

digital image processing, in particular with the 

segmentation and object recognition methods used 

for cell detection in this paper. 

2.1 Digital Holographic Microscopy 

Digital holographic microscopy is a method which is 

based on the classical principle of holography, where 

both the amplitude and the phase of light waves are 

stored and reconstructed to produce spatial images of 

an object. The principle of holography was 

introduced by physicist Dennis Gabor in 1948 

(Gabor, 1948). Based on the wave theory of light, it 

is assumed that the light propagates in a wavelike 

manner with a specific wavelength, amplitude and 

phase. For recording a hologram, light from a laser is 

divided by a beam splitter into a reference wave and 

an object wave. In the case of transillumination, 

depending on the optical and geometric properties of 

the sample, the phase of the object wave changes.  

The object is transmitted by the object wave and 

then interferes with the undisturbed reference wave.  

Due to the interference with the reference wave, an 

interference pattern is formed. In contrast to classical 

analog holography, in digital holography (DH) the 

hologram is not recorded with a photo plate and again 

illuminated with the reference wave for optical 

reconstruction. Instead, a charge coupled device 

(CCD) sensor is used, which digitizes the intensity of 

the interference pattern (digital hologram). The 

digital hologram thus contains beside the amplitude 

also the information of the phase of the object wave, 

which can be digitally reconstructed (Kemper and 

von Bally, 2008). 

Figure 1 shows the setup for digital holographic 

phase contrast microscopy used in this study to 

produce digital holograms (Kemper et al., 2006). 

Holograms are recorded with an inverted microscope 

iMIC (TILL Photonics GmbH, Munich, Germany) 

modified for digital holographic microscopy. A 

frequency-doubled neodymium: yttrium aluminium 

garnet laser, Compass 315M-100 (Coherent GmbH) 

with a wavelength of 𝜆 =  532 𝑛𝑚  is used as the 

coherent light source. A CCD camera, (DMK 

41ABF02, The Imaging Source, Bremen, Germany) 

and a 10x microscope objective are used for imaging 

of the sample and to record the digital holograms. The 

resulting digital holograms are transferred to a 

computer for numerical reconstruction. The 

numerical reconstruction from the digitally captured 

holograms is performed by spatial phase shifting in 

combination with optional numerical autofocusing 

(Langehanenberg et al. 2011).  
 
 
 
 

 

 

 

Figure 1: Digital holographic microscopy set up (adapted from Kemper et al. 2013). 
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2.2 Computation of Biophysical Cell 
Parameters from Quantitative 
DHM Phase Images 

In this section we describehow from the measured 

optical pathlength changes in the reconstructed 

quantitative phase contrast images of suspended cells 

biophysical cell parameters can be determined 

(Kemper at al., 2013). 

2.2.1 Cell Volume 

We assume that the considered cells observed in 

suspension are approximately spherical. Hence, the 

cross section of the cell surface S𝑐  is detected as a 

circle, the cell radius 𝑟𝑐𝑒𝑙𝑙 can be easily calculated:  
 

S𝑐 = π · 𝑟𝑐𝑒𝑙𝑙
2. (1) 

 

The detected pixel area hast to be converted into 

the metric units of the surface area S𝑐 of the cell in 

𝜇𝑚²  using the respective scaling factor of the 

microscope objective. Since the cells are assumed to 

be spherical, the cell volume 𝑉 is:  
 

𝑉 = 
4

3
 𝜋 𝑟𝑐𝑒𝑙𝑙

3. (2) 

2.2.2 Dry Mass 

The dry mass is defined as the amount of all 

substances dissolved in the cell except water. By 

utilizing the projected cell surface area S𝑐 and the 

average phase contrast Δ�̅�, the cellular dry mass 𝐷𝑀 

is computed as (Kastl et al., 2017): 
 

𝐷𝑀 = 
10 𝜆

2 𝜋𝛾
 Δ�̅� 𝑆𝑐. (3) 

 

The parameter 𝜆 represents the wavelength of the 

laser light in 𝜇𝑚, 𝑆𝑐  the cross section area in 𝜇𝑚², 
𝛥𝜑  the mean phase difference induced by the cell, 

and 𝛾  a specific constant related to the cellular 

content (refractive index increment) (Barer, 1952). 

Following (Kastl et al., 2017), the value of 𝛾  is 

estimated as 0.002 𝑚3 / 𝑘𝑔 in this work. The mean 

phase contrast 𝛥𝜑  can be calculated by averaging all 

phase values of a quantitative digital holographic 

phase contrast image of a cell. The respective phase 

contrast values are calculated from the reconstructed 

phase contrast image, which is represented in grey 

levels (8-bit), by normalizing the intensity of the grey 

values and multiplying by the maximum phase 

contrast value in the image. 

 

 

 

2.2.3 Refractive Index 

The refractive index is a material specific parameter, 

which quantifies how much the light is delayed while 

passing through the sample. It is proportional to the 

concentration of the substances dissolved in the cell. 

The change in phase contrast Δ�̅�  depends on the 

refractive index of the cell 𝜂𝑐𝑒𝑙𝑙, refractive index of 

the surrounding medium 𝜂𝑚𝑒𝑑𝑖𝑢𝑚 , and the cell 

thickness 𝑑 𝑐𝑒𝑙𝑙: 
 

∆�̅� =  
2 𝜋

𝜆
𝑑 𝑐𝑒𝑙𝑙 ∙ (𝜂𝑐𝑒𝑙𝑙 − 𝜂𝑚𝑒𝑑𝑖𝑢𝑚). (4) 

 

Using the assumption of a spherical cell shape, by 

equations (1), (3), (4) and taking a mean cell thickness 

𝑑 𝑐𝑒𝑙𝑙 =
V

S𝑐
 into account, the dry mass 𝐷𝑀 evaluates to 

(Kastl et al. 2017): 
 

𝐷𝑀 = 10 
V

𝛾
 (𝜂𝐶𝑒𝑙𝑙 − 𝜂𝑀𝑒𝑑𝑖𝑢𝑚). (5) 

 

From equation (5) the cellular refractive index of 

𝜂𝐶𝑒𝑙𝑙 can be calculated  
 

𝜂𝐶𝑒𝑙𝑙  =
𝐷𝑀∙𝛾+10∙ 𝑉∙𝜂𝑀𝑒𝑑𝑖𝑢𝑚 

10 𝑉
. (6) 

 

Equation (6) shows that that 𝜂𝐶𝑒𝑙𝑙  is an optical 

parameter that is directly related to cell volume and 

dry mass. 

2.3 Automatic Cell Detection 

To accomplish the tasks of detecting individual cells 

automatically and determine their biophysical cell 

parameters from the reconstructed digital holographic 

phase images, several pre-processing steps are 

required. These steps will be discussed in more detail 

in the following subsections.  

2.3.1 Image Segmentation 

The numerically reconstructed images of cells need to 

be segmented, in order to subsequently mark the cells 

as contiguous regions. Several pre-processing steps 

are carried out in order to obtain an optimal 

segmentation result. First, we smoothed the image 

with a median filter. The aim here is to eliminate 

unevenness in the phase distributions, but at the same 

time preserve the important image structures. In order 

to make a precise distinction between the foreground 

and the background during thresholding and to 

account for possible image artefacts, we used the 

background subtraction technique. More precisely, 

we employed a large Gaussian filter (𝜎 =  200) in 

order to generate a strongly smoothed image which 
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serves as an approximate model for the image 

background.  

By subtracting the generated background 

reference image, light background patterns (fixed 

pattern noise) can be eliminated in the quantitative 

phase image and the resulting images can be 

effectively segmented. The threshold value is 

calculated with the threshold method according to 

Otsu to create a binary image (Otsu, 1979). It is 

assumed that the pixels of the original grey-scale 

image originate from two classes whose distribution 

is not known. The threshold value is determined in 

such a way that the dispersion of the grey values, i.e. 

the variance within a class is as small as possible and 

the mean value between the two classes is 

simultaneously as far apart as possible (Burger and 

Burge, 2009).  

2.3.2 Region Detection 

After the segmentation, the detection of connected 

objects, in this case the recognition of individual areas 

as one cell, is required in order to calculate the 

individual biophysical cell parameters. For this 

purpose, we used simple flood filling to label each 

connected region in the binary image. Based on a 

labelled image a variety of parameters for each region 

such as geometric features as well as intensity-based 

information can be computed.  

2.4 Implementation 
The steps described in the previous section were 

developed and implemented in Python. In this work, 

the Python version 3.6.1 was used. In addition to the 

standard library of Python, for the basic handling of 

images, functions from the libraries NumPy and 

Pillow were used. In our pipeline the scikit-image 

library has been used for object recognition and for 

determining the cell parameters. Scikit-image 

provides a collection of algorithms for image 

processing and computer vision. We used the version 

0.13.0 by scikit-image, in particular, functions from 

the sub-packs feature, filters, and morphology.  

3 EXPERIMENTAL RESULTS 

We applied our pipeline to several different 

reconstructed DHM quantitative phase images to 

analyse the performance of automatically detecting 

different cell types. The pipeline detected all cells as 

shown in Figure 2 (a) and Figure 3. 

In order to evaluate how the data acquired with the 

described automatic detection differs from the values 

determined with manual detection, the specific 

biophysical parameters were computed and compared 

for both approaches. 

 

  
(a) (b) 

Figure 2: (a) shows the cells detected automatically in a quantitative DHM phase contrast image. The green boxes mark cells 

with a form factor > 0.88. (b) shows the corresponding cells manually selected cells in the associated amplitude image. 
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Figure 3: Detected and labelled cells in quantitative DHM 

phase contrast images of suspended PaTu 8988T cells using 

the developed pipeline.  

Using an image series of ten quantitative phase 

contrast images of suspended pancreatic tumour cells 

(PaTu 8988T) and literature values from (Kastl et al., 

2017) the accuracy of the pipeline was analysed. In 

the image series, a total number of 254 cells were 

automatically detected and 189 cells with a form 

factor higher than 0.88 were further evaluated for 

biophysical parameters. The cells which were used 

were marked with a green bounding box (Figure 2). 

The statistical results can be represented as follows:  

Table 1: Radius, refractive index and dry mass retrieved 

from 189 automatically detected PaTu 8988T cells. 
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Radius 

[µm] 

7.4768± 

0.0581 

5.6998 10.0785 0.7976 

Dry 

mass 

[ng] 

0.234± 

0.006 

0.0764 0.6097 0.0826 

Ref. 

index 

1.3637± 

0.0001 

1.3637 1.3693 0.0001 

 

For the PaTu 8988T cells, a refractive index of 

𝜂𝑐𝑒𝑙𝑙𝑠 𝑃𝑎𝑇𝑢 8988𝑇 =  1.3637 ± 0.0001 and a radius of 

𝑅𝑐𝑒𝑙𝑙𝑠 𝑃𝑎𝑇𝑢 8988𝑇 = 7.48 ± 0.058  were determined 

using the described pipeline. Literature values 

specified in (Kastl et al., 2017) for the refractive index 

for the PaTu 8988T cells are 𝜂𝑐𝑒𝑙𝑙𝑠 𝑃𝑎𝑇𝑢 8988𝑇  =
 1.3654 ± 0.0002  and for the radius 

𝑅𝑐𝑒𝑙𝑙𝑠 𝑃𝑎𝑇𝑢 8988𝑇 =  8.7 ± 0.006. The comparison of 

the mean cell radii of the two measurement series 

shows that the results from the pipeline are 

significantly smaller than the literature value, which 

leads to an underestimation of the actual dry mass.  

In order to obtain a more accurate comparison of 

the specific biophysical parameters, a further analysis 

was carried out to evaluate the differences in more 

detail. The biophysical cell parameters were 

determined from five different phase contrast images.  

Therefore, each reasonable cell in the region of 

interest was detected manually by a person. Then an 

individual phase image of the region was 

reconstructed from the hologram and the parameters 

were calculated manually with different software 

components. A total number of 26 cells were included 

in the evaluation. The identical cells were 

automatically detected in overall reconstructed phase 

contrast images of all cells. 

Compared to the manual method, the process of 

the automatic analysis is many times faster. The 

whole quantitative phase contrast image is evaluated 

at once rather than individually selecting and 

reconstructing each cell and conducting further 

analysis steps.  

The direct comparison of the calculated 

parameters, shows that the radius and dry mass of the 

cells determined after automatically detecting them 

shows the same tendency but are lower than manually 

determined values. 
 

 

Figure 4: Comparison of the radii of 26 PaTu 8988T cells 

determined in by automatic evaluation and manual 

detection. 
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Figure 4: Comparison of the dry mass of 26 PaTu 8988T 

cells determined by automated evaluation and manual 

detection. 

 

Figure 5: Comparison of the refractive indices of 26 PaTu 

8988T cells determined by automated evaluation and 

manual detection. 

When comparing the quantitative phase images of 

an individual cell with the corresponding binary 

image (Figure 6), it becomes obvious that the Otsu 

segmentation method used in our approach and the 

pre-processing steps do not completely assign the 

outer edge regions to the cells. Since the edge region 

has no sharp edge structure, the segmentation process 

is challenging. As a result, the cells are detected with 

a smaller area than the real surface, which leads to 

deviations of the biophysical parameters. 

(a) (b) 

Figure 6: Image sections of an individual cell. (a) shows the 

original quantitative phase image. (b) shows the 

corresponding segmented image section. 

The cell radius and the dry mass are both 

dependent on the detected pixel area, which depends 

on the segmentation result of the image. Overall, the 

cell radii are about 9.2% smaller than calculated after 

individual manually detection, which leads to a 

smaller estimated dry mass of the cells. 

4 CONCLUSIONS 

This paper presents an approach for automatically 

detecting cells in quantitative digital-holographic 

phase-contrast images and for determining their cell-

specific biophysical parameters using digital image 

processing and analysis. The biophysical parameters 

accessible by quantitative phase contrast microscopy, 

i.e., cell size, cell volume, dry mass and refractive 

index, were determined automatically in 

reconstructed images of several cells that were 

observed in the suspension. The proposed processing 

pipeline allows to conduct a fully automated detection 

and calculation of the cell parameters, which 

simplifies the process compared to detecting them 

manually for the measurement of individual cells. 

This pipeline reduces the time complexity by a 

computer added process optimization, which offers a 

significantly increased throughput in the evaluation 

of individual cells. The results in section 4 show that 

automated detection of suitable cells by using their 

form factor and calculation of the cell-specific 

biophysical parameters is possible. However, the 

direct comparison with results from the manual 

evaluation of individual cells indicates that the 

detected cell surfaces exhibit deviations due to the 

segmentation process used. Therefore, the calculated 

parameters for cell radius, cell volume and dry mass 

are lower than expected. For this reason, further 

research is required to optimize the segmentation 

process. In addition, further systematic investigations 

should be carried out on functional testing, as well as 
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on possible correction factors. In summary, the 

developed pipeline represents a promising alternative 

to the current evaluation process of the cells. In 

particular, the automated detection and the time 

reduction are an important advantage with regard to 

the significant increase of measured data. The errors 

caused by underestimated cell areas during the 

segmentation have to be improved in the future in 

order to enable a more accurate retrieval of the 

biophysical cell parameters. Moreover, in addition to 

a quantitative evaluation of suitable segmentation 

methods for cross section image reconstructions, it 

seems to be promising to consider more advanced 

segmentation approaches which incorporate the 

special structure of holographic image data for cell 

boundary detection. 
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