
A Fully Implemented Didactic Tool for the Teaching of Interactive

Software Systems

Jenny Ruiz1, Estefanía Serral2 and Monique Snoeck2
1University of Holguín, XX Aniversary Avenue, Holguin, Cuba

2KU Leuven, Naamsesstraat 69, Belgium

Keywords: Abstract User Interface Model, Presentation Model, Feature Model, Model-Driven Engineering, Software

Development Method, User Interface Design, User Interface Generation.

Abstract: User Interface (UI) design and software engineering complement each other to develop useful and usable

interactive software systems. However, the body of knowledge for the development of an application and for

the design of its UI are not always well integrated. The problem starts in the education of both subjects, which

are normally taught independently of each other. Although an integrative teaching approach can significantly

contribute to the development of better interactive software systems, there is a lack of concrete and proven

approaches for such way of teaching. This paper presents a fully functional didactic tool for filling this gap.

This tool provides the learner with feedback about how to develop an application and how to design a proper

UI for it. Applying Model Driven Engineering principles, the tool automatically generates a working proto-

type of the interactive software system from its specification models, allowing the learner to try out the final

application and validate the requirements. An experiment with novice developers demonstrates the advantages

of this didactic tool.

1 INTRODUCTION

Over the last years, the development of useful, usable

interactive software systems has become a key aspect

(Akiki, Bandara and Yu, 2015; Hentati et al., 2016).

The fields of User Interface (UI) design and software

engineering complement each other to reach that

goal. However, application development and UI de-

sign are not always well integrated. There is a gap be-

tween the two communities, as each focuses primarily

on its own field (Seffah, Gulliksen and Desmarais,

2005; da Cruz and Faria, 2009). As pointed by

(Meixner, Paternò and Vanderdonckt, 2011), there is

a lack of harmonization between UI and application

design, with both communities largely neglecting the

relation to other software views.

The problem starts already in education: UI de-

sign and application development are normally taught

in an isolated way, while the link between both should

instead be made very explicit: the integration between

UI design and application development can signifi-

cantly contribute to the development of even better

systems (Meixner, Paternò and Vanderdonckt, 2011).

Specifically, there is a need of integrated teaching

support to foster the understanding of the relationship

between functional aspects and the UI.

At the same time, UI design has been considered

as a difficult process (Nguyen and Rahman, 2016;

Sboui and Ayed, 2016). Ease of use is one critical fac-

tor to be taken into consideration for a tool to be used

by novice designers (Dehinbo, 2011). Different tools

have been developed to ease the teaching of either

software engineering or the teaching of UI design.

However, very few of them provide (some level of)

integration of both, and these tools are difficult to use

and not tailored to learners.

This paper presents a fully-implemented and inte-

grated simulation tool for the teaching of UI design

and application development at once. With this tool,

the learner can describe the interactive software sys-

tem requirements using conceptual models. With a

single click, the tool automatically generates a work-

ing prototype of the described system in an integrated

environment, where the learner can test the system

against its requirements. In addition, the tool provides

two kinds of feedback during the design of the sys-

tem: 1) feedback facilitating tracing the application’s

behaviour back to its origin in the underlying concep-

tual models; and 2) feedback related to the UI design,

Ruiz, J., Serral, E. and Snoeck, M.
A Fully Implemented Didactic Tool for the Teaching of Interactive Software Systems.
DOI: 10.5220/0006579600950105
In Proceedings of the 6th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2018), pages 95-105
ISBN: 978-989-758-283-7
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

95

giving the learner clues according to design principles

for the UI functional aspects and helping understand-

ing the relationship between functional aspects and

the UI.

An experimental evaluation demonstrates this

tool's effectiveness, its ease of use, and its level of in-

tegration towards the development of interactive soft-

ware systems.

The remainder of this paper is structured as

follows: Section 2 examines the related work on

educational tools to teach UI design and application

development. Section 3 describes the integrated

learning tool for interactive software systems. Section

4 presents an evaluation of the developed tool.

Section 5 discusses the limitation of the tool and

Section 6 concludes the paper.

2 RELATED WORK

From the perspective of integration, a number of

Model Driven Engineering (MDE) approaches sup-

port UI design while at the same time giving support

for integration with the application. MASP

(Feuerstack et al., 2008) has a service model which

connects backend services to application tasks, but it

is still the developer who manually needs to make the

link with the application. LIZARD (Marin et al.,

2015) has a data service model which is used to pop-

ulate the UI controls. Like in MASP, the developer

should provide manually the link with the rest of the

application. Similarly, Dygimes (Coninx et al., 2003)

allows defining the link to the application logic by

means of operations invoking web services that are

linked to the application. Also WAINE (Delgado et

al., 2016) generates web applications where the com-

ponents of the UI have to be defined at the highest

abstract level, which is a difficult task.

Examples of Model Driven Architecture (MDA)

approaches for supporting application development

are OptimalJ (London and University of York, 2003)

and AndroMDA (www.andromda.org), which are

code generation frameworks that generate fully de-

ployable applications. They generate the links be-

tween all the layers, including a default presentation

layer, but without providing support to tailor the UI.

ArcStyler (www.interactive-objects.com) offers

partial integrated support. It supports application de-

velopment and has a mechanism for designing se-

quences in the UI. However, the developer needs to

write the code for the integration of the different lay-

ers. OO-Method (Molina and Pastor, 2004; Pastor and

Molina, 2007) provides complete, integrated support

for the UI design and application development but

also requires detailed models which makes it difficult

to use by junior developers.

An important shortcoming of the previous ap-

proaches is that the core focus is not teaching support

and therefore they are difficult to be used by learners.

Some of the previous approaches offer design choices

for the application and/or its UI but they do not help

the novice learner by providing feedback. The ap-

proaches are not easy to use either. Ideally, technical

hurdles should be avoided and it should be possible

to generate the UI code and its integrated application

code through a single click. Current approaches need

different tools (e.g MASP and Dygimes have two and

three tools respectively) or take models from external

tools and require additional transformation steps (e.g.

AndroMDA).

There is a limited number of approaches that focus

on supporting the teaching of UI design. Barret pro-

poses a hypertext module which presents interface de-

sign principles with examples of good and bad UIs

(Barrett, 1993). The tutorial includes the explanation

of using metaphors, input devices and evaluation is-

sues. (Sutcliffe, Kurniawan and Shin, 2006) propose

a multimedia design advisor tool. The tool gives rec-

ommendations about which media is appropriate (ac-

cording to the information type) with examples.

There are also tools for teaching application de-

velopment. For instance, the JMermaid tool, con-

nected to the enterprise engineering MERODE

method (Snoeck, 2014), allows generating a full func-

tional application with a single click while embedding

in the application the feedback explaining the appli-

cation's behaviour by referring to the models it was

generated from (Sedrakyan and Snoeck, 2013). The

JMermaid tool has been successfully validated for

teaching conceptual modelling for more than 5 years

(Sedrakyan, Snoeck and Poelmans, 2014). However,

this environment generates a default UI and does not

offer support for teaching UI design.

While the presented initiatives have their merits,

a proven approach to support the teaching of UI de-

sign and application development in an integrated

way is lacking. Additionally, there seems to be no

teaching support on how to design UIs based on prac-

tical approaches used in industry or on academic ap-

proaches for UI design. Only (Barrett, 1993) is ex-

plicitly based on design principles, but it does not

show how the application of the principles affect the

UI design.

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

96

3 INTEGRATED SUPPORT FOR

INTERACTIVE SOFTWARE

To support the teaching of interactive software sys-

tems, this paper proposes an integrated tool that al-

lows the co-design of an application and its UI.

In previous work we presented a first design of an

extension to the JMermaid tool, provided by the

MERODE method, to provide support for UI design.

In line with the principles of design research (Recker,

2012), this first proposal was tested and then im-

proved based on the observed shortcomings. This pa-

per presents the extended and improved design, its

implementation and its evaluation. First, the

MERODE method and JMermaid tool are introduced.

Then, the extensions to the tool, the generation pro-

cess and how the teaching support is provided are ex-

plained.

3.1 MERODE Method

The MERODE method defines a conceptual domain

model that is platform independent and sufficiently

complete to automatically generate the application´s

code from it. The model is composed of a class dia-

gram to capture the domain classes, an Object-Event

Table (OET) to capture interaction aspects, and Finite

State Machines (FSM) to capture enterprise object be-

haviour.

The MERODE method has its own proven con-

ceptual modelling teaching environment, JMermaid,

which allows the fast prototyping of a conceptual do-

main model (Sedrakyan and Snoeck, 2013). This tool

has a MDE-based code generator that generates a

fully functional prototype Java application out of the

conceptual model (Sedrakyan and Snoeck, 2013).

JMermaid has been successfully tested and validated

for teaching conceptual modelling for more than 5

years (Sedrakyan, Snoeck and Poelmans, 2014).

The MERODE method does not provide support

for UI design. JMermaid generates all the applica-

tions with a default UI: it always generates the same

kind of representation format for the input and output

services without giving options for designing the UI.

There is no teaching support either for the UI design.

And while the UI is automatically integrated with the

application, there is no specific teaching support for

the integration with the application development. By

the fact that the possibility of changing the UI is lack-

ing, understanding the link between the UI and the

application development process is not actively sup-

ported. For a more complete analysis of limitations of

JMermaid for supporting UI design the reader is re-

ferred to (Ruiz, Sedrakyan and Snoeck, 2015).

Without the possibility of visualising the behav-

iour of the application through a UI, checking the be-

haviour of the domain model would be really difficult

for the learner: she would then have to simulate in her

mind what would happen while interacting with the

system. Without application logic, it would be diffi-

cult too, to test the functional aspects of the UI and

the responses that the system would provide. It would

also be difficult to find the missing functional aspects

that the learner did not incorporate in the UI design.

The fact that the MERODE method starts with

well-defined conceptual models gives the possibility

of extending it with UI models to give integrated sup-

port. The UI and application models can be used to

teach domain modelling, and at, the same time, the

general idea behind UI design. The UI containers,

widgets, etc. show the components that constitute an

UI, how they are represented in the final UI and how

these are related with the conceptual domain model

and its behaviour. This integration helps the compre-

hension of the link between the UI and the application

logic.

3.2 FENIkS

In order to provide an integrated approach for UI de-

sign and application development of interactive soft-

ware systems, and to benefit from the built-in didactic

support of JMermaid, we have developed an exten-

sion that we call Feedback ENabled user Interface

Simulation (FENIkS). The integration with applica-

tion development requires basing the generation of

the UI and the application code on the same set of in-

tegrated models.

The overall approach is shown in Figure 1.

Figure 1: FENIkS generation architecture.

The input models required to generate a final ap-

plication are: (1) a domain model capturing the appli-

cation's functional logic, (2) a presentation model

A Fully Implemented Didactic Tool for the Teaching of Interactive Software Systems

97

capturing the characteristics of the interface compo-

nents and user preferences. These two models are

used to generate (3) an "Abstract User Interface"

(AUI) which describes the UI in a technology-agnos-

tic way. The AUI, the presentation and the domain

model are then used to generate (4) the application

code and the UI code. The transformations are auto-

matically done by the tool and require no manual tai-

loring. The code generator for the whole integrated

support of the MERODE method was built using the

Java language and Velocity Templates Engine

(http://velocity.apache.org).

The following subsections describe the presenta-

tion model and the generation of the AUI model, re-

spectively.

3.2.1 Presentation Model

Previously, the MERODE tool generated a prototype

where the user (only) received default output and in-

put services. Default output services (or reports) are a

list of instances of a single domain object type into

one window (e.g. view the lists of an order) and view-

ing the details of one object with all its information

(e.g. view details of one order) in another window.

Default input service is triggering the execution of a

business event (e.g. create an order). With FENIkS,

extra output services can be created and configured to

show specific information the user wants to see, for

example, a list combining information from multiple

domain objects (e.g. view a customer with all his or-

ders).

The meta-model shown in Figure 2 shows how

these additional reports are captured through the

meta-object type Report and the associated meta-ob-

ject types. The designer can select the objects to in-

clude in the reports, the attributes to be shown and the

associations. For the associations to other domain ob-

jects it is also possible to select the attributes to be

shown. The search can be configured in the same

way.

Next to defining additional reports, the presenta-

tion model also captures preferences related to how

elements of the UI should be configured. Rather than

capturing these per individual report or input service,

these are captured as general aspects that will be ap-

plied in a consistent way through the UI, for all the

reports (default and non-default) and input services

alike. This contributes to an important UI design prin-

ciple of keeping a UI consistent.

The Window aspects capture the information

about the static layout of the top level containers of

the application. It reflects the visual features of the

main application window and how information is dis-

played. Here it is possible to configure how the but-

tons for triggering services of the domain objects will

be shown, where the options will be displayed, how

the pagination will be, etc.

The Input aspects capture the preferences related

to how the user will input information into the appli-

cation, like how the components for attribute input

will be generated or the way the to-be-selected asso-

ciated objects will be shown (Ruiz, Serral and

Snoeck, 2017). This is the place to select which widg-

ets will be generated per object according (or not) to

the attributes' data types.

Finally, the presentation model itself also stores

attributes like the name of the application and other

information to be shown in the application's title.

For all these aspects, FENIkS offers a set of gen-

eration options. This allows generating a family of

prototypes with variations and commonalities in the

way the information is presented and captured. The

various UI generation options are captured as a fea-

ture model, as such model provides an adequate vis-

ual representation that is easy to manipulate

(Benavides, Segura and Cortés, 2010).

Figure 2: FENIkS presentation meta-model.

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

98

The feature model shows the relationships be-

tween a parent feature and its child features catego-

rized as Optional or Mandatory depending on whether

a child feature is optional or not, and 'Or' or 'Alterna-

tive (Xor)' depending on whether at least one or ex-

actly one sub-feature must be selected.

Figure 3 and Figure 4 show the presentation fea-

tures model of FENIkS. The node 'presentation mod-

el' is the root node and is mandatorily composed of

the basic elements Window aspects and Input aspects,

as also shown in the presentation meta-model.

Figure 3: Feature Presentation model.

Figure 4: Feature Windows and Input aspects.

The majority of features of the Window and Input

aspects are included for didactic purpose: they are

used to generate the UI according to UI design prin-

ciples. Examples of such features in the Window as-

pects are: Generate shortcuts for tabs and Method

presentation style. Examples of such features in the

Input aspects are: Attribute data type information and

Validate Boolean data. See section 3.3.1 for a detailed

explanation.

A number of additional features are included to

give flexibility to the prototype generation process.

Examples of such features are mainly in the Window

aspects: Tab orientation, Empty method pane or

menu, Table pagination, Quantity of attributes to

show, Button size and Empty table. In the Input as-

pects there is only one feature to give flexibility,

namely the Master presentation style.

3.2.2 Abstract User Interface Model

FENIkS allows the automatic generation of an AUI

from the conceptual and the presentation models. The

Abstract User Interface (AUI) is an expression of a

UI in terms of interaction units without any reference

to implementation and independent of any particular

language.

AUIs are important for the development of appli-

cations for different contexts of use (Engel, Märtin

and Forbrig, 2017) and also play an important role

from the teaching perspective. The fact that the AUI

represents the UI without taking into account any mo-

dality of interaction or platform helps in understand-

ing the main principles behind UI generation. Thus,

the generation of an AUI can be used to teach novice

designers the general idea behind UI generation (i.e.,

the components that constitute an UI in abstract

terms) while making the link between the UI and the

underlying application logic.

The AUI meta-model of FENIkS is shown in Fig-

ure 5. It is based on the AUI meta-model of UsiXML

(UsiXML documentation version 1.4), a User-Inter-

face Modelling language proposed by (Limbourg et

al., 2004). UsiXML stands for User Interface eXten-

sible Markup Language. The lower part of the figure

(in light blue) shows the AUI meta-model, while the

upper part (in white) presents the relevant concepts of

the MERODE method meta-model and presentation

meta-model connected to the AUI meta-model.

The AUI for the default output and input services

will be populated by means of a model to model trans-

formation from the conceptual domain model of the

MERODE method.

The generation of the AUI for the user-specified

output services takes as additional input the Report

objects of the presentation model. In the AUI meta-

model, the AbstractInteractionUnit is the basic unit

for expressing the interaction in a recursive decompo-

sition of an AUI in abstract terms. This decomposi-

tion can be related to one or many concepts like Ob-

jectType, ReportObjectType, Attribute or

ReportAttribute. An AbstractCompoundIU can be

composed by one or many AbstractInteractionUnit.

A Fully Implemented Didactic Tool for the Teaching of Interactive Software Systems

99

Figure 5: FENIkS AUI meta-model.

An AbstractElementaryIU can be an Abstract-

DataIU or AbstractTriggerIU. An AbstractDataIU

consists of an elementary AUI that is responsible for

data input and/or output that could be linked to a do-

main object via a domain object reference in order to

ensure data binding with the associated domain

model. The AbstractDataIU can be for input or output

of data, through the meta-classes AbstractInputIU and

AbstractOutputIU. A special case of the AbstractIn-

putIU is the AbstractSelectionIU, which is a way to

interact with the system by selecting an item from a

list.

An AbstractTriggerIU allows navigating or oper-

ating with the UI. It is related to the AbstractListener,

which describes the behaviour of the UI. An Abstract-

Listener is composed of an AbstractEvent (which

specifies the signal that triggers the action, e.g. onDa-

taInput, onTriggerSelected) and an AbstractAction

(which consists of updates or invocations on the do-

main model data, or of modifications of the abstract

entities themselves, e.g. IUOpen, IUClose.

For the transformation to the AUI, FENIkS incor-

porates a set of mapping rules that allows determining

the following:

- The abstract interaction units (the containers)

starting from the conceptual domain model (using the

object types) and the presentation model (using the

report).

- The abstract data interaction units (the individual

components) starting from the conceptual domain

model (using the object types and attributes) and the

presentation model (using the report object type and

report attributes).

- The abstract trigger interaction units starting from

the conceptual domain model (using the event types).

- The abstract listener for the abstract trigger inter-

action units.

The AUI is then transformed into the final UI

code. This can already be done at a very early stage

in the development process as long as the used models

are correct.

3.3 Teaching Support

The didactic JMermaid tool extended with FENIkS

provides support for teaching the development of in-

teractive software system. The main extended fea-

tures are as follows: 1) incorporation of UI design

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

100

principles, 2) runtime preview of the resulting UI ac-

cording to the configured UI design, and 3) feedback

for UI design and its integration with the development

of the software application.

3.3.1 UI Design Principles

The teaching support of FENIkS is based on a set of

UI design principles. UI design principles are high

level concepts that allow guiding the software design

(Mandel, 1997). They encompass the best practices in

design, agreed upon by experts in the field.

Many design principles can be found in the litera-

ture. In order to select the design principles to be ap-

plied in FENIkS we analysed the ones proposed by

important authors in the field; in particular those that

propose empirical validated guidelines, such as

(Norman, 1983; Nielsen, 1995; Stone et al., 2005;

Johnson, 2007; Shneiderman, 2010). We only re-

tained the ones that can be applied to the functional

design of the UI. The selected design principles are:

Structure the UI, Allow users to use either the key-

board or mouse, Prevent errors, Good error mes-

sages and Provide visual cues.

The UI design principles are shown to the learners

as UI design options, related to the presentation

model options described in section 3.2.1. The selected

options are stored in the presentation model and fur-

ther used for the generation of the UI.

Table 1: Feature model elements for Windows aspects.

Principle Feature Options

Structure the User

Interface
Method presentation style

Pane

Menu

Allow users to use

either keyboard or

mouse

Generate shortcuts for

methods

True

False

Generate shortcuts for tabs
True

False

Generate shortcuts for gen-

eral menu

True

False

Table 2: Feature model elements for Input aspects.

Principle Feature Option

Prevent

Errors

Validate empty data
True

False

Validate numbers
True

False

Validate Boolean
True

False

Generate components by

the attribute type

True

False

Good error

messages

Generate errors according

to the type of error

True

False

Provide visual

cues

Format data type

Information

Show

Hide

Attribute data type

Information

Show

Hide

For better understanding, Table 1 and Table 2

show the relation between the presentation model el-

ements (Window and Input aspects), the UI design

principles, the features in the Feature model and the

options for each one of them related to the presenta-

tion model.

3.3.2 UI Generation Preview

To support a learner in understanding the presentation

model more easily, FENIkS has included UI-GEAR:

User Interface Generation prEview capable to Adapt

in Real-time (Ruiz, Serral and Snoeck, 2017). UI-

GEAR presents each view of the presentation model

in a different tab. Figure 6 shows the presentation

model dialog with its tabs, the Windows aspects and

its preview being visible.

Figure 6: Presentation model and UI Preview.

At the bottom of the Window and Input aspects,

UI-GEAR offers a preview showing how the UI will

be generated in the prototype. The preview automati-

cally adapts to any change in the selected options of

the Window and Input aspects, allowing the learner to

see how the UI will look like. The preview allows

tracing changes from both conceptual domain and

presentation models to their effects by testing several

“what-if” scenarios. The presentation model has de-

fault options that can be used without explicitly be

specified by the developer.

The UI-GEAR component for the presentation

model has an internal representation of the feature

model that is parsed and interpreted in real-time, en-

abling instantaneously update the preview. This gives

the possibility to validate user requirements, reduces

the time and effort required to implement the UI.

A Fully Implemented Didactic Tool for the Teaching of Interactive Software Systems

101

3.3.3 Automated Feedback

Feedback has been widely recognized and proven as

an important aspect in teaching to ensure that students

learn (Hattie and Timperley, 2007). Technology can

support the provision of the frequent, constant and

immediate feedback (Merrill, 2002) that is usually not

possible to provide by teachers.

JMermaid has automated feedback features for

developing the domain model of an application

(Sedrakyan and Snoeck, 2013). The FENIkS exten-

sion incorporates feedback for the UI design. The

feedback features allow explaining reasons of execu-

tion failures with graphical visualization that links the

failure to the model where it is located. In a similar

way as for domain model feedback, UI design feed-

back can assist the learners to validate the generated

UI in a fast and easy way, while integrated with the

rest of the application.

The introduction of functional design options, as

previously explained, allows making the link with UI

design principles. These design decisions are related

to the preferences about how the components will be

shown in the UI, and the preferences related to how

the user will input information into the application,

like how the components for attribute input will be

generated or how the data will be validated.

The second kind of feedback is also in the UI

Help. When developing the presentation model, the

designer needs to take into account the UI design

principles to select the correct options. This feedback

shows to the learner which principles were well ap-

plied or not and why, according to the choices made.

It also shows principles applied by default by the

MDE engine while generating the prototype.

The teaching support in FENIkS for the UI design

includes feedback features to explain 1) why the UI

is generated in a specific way and how to change it,

and 2) whether the design decisions are compliant

with functional design principles or not and why.

The first kind of feedback is divided according to

the structure of the presentation model. It is presented

as a UI Help in the main window of the generated pro-

totype. The designer selects General, Window or In-

put aspects, and which option he/she wants to see the

explanation. Figure 7 shows an example of the first

kind of feedback corresponding to the Input aspects.

The feedback is divided in three parts: what the

stored values are in the presentation model, what the

consequences are for the generated prototype and

how it is possible to change it. From this place it is

also possible to see all the values of the Input aspects

and the presentation model.

Figure 7: Design options explanatory feedback.

Checking the UI principles is also possible before

generating the prototype. Figure 8 shows an example

of the second kind of feedback.

Figure 8: Checking the UI principles.

The automatic generation of the UI integrated

with the application code enables the validation of the

user requirements by simulation. This helps the learn-

ers to learn from and correct their mistakes. The gen-

eration of the final UI also allows comparing the im-

pact of different design choices. The UI design

feedback features explain to the learner the link be-

tween the design decisions, the applied design princi-

ples and the prototype integrated with the application

development.

4 EVALUATION

To validate the developed didactic tool we evaluated:

1) its support as an integrated approach for the teach-

ing of interactive software systems, and 2) its ease of

use by learners.

4.1 Evaluation of the Integration

Our didactic tool assists learners in creating the do-

main model and the presentation model, as well as in

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

102

generating the AUI model and the system code. The

advantages of the tool include:

1) It offers an integrated tool adapted to conceptual

modelling goals and UI design goals through the

extension FENIkS. This tool allows for the "co-

design" of the application (with the conceptual

domain model) and the UI (with the presentation

model an further AUI model generation). The

learner can easily switch between adapting the

application or adapting the UI, while keeping

the link between all the models.

2) The domain model and the presentation model

allow the automatic generation of an AUI

model, enabling further transformation to differ-

ent contexts of use. The transformation process

uses templates that can be changed in order to

obtain the implementation of the interactive

software system with different languages, plat-

forms and ways of presentation.

3) The UI code is integrated with the application

code. The generated prototype is fully func-

tional and contains the link between UI and ap-

plication logic.

4) Generation of the prototype can already be

achieved from a minimal domain model consist-

ing of only one object type. Default attributes

and default options for the presentation model

are present if not specified by the developer.

There is no need to have a perfect or complete

set of model before being able to test the UI and

the application code.

5) FENIkS generates the UI taking into account the

user´s preferences described in the presentation

model. The generation of the UI according to the

information of the presentation model allows it-

erative changes to the software solution, facili-

tating the comparison of each variant for a best

match to user preferences.

6) Feedback features link the UI design options

with the generated prototype, explaining the ap-

plicability of UI design principles and providing

feedback about the domain model. The tool pro-

vides automatic feedback for both the applica-

tion development and the UI design, by linking

these to the conceptual domain and presentation

models. Specifically, the feedback for the UI de-

sign can be checked before generation, which

makes the tool easier to use. The possibility of

generating the prototype without needing the

complete models, checking partial versions of

the prototype in a faster way, also contributes to

ease of use.

4.2 Ease of Use

We evaluated MERODE tool extended with FENIkS

from the perspective of perceived usability by

performing an experiment with 12 novice developers.

No participant has prior knowledge of the tool. We

used the Computer System Usability Questionnaire

(Lewis, 1993).

Each participant was asked to carry out a set of

tasks in FENIkS. Using an already developed

conceptual domain model as starting point, they

played with the different design options to create a

presentation model and to generate the prototype.

After completing the tasks, the users were asked

to fill the CSUQ. During the sessions users were not

allowed to ask questions to the evaluator.

The scores for all the items of the CSUQ ranked

well above 5 on 7 (the highest possible value is 7),

indicating a very positive evaluation. From all the

items of the CSUQ, the mode of only three items was

5, while for all the other items the mode was 6 or 7.

The highest mean values were obtained for items

related to the ability to complete the work using the

system, the clarity of the errors provided by the

system that help to fix problems and that the system

has all the functions and capabilities the developer

expect.

The experiment demonstrated that the perceived

usefulness is high: the users believe the system will

enhance their performance and that the approach

facilitates a presentation model to be created by

showing its preview. Developers found FENIkS very

satisfactory in all areas for which the CSUQ accounts:

usefulness, information quality, and interface quality.

FENIkS is positively perceived overall and provides

the functionalities the developers expected. For more

details of the experimental evaluation the reader is

referred to (Ruiz, Serral and Snoeck, 2017).

We also tested the suitability of FENIkS for

novice UI designers by means of the questionnaires

to measure the perceived usefulness (user

acceptance). The experiment was made with 54

participants that took a UI design course as part of

their 4th year of Informatics Engineering program at

the University of Holguín. After using FENIkS, the

participants filled the questionnaires.

The scores per item rank well above 5 on 6,

indicating a positive evaluation. The mode of only

four items was 5, while for all the other items the

mode was 6 or 7. The learners agree that using

FENIkS was a positive experience and that it

improves their understanding of UI principles which

were the items with a highest mean values.

A Fully Implemented Didactic Tool for the Teaching of Interactive Software Systems

103

The results of the questionnaire gave support that

the proposed simulation method is suitable for novice

UI designers.

5 LIMITATIONS

A first limitation of our approach is that only func-

tional aspects of the UI are modelled: FENIkS is not

focused on aesthetic appeal.

For the moment, the tool only addresses the devel-

opment of enterprise information systems in one lan-

guage and one platform of use. However, since this

approach relies on MDE, the generation of the inter-

active software system to other languages and plat-

forms can be easily extended in future versions of the

tool, using the current proposed AUI model. This will

allow also comparing and giving feedback according

to the results of the design in different final UIs.

Since the original MERODE tool had no support

for the UI design, it is clear that the FENIkS extension

improves UI design when designing interactive soft-

ware systems. Nevertheless, the presentation meta-

model could be further extended to improve flexibil-

ity. Other models (e.g., user model) could be incorpo-

rated to provide better support for users characteris-

tics.

6 CONCLUSION

This paper has presented a MDE didactic tool for im-

proving the teaching of interactive software systems.

While designing the UI the learner receives feedback

about how some UI design principles are applied

through the options the learner selects. At the same

time, the learner completes a conceptual domain

model used for the generation of both the UI and the

application code. For the conceptual modelling the

learner also receives the feedback provided by JMer-

maid. FENIkS' automatic generation of the UI inte-

grated with the application code allows validating

user requirements against the prototype behaviour

and the resulting UI. Thus, necessary changes in the

models can be made in less time while maintaining

the link between the UI and the application.

The developed tool improves the process of UI de-

signing and application development by letting the

learner tests the models incrementally. The feedback

allows understanding how the UI design principles

are applied and immediately shows their effects on

the final UI.

Last, but not least, we discussed how FENIkS

could be extended with more flexibility in the UI de-

sign and to support other context of use.

REFERENCES

Akiki, P. A., Bandara, A. K. and Yu, Y. (2015) ‘Adaptive

model-driven user interface development systems’,

ACM Computing Surveys. ACM, 47(1).

Barrett, M. L. (1993) ‘A hypertext module for teaching user

interface design’, in ACM SIGCSE Bulletin. ACM, pp.

107–111.

Benavides, B., Segura, S. and Cortés, A. R. (2010)

‘Automated Analysis of Feature Models 20 Years

Later: A Literature Review’, Information Systems 35, 6,

pp. 615–636.

Coninx, K., Luyten, K., Vandervelpen, C., Van den Bergh,

J. and Creemers, B. (2003) ‘Dygimes: Dynamically

generating interfaces for mobile computing devices and

embedded systems’, in Mobile HCI. Springer, pp. 256–

270.

da Cruz, A. M. R. and Faria, J. P. (2009) ‘Automatic

Generation of user Interface Models and Prototypes

from Domain and Use Case Models’, in ICSOFT (1),

pp. 169–176.

Dehinbo, J. (2011) ‘Establishing and applying criteria for

evaluating the ease of use of dynamic platforms for

teaching web application development’, Information

Systems Education Journal, 9(5), p. 86.

Delgado, A., Estepa, A., Troyano, J. A. and Estepa, R.

(2016) ‘Reusing UI elements with Model-Based User

Interface Development’, International Journal of

Human-Computer Studies. Elsevier, pp. 48–62.

Engel, J., Märtin, C. and Forbrig, P. (2017) ‘Practical

Aspects of Pattern-Supported Model-Driven User

Interface Generation’, in International Conference on

Human-Computer Interaction. Springer, pp. 397–414.

Feuerstack, S., Blumendorf, M., Schwartze, V. and

Albayrak, S. (2008) ‘Model-based layout generation’,

in AVI. ACM, pp. 217–224.

Hattie, J. and Timperley, H. (2007) ‘The power of

feedback’, Review of educational research. Sage

Publications, 77(1), pp. 81–112.

Hentati, M., Ben Ammar, L., Trabelsi, A. and Mahfoudhi,

A. (2016) ‘A fuzzy-logic system for the user interface

usability measurement’, in IEEE/ACIS (ed.) 17th

International Conference on Software Engineering,

Artificial Intelligence, Networking and Parallel/

Distributed Computing, SNPD, pp. 133–138.

Johnson, J. (2007) GUI bloopers 2.0: common user

interface design don’ts and dos. Morgan Kaufmann.

Lewis, J. R. (1993) IBM Computer Usability Satisfaction

Questionnaires: Psychometric Evaluation and

Instructions for Use. Report. Boca Raton.

Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon, L.

and Florins, M. (2004) ‘USIXML: A User Interface

Description Language Supporting Multiple Levels of

Independence’, in ICWE Workshops, pp. 325–338.

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

104

London, K. C. and University of York (2003) An

Evaluation of Compuware OptimalJ Professional

Edition as an MDA tool. Available at:

http://www.lcc.uma.es.

Mandel, T. (1997) The elements of user interface design.

Wiley New York.

Marin, I., Ortin, F., Pedrosa, G. and Rodriguez, J. (2015)

‘Generating native user interfaces for multiple devices

by means of model transformation’, Frontiers of

Information Technology & Electronic Engineering.

Springer, 16(12), pp. 995–1017.

Meixner, G., Paternò, F. and Vanderdonckt, J. (2011) ‘Past,

Present, and Future of Model-Based User Interface

Development’, i-com, 10(3), pp. 2–11.

Merrill, M. D. (2002) ‘First principles of instruction’,

Educational Technology Research & Development,

50(3), pp. 43–59.

Molina, J. C. and Pastor, O. (2004) ‘MDA, OO-Method y

la tecnología OlivaNova Model Excecution’, I Taller

sobre desarrollos dirigidos por modelos, MDA y

aplicaciones. Málaga.

Nguyen, K. D. and Rahman, M. A. (2016) ‘Identifying

Interface Design Patterns by Studying Intrinsic

Designs’, in The Third International Conference on

Computer Science, Computer Engineering, and

Education Technologies (CSCEET2016). Poland, pp.

13–24.

Nielsen, J. (1995) 10 usability heuristics for user interface

design.

Norman, D. A. (1983) ‘Design principles for human-

computer interfaces’, in SIGCHI. ACM, pp. 1–10.

Pastor, O. and Molina, J. C. (2007) Model-driven

architecture in practice. Springer.

Recker, J. (2012) Scientific research in information

systems: a beginner’s guide. Springer Science &

Business Media.

Ruiz, J., Sedrakyan, G. and Snoeck, M. (2015) ‘Generating

User Interface from Conceptual, Presentation and User

models with JMermaid in a learning approach’, in

Proceedings of the XVI Internation Conference on

Human Computer Interaction. Vilanova i la Geltrú,

Spain: ACM. doi: http://dx.doi.org/10.1145/2829875.

2829893.

Ruiz, J., Serral, E. and Snoeck, M. (2017) ‘UI-GEAR: User

Interface Generation prEview capable to Adapt in Real-

time’, in Modelsward´2017. Porto, pp. 277–284.

Sboui, T. and Ayed, M. Ben (2016) ‘Generative Software

Development Techniques of User Interface: Survey and

Open Issues’, International Journal of Computer

Science and Information Security. LJS Publishing,

14(7), p. 824.

Sedrakyan, G. and Snoeck, M. (2013) ‘Feedback-enabled

MDA-prototyping effects on modeling knowledge’, in

Enterprise, Business-Process and Information Systems

Modeling. Springer, pp. 411–425.

Sedrakyan, G., Snoeck, M. and Poelmans, S. (2014)

‘Assessing the effectiveness of feedback enabled

simulation in teaching conceptual modeling’,

Computers & Education, 78, pp. 367–382.

Seffah, A., Gulliksen, J. and Desmarais, M. C. (2005)

Human-Centered Software Engineering-Integrating

Usability in the Software Development Lifecycle.

Springer.

Shneiderman, B. (2010) Designing the user interface:

strategies for effective human-computer interaction.

5th edn. Addison-Wesley.

Snoeck, M. (2014) Enterprise Information Systems

Engineering: The MERODE Approach. Springer.

Stone, D., Jarrett, C., Woodroffe, M. and Minocha, S.

(2005) User interface design and evaluation. Morgan

Kaufmann.

Sutcliffe, A. G., Kurniawan, S. and Shin, J.-E. (2006) ‘A

method and advisor tool for multimedia user interface

design’, International Journal of Human-Computer

Studies. Elsevier, 64(4), pp. 375–392.

A Fully Implemented Didactic Tool for the Teaching of Interactive Software Systems

105

