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Abstract: Most of web sites adopt a Captcha system to distinguish malicious software from humans. This paper proposes
an attack on a recent interactive image-based Captcha scheme, called CaptchaStar. The CaptchaStar was
designed to be more secure and user friendly than existing solutions, however, as we show in this paper, it fails
to meet these goals Nevertheless, the presented attack is very efficient, with a success rate for the attacker of
96% on the on-line version proposed by the authors. Moreover, the modification of CaptchaStar parameters
(as noise addition) does not prevent our attack.

1 INTRODUCTION

CAPTCHAs 1 (Completely Automated Public Turing
test to tell Computers and Humans Aparts) are sys-
tems used on the Internet to differentiate between hu-
man and software (von Ahn et al., 2003) (the term
Turing Test comes from (Turing, 1950)). These tests
should be easily implementable, easy to solve for a
human and hard for a computer program. Captchas
are well known to the general public because most of
Internet giants, as Google, Microsoft or Amazon, use
them for the creation of a free account, as protective
measure against malicious bot systems. In all cases,
users are asked to provide some response to a chal-
lenge proposed by the web site, in order to access the
service. Captchas have considerably changed over the
years, because most of these schemes were proved not
secure, in the sense that it was possible for a software
to solve the proposed challenge (a lot of techniques
have also been developed to break these Captchas).
Nevertheless, even if most of Captcha schemes are
broken, these systems are still considered to be rel-
evant, useful and continue to be used in practice by a
lot of service providers (Thomas et al., 2013).

The design of Captcha systems should take into
account several parameters, particularly the success
rate and the usability. In this paper the success rate
is considered by default from the attacker’s perspec-
tive, as the proportion of Captchas that an automatic
method is able to answer correctly. For example, a
rate of 0.01% is suggested as acceptable in (Chel-
lapilla et al., 2005; Yan and Ahmad, 2007b), but an
higher rate between 0.6% and 1% is considered as

1For readability reasons, this acronym will be now writ-
ten in lowercase.

more realistic in (Zhu et al., 2010; Bursztein et al.,
2011b). This rate is obviously linked to the success
rate of a genuine human, proposed at 90% in (Chel-
lapilla et al., 2005; Yan and Ahmad, 2007b). Nev-
ertheless, in most case this last rate is often hard
to reach, particularly in the case of audio Captcha
(Bursztein et al., 2010) (but this aspect is not related
to this paper). A second parameter is the time to solve
the Captcha: the attack should not be slower than a
human response. In (Rui and Liu, 2004; Bursztein
et al., 2011b), it is suggested that human should be
able to provide a response within 30s.

CaptchaStar is a new image-based Captcha (shape
discovery) proposed at ACNS 2016 by M. Conti, C.
Guarisco and R. Spolaor in (Conti et al., 2016a). Each
image of this Captcha is composed of stars, that are
small groups of white pixels. At the beginning a win-
dow with random stars is generated, then these stars
are moved in interaction with the mouse of the user. A
shape (formed of most of stars) appears on the screen
if the mouse is close to the correct place. In this
case the user is asked to click and the position of the
mouse is sent to the server. A demo is available on the
web site of CaptchaStar: (Conti et al., 2016b). This
Captcha is presented by the authors as user-friendly,
secure and suitable for mobile applications.

CaptchaStar is clearly a novel and elegant type of
Captcha, but the security of the scheme is not as ro-
bust as presented by authors. This paper presents an
extremely efficient attack on the proposed implemen-
tation of CaptchaStar, with a success rate of 96%. The
proposed attack is only based on the concentration of
pixels during the formation of the image. Simulat-
ing different positions of the mouse on the screen,
it automatically determines an approximation of the
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solution. Improvements, limits, and corrections of
CaptchaStar (with modified parameters) are discussed
at the end of the paper.

This paper is organised as follows, Section 2
presents the state of the art on previous attacks re-
alised on various types of Captcha. Section 3 presents
the new system CaptchaStar and Section 4 describes
the attack on this system. Finally, Section 5 proposes
a discussion on possible improvements in this type of
Captcha (with modified parameters).

2 STATE OF THE ART ON
CAPTCHAS

There exist several types of Captcha, from the classi-
cal text-based system where an user is asked to read a
distorted word (originally embedded in a 2D image)
to other various systems, based for example on im-
age recognition, combined with some questions. If
these distorted text-images are sophisticated, they are
not easily recognisable by a machine, but an human
should be able to read them, without much effort.

2.1 Text-based Captchas

Text-based Captchas are simple to understand for a
large public and are used in most of applications since
fifteen years (Baird et al., 2003). They are easily
implementable, with various designs, as for exam-
ple the old Yahoo’s Captcha Gimpy and Ez-Gimpy
described in (Mori and Malik, 2003). One of the
most used text-based captcha system, is reCaptcha
(von Ahn et al., 2008), where users are asked to
read scanned words from books (helping to digitise
old printed material), combined with a second sim-
ply distorted word. This system was later acquired by
Google (in 2009) (von Ahn, 2009) (with several at-
tacks as in (Goodfellow et al., 2013)) and was recently
replaced by new mechanisms (including noCaptcha),
as described and recently attacked in (Sivakorn et al.,
2016). More sophisticated text-based Captchas have
been proposed, as for example hollow Captchas, 3D
text-based Captchas or animated text-based Captchas
(as NuCaptcha (Xu et al., 2012)).

The first attack on text-based Captchas was pro-
posed by Mori and Malik in 2003 (Mori and Ma-
lik, 2003). This attack works with matching using
shape context of characters and a database of image
of known objects. The success rate was 92% on EZ-
Gimpy (a single word) and 33% on Gimpy (three
words in an image). The following year, Chellapilla
and Simard use machine learning techniques (and
segmentation) to break six other text-based Captchas

(Chellapilla and Simard, 2004). It includes Captchas
used by Ticketmaster, Yahoo V2 and Google/Gmail,
with success rates of 45.7% for Yahoo V2 and 4.9%
for Google.

Yan and El Ahmad broke a large set of text-based
Captchas using very simple techniques (as the pixel
count by letters), or more evaluated techniques in sev-
eral papers (Yan and Ahmad, 2007a; Yan and Ah-
mad, 2007b; Yan and Ahmad, 2009; Ahmad et al.,
2011). For example, success rates on (old) Microsoft
Captcha, Megaupload or reCaptcha are between 33%
and 90%. This last work improved the success rate of
previous attacks on Recaptcha, where the success rate
was between 10% and 31% (Wilkins, 2009). More re-
cent contributions on text-based Captchas attacks in-
clude the attack of Bursztein et al. (based on SVM
and KNN classifiers) on several Captcha systems with
variable success rates (from 0% to 93%) (Bursztein
et al., 2014a), the attack of Gao et al. on hollow
Captchas with success rates between 36% and 89%
(Gao et al., 2013). Finally, an attack on text-based
Captchas, using Gabor filters, has been recently pro-
posed in (Gao et al., 2016), with a success rate be-
tween 5% and 77% in less of 15 second on a standard
computer on various Captchas as the new version of
reCaptcha (described in (Bursztein et al., 2014b) and
currently widely used by Facebook, Google, Youtube,
Linkedin and Twitter).

An alternative to simple text-based Captchas are
3D text-based Captchas, but these systems are also
vulnerable to attacks (Nguyen et al., 2012; Nguyen
et al., 2014). Finally, the robustness of animated text-
based Captchas, as proposed in (Kluever and Zanibbi,
2009; Cui et al., 2010) is investigated in (Xu et al.,
2012). All the mentioned attacks are not described
because the Captcha system attacked in this paper
is not a text-based Captcha and consequently, there
are no direct links between them and the following
of this paper. A good survey on these Captchas can
be found in (Basso and Bergadano, 2010; Bursztein
et al., 2011b).

2.2 Image-based Captchas and Variants

The failure of secure text-based Captchas encouraged
the design of other types of Captcha, as proposed by
(Chew and Tygar, 2004) in 2004. In this case, the user
is asked to link a word with an image (with variations
in different schemes). Nevertheless, most of them
were not more secure than previous schemes. One of
most known image-based scheme is Asirra (Animal
Species Image Recognition for Restricting Access),
described in (Elson et al., 2007) and also defined as an
HIP (Human Interactive Proof). In this system, users
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are asked to identify dogs and cats in a set of random
images. Nevertheless, the system was not secure and
Asirra has been closed by Microsoft in 2014. The im-
age database should be (very) large and the number of
possible responses, related to the image(s) should be
sufficiently high, in order to avoid a random response.

Most of the first generation of image-based
Captchas were simply vulnerable to random guess-
ing attacks, because there was only a limited num-
ber of possible response to the challenge. In 2008,
Golle proposed an attack on the image-based Captcha
Asirra, using a machine learning technique (more pre-
cisely a SVM classification) with a success rate of
10% (Golle, 2008) (an other study on cat head de-
tection provides success rates of 90% (Zhang et al.,
2008)). Others image-based Captchas were proposed
as Imagination (Datta et al., 2005) and ARTiFACIAL
(Rui and Liu, 2004), but they were attacked in (Zhu
et al., 2010) with other image-based Captchas. Au-
thors propose a new scheme, called CORTCHA, ro-
bust to their attacks, but the generation of the chal-
lenge takes 122 seconds on a standard PC. Two
new (and independent) schemes, both called Deep-
Captcha, are proposed in (Nejati et al., 2014; Osad-
chy et al., 2016) using deep learning (there are no di-
rect link between these schemes). To the best of our
knowledge, there are no attacks against the two last
schemes. Finally a recent attack on the image-based
reCaptcha and the image-based Facebook Captcha
gives success rates of 70 and 83% respectively.

Audio Captchas have been proposed as (Shirali-
Shahreza and Shirali-Shahreza, 2008), because they
are useful for people visually impaired. However,
they are difficult for a non-English speaker. Attacks
on audio Captcha can be found in (Tam et al., 2008;
Bursztein and Bethard, 2009; Bursztein et al., 2011a),
where the conclusion is a total failure of these sys-
tems. Game Captchas are analysed in depth in (Mo-
hamed et al., 2014b). Finally another scheme, called
Captcha as graphical passwords (CaGP), is proposed
in (Zhu et al., 2014). All these systems are also far off
the analysed Captcha of this paper.

These alternatives are useful, because classical
text-based Captcha seems not entirely adapted to
smartphone applications (for usability reasons as the
screen size or environmental conditions). For exam-
ple the NuCaptcha scheme provides better success
rates for smarpthone users in the evaluation of (Rey-
naga and Chiasson, 2013).

Another type of attack, called relay attacks (or in-
direct attacks), requires an external human to solve
the Captcha. Relay attacks are possible on many
type of Captcha and are completely different to the
previous automated attacks. These attacks are not

negligible because some service providers propose to
solve a large number of Captcha for very low price
(Motoyama et al., 2010). The objective of interac-
tive Captcha is the mitigation (and/or the detection)
of these attacks, as presented in the case of a game
Captcha in (Mohamed et al., 2014a). This scheme
is based on a drag-and-drop system between two
sets of objects. Finally, a text-based Captcha, called
icaptcha (Truong et al., 2011), was also designed to
mitigate relay attacks with a timing analysis between
interactions, based on a sequence of mouse clicks.

3 CAPTCHASTAR

This section presents CaptchaStar (Conti et al.,
2016a), a recent image-based Captcha that relies on
user interaction. A demo of the Captcha is available
online (Conti et al., 2016b). CaptchaStar authors ar-
gued that their solution is better than other Captchas
from the literature in terms of resiliency against auto-
mated attacks and usability.

The challenge presented by CaptchaStar is a pixel
grid 300× 300 with a black background containing
randomly positioned stars. A star corresponds to a
white square 5×5. Moving the mouse cursor changes
the position of the stars. In order to solve the chal-
lenge, the user has to move the cursor until he is able
to recognise a shape. Only one position of the cursor
leads to reconstruct perfectly the shape, this position
is kept secret from the user and it is the solution of
the challenge. When the cursor is far away from the
solution, the stars seem to be displayed randomly, but
approaching the solution, the stars aggregate. Once
the user is confident that its cursor is correctly po-
sitioned, he clicks to submit its answer. Then, the
server compares the submitted cursor position to the
solution, and if they are close enough the user is con-
sidered as a human. Figure 1 presents the process of
solving a CaptchaStar challenge. Figure 1(a) is not
known by the user, it is used by the server to generate
the challenge.

The shape is created with a randomly picked
image from a pool using a sampling algorithm.
CaptchaStar authors use a pool of 5,000 2-color
icons. The sampling algorithm decomposes the im-
age into stars. The generated stars are then randomly
positioned to be displayed on the grid. In addition to
the stars generated by the sampling algorithm, some
noisy stars are randomly added to prevent automated
attacks. The usability and the security of the chal-
lenge can be tuned adjusting some parameters values.
These parameters include the noise (ψ) defining the
percentage of added stars, the sensitivity(δ) represent-
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(a) A random starting picture.

(b) A sample unsolved chal-
lenge.

(c) An almost solved challenge.

(d) A correctly solved chal-
lenge.

Figure 1: The process of solving a CaptchaStar challenge.

ing the relationship between the cursor movement and
the movement of each star, the number of possible so-
lutions (NSol) representing the number of shapes hid-
den in the Captcha, the rotation indicates whether the
picture is rotated by a random degree or not, and the
usability tolerance α representing the maximum dis-
tance allowed between the answer and the solution to
be considered as a human.

After picking randomly a picture, the sampling
algorithm generates a set of n stars from the figure,
S=

{
si,1 ≤ i ≤ n

}
. Each star si is defined by a pair of

coordinates
(
si

x,s
i
y
)
. The sampling also generates the

original coordinates Pi =
(
Pi

x,P
i
y
)

for each star si. In
addition to the stars belonging to the shape, there are
ψ× n noisy stars that are generated with random co-
ordinates. The solution of the challenge is defined by
a pair of coordinates sol = (solx,soly) where each co-
ordinate is picked randomly in the range [5,295], thus
the solution is never too close of the edges of the grid.
Moreover, the coordinates solution are generated in-
dependently to the figure. Two challenges generated
with the same figure, will have a different solution.

The position (i.e. coordinates) of si changes with
the cursor position (cur = (curx,cury)). It is com-
puted using Pi, cur, and some coefficients picked ran-
domly for each star. The exact computation of the
trajectory of stars is not detailed here because it is not
directly used in our attack (it depends also of the sen-
sitivity parameter). When the user clicks on the grid,
the current cursor position, ans = (ansx,ansy), is sub-
mitted to the system. Then, the server computes the
euclidean distance ∆ between the answer and the solu-
tion. The distance ∆ is then compared to a threshold α
representing the usability tolerance. When ∆ is lower
(resp. greater) than α the challenge is solved (resp.
failed). The value α = 5 is proposed in the original
paper.

3.1 Resiliency to Automated Attacks

CaptchaStar authors claimed that their solution
showed promising results against all the studied at-
tacks, comparable or even better than the state of the
art.

CaptchaStar defeats classic attacks as indirect at-
tacks, database exhaustion or leak of database, ran-
dom choice, and pure relay attacks. Only the stream
relay attacks that is the more powerful one, is a real
threat to this Captcha, but it is difficult to set up

The authors also investigated the resiliency of
their Captcha against machine learning. The best pa-
rameters for their machine learning technique lead to
a success rate of 78.1% with a computation time of
421 seconds.

CaptchaStar authors also proposed some heuris-
tics to automatically solve the Captcha, e.g. looking
at the dispersion of the stars or the distance between
the most distant stars. The faster heuristic leads to less
than 1% of success rate with a computing time greater
than 60 seconds, and the best heuristic in term of suc-
cess rate is 1.92% with a computing time of 1,500
seconds.
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Recalling that a human solves the challenge in an
average time of 23.1 seconds with a success rate of
91.0%.

4 A NEW AUTOMATED ATTACK
AGAINST CAPTCHASTAR

This section presents the proposed ad-hoc attack
against CaptchaStar. First, the heuristic of the attack
is described. Second, the attack principle is detailed.
Then, experiments together with the results are given.
Finally, some information about the implementation
are mentioned.

4.1 Heuristic of the Attack

MaxConcentration: Looking at the Figure 1, one
can remark that, when the challenge is unsolved the
stars are dispersed on the whole grid. When the cursor
is near the solution the stars aggregate and when the
cursor is at the coordinates of the solution, the stars
are totally aggregated to reform the shape. At this
position, the only dispersed stars represent the noise
(because NSol = 1 in this figure). As a consequence,
the proposed attack looks at the stars concentration
in given areas. The heuristic aims to maximise the
concentration of the stars into a part of the grid.

More precisely, given a state Sk, the grid is sepa-
rated in a set T k of squared tiles of `×` pixels. In this
case, the pixels of each tile t are defined by ti, j with
1 ≤ i, j ≤ ` and they assume 0 and 1 values for black
and white colors. For each tile tk belonging to T k, a
score is computed. This score represents the number
of white pixels of the tile, and is computed as follows:

score(tk) =
`

∑
i=0

`

∑
j=0

tk
i, j.

Then, let ~Pk be a vector containing all the scores
score(tk) for tk in T k sorted with descending order.
Then, the final score of the state Sk is computed by
summing up the nmax first values of ~Pk, as follows:

maxConcentration(k) =
nmax

∑
i=0

~Pk
i .

Parameters value of ` and nmax are discussed in
the next section. For example, given a state, using
parameters value ` = 10 and nmax = 20, the heuristic
computes the number of white pixels in each 10×10
tiles of the grid, and the heuristic adds the 20 largest
scores.

4.2 The Attack

The proposed attack uses the previous heuristic as fol-
lows. First, the different states of the challenge are ob-
tained by moving the cursor position. Then, for each
state, a score is computed using an heuristic. Finally,
the position that leads to the best score is submitted as
the solution of the challenge.

More precisely, the attack is composed of two
steps, the first phase determines an approximate po-
sition for the solution by looking at a sub-part of the
possible states. The second phase, looking at all the
states around the approximate solution, aims to de-
termine the exact position of the solution. The two
phases use the heuristic maxConcentration to com-
pute the scores. The objective of this separation in
two steps is the reduction of the execution time.

During the first phase, the scores are not computed
for all the 84,100 possible states but only for ns of
them, with ns < 84,100. More precisely, the grid is
split in a set of ns squared tiles and each tile center is
used as coordinates k to generate the ns states Sk. The
first part of the attack returns the coordinates ck of
the state Sk leading to the maximum score among the
ns states. It represents an approximation of the chal-
lenge solution. Then, the second phase considers the
coordinates ck as a the center of a tile of size `2 × `2.
A score is computed using the heuristic maxConcen-
tration for all the states generated by the `2 × `2 co-
ordinates of the tile. Table 1 presents the parameters
value used for the attack, their choice is discussed in
the next section. Figure 2 shows the result after the
first phase and after the second phase on one exam-
ple.

Table 1: Parameters value of the attack.

Parameters ` nmax ns `2
Value 10 20 2,500 20

4.3 Experiments

CaptchaStar authors propose 6 sets of parameters, as
presented in Table 2.

In the demo version, we expected the parameters
value for the noise, the sensitivity, the number of pos-
sible solutions, and rotation used to be those of T3, but
it seems that the rotation is not implemented. Actu-
ally, there are two versions of the paper, (Conti et al.,
2016a) and another available on arxiv (Conti et al.,
2015). (Conti et al., 2016a) obtains better success
rate for T3 parameters and the one available on arxiv
obtains better success rate for T2 parameters. The
only difference between T2 and T3 is the use of the
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Table 2: Parameters proposed by the authors.

Test T1 T2 T3 T4 T5 T6

ψ 0% 70% 70% 10% 0% 250%

δ 5 7 7 7 10 5

NSol 1 1 1 2 3 1

Rate (%) 77.0 87.1 91.0 46.4 82.7 75.5

Time (s) 15.0 18.8 23.1 59.5 32.8 31.1

rotation. As a consequence, we suppose that on the
demo version the parameters used are T2.

Applying the proposed attack on the CaptchaS-
tar demo website proposed by the authors, leads to
a success rate of 96% with an execution time lower
than 12 seconds per Captcha. These results are ob-
tained by executing the JavaScript code of the attack
with Chromium 51.0.2704.79 on Ubuntu 14.04 (64-
bit). The attack was executed on 1,000 challenges.
Recalling that, having more than 1% of success rate
is sufficient to consider a Captcha as broken. One
can note that, the obtained success rate by the auto-
mated attack is greater than the one obtained by the
user study (91%), and the execution time of the attack
is lower than the solving time of a human (≈ 20s) for
T2.

The few challenges resisting to the proposed at-
tack are those containing figure with an important
amount of stars or figures with a blank zone. Only
few cases of these figures lead to a failure. Figure 3
shows two challenges resisting to the proposed attack.
The solution found by the attack is near from the so-
lution of the challenge. We assume that, optimising
the parameters, the attack will be successful against
these challenges.

4.4 Attack Implementation

The grid uses a Canvas, an HTML5 object, from this
object it is easy to extract the RGBA values for each
pixel using JavaScript. Pixels are black or white, so
using the RGBA values it is easy to transform it into
a matrix of 0 and 1. When the cursor moves, the
stars position are updated on the client side, with a
JavaScript code. Therefore, it is possible to move the
stars with a program using JavaScript calls. The chal-
lenge generation and verification are done with a PHP
script on the server side.

There is no guarantee that the parameters (`, nmax,
ns, and `2) used for our attack are optimal. It is ex-
plained by two reasons. First, for a sake of simplicity,
we have run our experiments using JavaScript but the
execution time is not optimal with this language. In-

creasing the value of `2 and ns increases the accuracy
of the attack, and so the success rate, but also the ex-
ecution time. Using another programming language,
as the C language, and make the computation of the
scores in parallel, can strongly reduce the execution
time. There exists, some solution as Selenium driver,
to interact between JavaScript and other languages.
Second, tuning the parameters gives only the best suc-
cess rate for one implementation of CaptchaStar. Op-
timal parameters of the attack clearly depend on pa-
rameters of CaptchaStar implementation. The objec-
tive is to demonstrate that CaptchaStar is not ready
for real use, by establishing a proof of concept of the
attack.

Finally, in an optimal version of the attack, the
parameters could be chosen dynamically depending
the number of stars of the challenge.

5 DISCUSSION ON SECURITY

The discussion is divided in two parts, the first one
discusses about the parameters of the implementation
of CaptchaStar, the second one discusses about other
countermeasures that can be added to the Captcha
scheme.

5.1 Modifying Parameters of
CaptchaStar

The success rate of 96% of the previous section has
been achieved on the implementation of CaptchaS-
tar available on the website of the authors of (Conti
et al., 2016a). Nevertheless, five parameters are pro-
posed by the authors: the noise (ψ, percentage of
noisy stars), the sensitivity (δ, relationship between
the mouse cursor and the stars movement), the num-
ber of possible solutions (NSol), and the rotation (a
random degree of rotation). This section investigates
the security of this Captcha scheme, independently to
the proposed implementation. Clearly, the proposed
attack is not affected by the rotation.
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(a) A random starting picture.

(b) A sample unsolved chal-
lenge.

(c) State after the first phase of
the attack.

(d) State after the second phase
of the attack.

Figure 2: The process of attacking a CaptchaStar challenge.

5.1.1 Noise

Addition of noise is not really problematic for the
proposed attack. Figure 4(a) shows the attack re-

(a) Figure not recognised by
the attack, containing an impor-
tant amount of pixels.

(b) Wrong solution found by
the attack.

(c) Figure not recognised by
the attack, containing a blank
area.

(d) Wrong solution found by
the attack.

Figure 3: The process of attacking a CaptchaStar challenge.

sult on the same original image than the Figure 2,
but with a noise of 200%. Tests T2 and T6 have the
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same parameters, excepted a noise percentage of 70%
against 250% and a lower sensitivity. T6 provides a
lower success rate for the user than T2 (75.5% against
87.1%) but the difference is not really high (see Ta-
ble 2). We have run the attack on 100 samples on the
demo version of CaptchaStar, adding noisy stars up to
200% to each challenge. The obtained success rate is
91%, it is lower than the success rate obtained with
70% noise, but only 5% lower. As discussed previ-
ously, the attack parameters could be tuned to obtain
a better success rate. Nevertheless, 91% is still a high
success rate.

We remarked that the generated stars representing
the noise are not always displayed on the grid, due to
their coordinates when moving the cursor. A modifi-
cation of the noise generation can increase the diffi-
culty by generating only visible stars. This modifica-
tion also increases the difficulty for a human.

5.1.2 Sensitivity

Increasing the sensitivity increases the movement am-
plitude of the stars when moving the mouse cursor.
We assume that it does not influence a lot our heuris-
tic because it does not change the number of stars dis-
played on the grid. It modifies the concentration of
pixels when the cursor is near the solution because
the stars will aggregate faster or slower depending the
value of the sensitivity. Nevertheless, we assume that
by optimising the parameters value of the attack, the
sensitivity does not reduce a lot the success rate of the
attack.

5.1.3 Number of Possible Solutions

Hiding several figures into the Captcha is not re-
ally problematic for the proposed attack. Figure 4(b)
shows the attack result on a challenge containing 2
hidden figures. One figure is correctly retrieved even
if there are two figures hidden in the challenge. We
have run the attack on 100 samples on the demo ver-
sion of CaptchaStar hiding a second figure in each
challenge. We define a success when one of the two
figures is retrieved by the attack. The obtained suc-
cess rate is 94%, it is only 2% lower than the success
rate with one figure. As we have run the experiments
with only 100 samples, the obtained success rate is
less accurate. Nevertheless, hiding a second figure
does not prevent the attack.

Once the first figure is retrieved by the attack, the
second figure can be retrieved by ignoring the position
near the first solution, and so on if there are more than
two hidden figures. For a genuine user, increasing the
number of hidden figures, reduces the success rate and
increases significantly the solving time. For example,

(a) Implementation with
ψ = 200%.

(b) Implementation with
NSol = 2 and ψ = 70%.

Figure 4: Executing CaptchaStar attack with other parame-
ters.

the success rate falls from 90% to 50% between tests
T3 and T4 with the same parameters excepted a lower
noise and a second image hidden in T4 (see Table 2).

5.2 Other Countermeasures

5.2.1 Solver Behaviour

As mentioned by the CaptchaStar authors, an auto-
mated attack can be detected by analysing the move-
ment of the mouse cursor during the challenge solv-
ing. Nevertheless, it seems that this countermeasure
is difficult to set up. Characterising the human solv-
ing is such a hard task because each human will solve
differently the challenge by creating its own heuristic.

The proposed attack needs only ns states for the
first phase, the attack can simulate mouse cursor
movements on the whole grid, capturing only the
states that are needed for the attack. Execution time
increases when a score is computed for a state, not
when the cursor moves. Moreover, the order of cap-
turing the states can be randomised, and random cur-
sor movements can be added not to be systematic.
The captured states, can be near the center of the tiles
in order not to be detected by systematically reach
the center tiles, and the parameters values of the at-
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tack can vary a little between each attack to not be
detected.

The second phase needs `2×`2 states that are near
the approximate solution, found by the first phase.
Random movements can be simulated around this ap-
proximate solution, and only needed states can be
captured to compute the scores. Another possible be-
haviour can be to artificially draw ellipses, circles or
squares, etc. with the simulated cursor around the ap-
proximate solution. We assume that these behaviours
are not far away from a human behaviour when a gen-
uine user is near the solution.

5.2.2 Recognise the Shape

The proposed attack is only able to detect that there
is a shape. As a consequence, CaptchaStar can hide
more than one image in the Captcha, for example a
human and a dog. Then, the Captcha asks the user
to retrieve the image representing a human. If the
user retrieves the dog, he must not click. The pro-
posed attack is not able to detect if the shape is a
dog or a human, then it will submit the first shape
discovered. Nevertheless, this countermeasure leads
to a success rate of 50% by always selecting the first
shape detected (assuming that solving CaptchaStar is
near 100% success rate). Moreover, machine learning
obtains good results on image recognition (Simonyan
and Zisserman, 2014) and can be used to defeat this
countermeasure.

6 CONCLUSION

This paper presents an automated ad-hoc attack
against CaptchaStar, a recent image-based Captcha.
Although CaptchaStar seemed to be promising in
terms of usability and resiliency the proposed attack
defeats it completely. The proposed attack reaches
a success rate of 96%, in less than 12 seconds per
Captcha. Consequently, it solves the Captcha better
than a human according to success rate and computa-
tion time.

Establishing countermeasures in order to prevent
this attack seems to be a difficult task. The Captcha
needs to profoundly change as the attack targets its
core. A possible countermeasure would be a combi-
nation of CaptchaStar with an entirely different sec-
ond system.
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