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Abstract: We discuss the applicability of a fully convolutional network (FCN), which provides promising performance
in semantic segmentation tasks, to plant segmentation tasks. The challenge lies in training the network with
a small dataset because there are not many samples in plant image datasets, as compared to object image
datasets such as ImageNet and PASCAL VOC datasets. The proposed method is inspired by transfer learning,
but involves a two-step adaptation. In the first step, we apply transfer learning from a source domain that
contains many objects with a large amount of labeled data to a major category in the plant domain. Then,
in the second step, category adaptation is performed from the major category to a minor category with a few
samples within the plant domain. With leaf segmentation challenge (LSC) dataset, the experimental results
confirm the effectiveness of the proposed method such that F-measure criterion was, for instance, 0.953 for
the A2 dataset, which was 0.355 higher than that of direct adaptation, and 0.527 higher than that of non-
adaptation.

1 INTRODUCTION

Segmentation of plant leaves is a fundamental issue
in plant phenotyping aiming to capture and analyze
leaf shape, size, color and growth. Image-based auto-
matic segmentation plays an important role in reduc-
ing the cost of phenotype analysis. Challenges have
been organized on phenotyping based on computer vi-
sion techniques1 2. In the challenges, Arabidopsis
and young tobacco were focused as the most com-
mon rosette model plants, and several methods were
applied to leaf segmentation tasks (Pape and Klukas,
2014; Scharr et al., 2015). Although these methods
performed well in case of the particular plant leaves,
the performance was supported by explicitly designed
methodologies. In terms of broad applicability, there
are various limitations to design methodologies for
many types of leaves.

In this paper, we discuss the applicability of
the fully convolutional networks(FCN) (Long et al.,
2015) to plant segmentation tasks as a basic stage of
leaf segmentation. The most important and challeng-
ing issue is how to train the FCN with plant features
from a small image dataset. Compared with large-
scale image datasets with hundreds of images for each

1www.plant-phenotyping.org/CVPPP2014
2www.plant-phenotyping.org/CVPPP2015

category, plant image datasets provided for the leaf
segmentation challenges (LSC) contained fewer im-
ages, as described in Section 3.1. To solve this prob-
lem, we first introduce the idea of transfer learning.
Transfer learning is a research problem in machine
learning that focuses on storing knowledge gained
while solving one problem in a source domain and ap-
plying it to a different but related problem in a target
domain (Pan and Yang, 2010). In our study, knowl-
edge of object segmentation in a source domain (i.e.,
the FCN trained by a large amount of object images)
is transferred to plant segmentation tasks.

We define two words, “domain” and “category”,
to clarify the explanation in the rest of the paper. We
apply transfer learning to realize adaptation from a
source domain to a target domain. A domain can in-
clude several categories, and the target domain is lim-
ited to plant categories in our study. In other words,
only plant categories belong to the target domain,
namely “plant domain”. The goal of our study is to
realize precise plant segmentation even for a category
having a small number of training samples. One of
the simplest method of transfer learning is to perform
the adaptation from the source domain to a target cate-
gory directly. However, limited training samples may
cause insufficient adaptation to the target category .

In this paper, we propose a two-step transfer learn-
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ing. In the first step, we apply transfer learning for do-
main adaptation from the source domain to the plant
domain by using a major category in the plant domain.
Then, in the second step, category adaptation is per-
formed from the major category to minor categories
within the plant domain. With the LSC datasets, the
experimental results confirm the effectiveness of the
proposed method.

2 RELATED WORK

Image-processing based approaches have been pro-
posed for the LSC. The details can be found in the
collation study report (Scharr et al., 2015). In this
paper, we review the approaches by focusing on seg-
mentation procedures.

In IPK Gatersleben (Pape and Klukas, 2014), 3-D
histogram cubes with three color channels are used in-
stead of multiple one-dimensional color components.
The histogram values are then encoded as probabil-
ities of foreground/background, therefore, the pixels
are assigned to foreground if the corresponding cube
contains a higher value than the cell of the back-
ground cube. After morphological operations are ap-
plied to smooth the object borders, the remaining
large greenish objects are regarded as leaf regions.

In Nottingham (Scharr et al., 2015), a superpixel-
based approach is proposed. Simple linear iterative
clustering (SLIC) (Achanta et al., 2012) is applied in
the Lab color space, to obtain superpixels. Then, the
foreground (plant) is extracted from the background
using simple seeded region growing in the superpixel
space. Although this approach does not require any
training, parameter tuning is required by using the
training dataset.

In MSU (Scharr et al., 2015), a multi-leaf align-
ment and tracking framework is modified in order to
adapt to the LSC. The original method performed well
due to the clean background (Yin et al., 2014). The
MSU introduces a more advanced background seg-
mentation process.

In Wageningen (Scharr et al., 2015), supervised
classification with a neural network is used for plant
segmentation from the background. To separate the
plants from the background, four color features and
two texture features are used: R, G, B and the exces-
sive green value (2G-R-B) for color features, the pixel
values of the variance filtered green channel, and the
pixel values of the gradient magnitude filtered green
channel for texture features. A multi layer perceptron
(MLP) with one hidden layer is used for the feature
training.

3 TWO-STEP TRANSFER
LEARNING

3.1 Dataset

The dataset used in this study is the one provided
in the LSC of CVPPP 2014 (Minervini et al., 2014;
Scharr et al., 2014). Three categories are available in
the LSC dataset: A1, A2 and A3, which correspond
to Arabidopsis thaliana, Arabidopsis thaliana variant,
and tobacco plant images, respectively. These cate-
gories are regarded as the target domain.

Each dataset contains RGB plant images taken
from the top view and corresponding label (leaf or
background) images. There are 128 images of A1,
31 images of A2, and 27 images of A3 in the dataset.
The resolution of A1, A2 and A3 are 480× 512, 512
× 544, and 2176× 1792, respectively. In order to
use the leaf instance labels as the ground truth of the
plant semantic segmentation, we created foreground
label images by combining all instances.

3.2 Overview

The overview of our proposed framework is shown in
Figure 1. First, training of the FCN is performed in
the source domain, where a large amount of labeled
data is available such as ImageNet (Russakovsky
et al., 2015) and PASCAL VOC. We use the Ima-
geNet dataset for the training in the source domain.
Then, the model obtained from the source domain is
transferred to a target domain (plant domain). We use
the LSC dataset for the transfer learning in the target
domain. There are three categories in the LSC dataset
as mentioned above, and the number of labeled sam-
ples in A2 and A3 is much smaller than that in A1. In
this study, we call A1 as a major category and A2 and
A3 as minor categories in terms of available data size.
In the first step, the transfer learning is performed by
using a major category in the target domain for do-
main adaptation. We assume that the transferred net-
work will grasp abstract features of the target domain.
Subsequently, category adaptation from the major cat-
egory to a minor category is performed in the second
step.

3.3 Network Architecture

The architecture is the FCN with 3 deconvolution
(transposed convolution) layers (FCN-8s) as shown in
Figure 2. The FCN has 2 channels of output and rep-
resents each class label(plant or background). Recti-
fied Linear Unit (ReLU) is used as a network activa-
tion function.
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Figure 1: Overview of two-step transfer learning.

Figure 2: Network architecture.

The FCN is initialized with parameters of the
model trained using the ImageNet dataset in the
source domain, as done in the original FCN (Long
et al., 2015). Specifically, the network weights ob-
tained from the source domain are used as the initial
weights in the transfer learning with the same network
architecture. In this step, the weights of deconvo-
lution and convolution layers in skip connection are
not transferred because of the difference of network
architecture between the source domain and the tar-
get domain. The weights of these layers are always
randomly initialized. In the first step, the A1 dataset
is used for the training of the domain adaptation, in
which the initial weights come from the source do-
main. In the second step, the A2 or A3 dataset is used
for training of the category adaptation. It should be
noted that the initial weights at the second step come
from the results of the transfer learning in the first
step.

During the training, the order of input images is
randomly shuffled with a batch size of 1, for each
epoch. The FCN outputs the plant label or the back-

ground label for each pixel. The estimated segmen-
tation result is compared with the ground truth, and
the error between them is calculated by the cross en-
tropy. Thereafter, the network parameters are updated
by a back propagation method. Adam (Kingma and
Ba, 2014) was used as a method to update network
parameters. The learning rate was set to 10−5.

4 EXPERIMENT

4.1 Evaluation Criteria

Precision, recall and F-measure were used as the eval-
uation criteria. The scores are calculated in terms of
true positive (TP), false positive (FP) and false nega-
tive (FN) for each pixel.

Precision=
TP

TP+FP

Recall=
TP

TP+FN
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F−measure=
2Recall×Precision
Recall+Precision

Precision is the relevance ratio. The higher the value,
the less is the false detection of the foreground. Recall
signifies the ratio of foreground that is not detected.
F-measure is a harmonic mean of precision and re-
call, providing an evaluation of both false detection
and detection of foreground. We calculate the preci-
sion, recall and F-measure for each test image. The
final scores are acquired by averaging over all the test
images.

4.2 Effectiveness of Two-step Transfer
Learning

We investigated the effectiveness of two-step trans-
fer learning for plant segmentation. The LSC dataset
consists of the training dataset and the test dataset.
However, the ground truth is not given for the test
dataset. For this reason, we decided to filter out the
test dataset. Instead, we divided the original training
dataset into two subsets; 104 images in A1, 7 images
in A2, and 5 images in A3 for the training, and the
rest of the images for the testing.

We compared the proposed two-step transfer
learning with other conditions of direct adaptation
from the source domain to the target category and/or
skipping the training the source domain. In each con-
dition, we fixed the number of training epochs as 150,
even if domain adaptation was not applied. We named
each condition in terms of the dataset used for the
training. The details of each condition are summa-
rized as follows.

• Random A1. The FCN parameters were ini-
tialized with random values. Then the FCN is
trained by the major category (A1) in the target
domain. In this condition, no transfer learning is
performed.

• ImgNet A1. The FCN parameters were ini-
tialized with the parameters trained ImageNet
dataset. Then, the domain adaptation is performed
by the major category (A1) in the target domain.

• Random direct A2, Random direct A3. The
FCN parameters were initialized with random val-
ues. In both the steps of domain adaptation and
category adaptation, we transferred no knowledge
from the source domain to the target category. In
other words, no transfer learning is conducted.
The training data in the target category with fewer
samples (A2 or A3) are directly used for the FCN
training.

• Random A1 A2, Random A1 A3. The FCN pa-
rameters were initialized with random values. In

the step of domain adaptation, we transferred no
knowledge from the source domain to the major
category. In the step of category adaptation, we
apply transfer learning from the major category
(A1) to the minor category (A2 or A3).

• ImgNet direct A2, ImgNet direct A3. The
FCN parameters were initialized with the param-
eters trained ImageNet dataset. Then, the domain
adaptation is skipped and A2 or A3 samples are
directly used for one-step transfer learning.

• ImgNet A1 A2, ImgNet A1 A3. The following
is the proposed approach. The FCN parameters
were initialized with the parameters trained Im-
ageNet dataset. In the step of domain adaptation,
we apply transfer learning from the source domain
to the major category (A1) in the target domain.
In the step of category adaptation, we apply trans-
fer learning from the major category (A1) to the
minor category (A2 or A3).

The segmentation results are illustrated in Fig-
ure 3. The green, red and purple color pixels denote
true positive, false negative and false positive pixels,
respectively. Overall, the proposed two-step trans-
fer learning approach generated accurate segmenta-
tion results, as shown in the 5th column in the figure.
The evaluation results are shown in Table 1.

First, with regards to Table 1a, when we used the
ImageNet dataset for the initial training of the FCN,
the trained network provided higher precision, recall,
and F-measure. This result confirms the effectiveness
of the domain adaptation.

Second, in the case in which we did not use
transfer learning, i.e., Randomdirect A2 , Ran-
dom direct A3, the evaluation scores were much
worse than the other conditions. The scores were
improved when we used the ImageNet dataset for
the initial training of the FCN and the adaptation to
the target category (A2 or A3) was performed (see
ImgNet direct A2in Table 1b and ImgNetdirect A3
inTable 1c).

Third, in the case of category adaptation only
without domain adaptation, i.e., RandomA1 A2 and
RandomA1 A3, better results were obtained for both
A2 and A3. These results indicate that training with
the major category is effective to capture the abstract
features of plants, and the transfer learning worked
well to adapt to the minor categories.

Finally, the proposed approach, namely
ImgNet A1 A2 and ImgNetA1 A3, outperformed
the other conditions in every category. For instance,
for the A2 dataset, the F-measure criterion of pro-
posed approach was 0.953, which was 0.355 higher
than that of direct adaptation and 0.527 higher than
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(a) A2 result

(b) A3 result

Figure 3: Learning result. The green areas represent true positive. The red areas represent false negative. The purple areas
represent false positive.

that of non-adaptation. Comparing the results in
the 3rd and 4th columns, we found that the domain
adaptation contributes to improving the evaluation
scores of segmentation.

4.3 Data Size for Domain Adaptation

In Section 4.2, we found that the major category in
the target domain played an important role in acquir-
ing features of the target domain, and to bridge the
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Table 1: Evaluation result of plant segmentation in three categories.

(a) A1 result

RandomA1 ImgNet A1
Precision 0.931 0.968

Recall 0.912 0.983
F-measure 0.921 0.975

(b) A2 result

Randomdirect A2 RandomA1 A2 ImgNet direct A2 ImgNet A1 A2
Precision 0.430 0.938 0.616 0.953

Recall 0.454 0.958 0.592 0.955
F-measure 0.426 0.946 0.598 0.953

(c) A3 result

Randomdirect A3 RandomA1 A3 ImgNet direct A3 ImgNet A1 A3
Precision 0.631 0.948 0.865 0.963

Recall 0.409 0.731 0.771 0.941
F-measure 0.444 0.808 0.794 0.948

Table 2: Segmentation accuracy when reducing the number of training samples for domain adaptation. The first row of the
table is the number of samples in A1 used for training. The highest score in each category is marked in bold.

(a) Domain adaptation

90 images 70 images 50 images 30 images 10 images
Precision 0.921 0.884 0.880 0.864 0.813

RandomA1 Recall 0.862 0.882 0.838 0.839 0.784
F-measure 0.889 0.881 0.856 0.848 0.790
Precision 0.982 0.957 0.980 0.949 0.927

ImgNet A1 Recall 0.968 0.984 0.950 0.967 0.931
F-measure 0.975 0.970 0.965 0.958 0.928

(b) Category adaptation

90 images 70 images 50 images 30 images 10 images
Precision 0.728 0.683 0.630 0.666 0.571

RandomA1 A2 Recall 0.776 0.759 0.682 0.616 0.670
F-measure 0.727 0.716 0.653 0.630 0.613
Precision 0.947 0.910 0.877 0.930 0.790

ImgNet A1 A2 Recall 0.961 0.977 0.980 0.921 0.834
F-measure 0.954 0.942 0.924 0.925 0.810
Precision 0.920 0.905 0.815 0.865 0.735

RandomA1 A3 Recall 0.740 0.696 0.817 0.659 0.740
F-measure 0.809 0.763 0.791 0.709 0.709
Precision 0.980 0.979 0.961 0.921 0.872

ImgNet A1 A3 Recall 0.834 0.851 0.922 0.883 0.823
F-measure 0.883 0.906 0.928 0.899 0.835

features from the source domain to target minor cate-
gories. In this section, we investigate how many sam-
ples are required for adequate training of the major
category A1. We reduced the number of training sam-
ples from 104 images to 90, 70, 50, 30 and 10 images
gradually. Then, domain adaptation and/or category

adaptation was performed.

The results of domain adaptation and category
adaptation are shown in Table 2a and Table 2b, re-
spectively. The segmentation results are shown in
Figure 4. As the number of training samples of the
major category decreased, the evaluation scores wors-
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(a) The upper is randomA1 result and the lower is ImgNetA1 result.

(b) The upper is randomA1 A2 result and the lower is ImgNetA1 A2 result.

(c) The upper is randomA1 A3 result and the lower is ImgNetA1 A3 result.

Figure 4: Leaf segmentation result. Start from the left, input image, 90 images, 70 images, 50 images, 30 images, 10 images
in A1 used for training.

ened. Comparing randomA1 and ImgNetA1, when
the FCN was initially trained by the ImageNet dataset,
the evaluation scores of the A1 segmentation were
not seriously decreased. The segmentation results
of ImgNet A1 were clearly better than those of Ran-
dom A1 as shown in Figure 4a. In the cases of cate-
gory adaptation, the evaluation scores were decreased

as well as in the cases of domain adaptation. Compar-
ing the results of “Random” and “ImgNet ”, we can
see that the domain adaptation is necessary to main-
tain satisfactory evaluation scores even if the number
of training samples in the major category decreased.
In the LSC dataset, we found out that approximately
70 images are required for promising results.
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5 CONCLUSION

In this study, we investigated the effectiveness of
transfer learning in plant segmentation tasks. In
our proposed approach, we applied two-step trans-
fer learning; domain adaptation from a the source
(object) domain to target (plant) domain, and cate-
gory adaptation from the major category to a minor
category. We used a FCN for transfer learning and
segmentation of whole leaf regions. In our experi-
ments, we used the LSC dataset for the evaluation,
and found that the two-step transfer learning yielded
much higher accuracy of segmentation. In our fu-
ture work, we will evaluate our approach using other
datasets provided by CVPPP2015 and CVPPP2017.
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