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Abstract: Physical simulations aim at modeling and computing spatio-temporal phenomena. As the simulations depend
on initial conditions and/or parameter settings whose impact is to be investigated, a larger number of simulation
runs is commonly executed. Analyzing all facets of such multi-run multi-field spatio-temporal simulation
data poses a challenge for visualization. It requires the design of different visual encodings that aggregate
information in multiple ways and at multiple abstraction levels. MultiVisA is a tool for the interactive visual
analysis of multi-run data from physical simulations based on a number of aggregated plots and coordinated
interactions. A histogram-based plot allows for the investigation of the distribution of function values within
all simulation runs. A density-based time-series plot allows for the detection of temporal patterns and outliers
within the ensemble of multiple runs for single and multiple fields. A similarity-based plot allows for the
comparison of multiple or individual runs and their behavior over time. Coordinated views allow for linking
the plots to spatial visualizations in physical space. We apply MultiVisA to physical simulations from the field
of climate research and astrophysics. We document the analysis process, demonstrate its effectiveness, and
provide evaluations involving domain experts.

1 INTRODUCTION

Simulations of time-varying phenomena over a 2D or
3D spatial domain are widely used in the field of phy-
sics (among others) to test the respective mathema-
tical or computational models. The simulations ty-
pically depend on a number of parameter settings or
initial conditions. Since one of the research tasks is
to understand how the input settings influence the si-
mulation result, the simulations are run multiple ti-
mes with varying settings. Thus, researchers gather
multi-run spatio-temporal data with many runs and
many time steps, where each time step of each run
represents planar or volumetric data fields. The ana-
lysis of such a data set raises the challenges of effi-
ciently handling the large amount of data and effecti-
vely comparing the outcome of multiple simulation
runs. Since it is not feasible to analyze all time steps
of all runs individually, one needs to aggregate infor-
mation about the entire ensemble of simulation runs.

Currently, in research communities dealing with
simulation ensembles, there is the lack of a unified ap-
proach for processing, navigation, feature detection,
and comparative analysis of entire ensembles. It is
common practice that researchers develop their own

ad-hoc solutions to their analysis tasks by develo-
ping scripts that stitch together existing tools for sol-
ving subproblems. Visualization methods are typi-
cally only used for the rendering of phenomena in
physical space, i.e., at the very end of the analysis
process. In this paper, we present MultiVisA, an ap-
proach to the interactive visual analysis of multi-run
spatio-temporal physical simulations that supports a
top-down analysis process of entire ensembles.

MultiVisA is based on three types of aggregated
plots linked with physical space visualizations and a
portfolio of interaction mechanisms. The plots in-
tuitively provide comprehensive information of the
simulation ensemble at different aggregation levels.
The field distribution histogram aggregates field value
occurrences over all time steps and all runs. This first
overview allows the user to identify the relevant data
range for further analysis. The function plots aggre-
gated over all runs support multiple analysis steps re-
lated to time series. First, they allow for the detection
of relevant time steps and the synchronization of fea-
tures in multiple runs. This feature detection and se-
lection step restricts the subsequent analysis steps to
the relevant time intervals, which often reduces the
amount of data to be analyzed tremendously. Second,
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the function plots intuitively depict behavioral pat-
terns over time. The governing patterns and outliers
within the ensemble or within individual runs can be
detected. And, multiple coordinated function plots al-
low for an intuitive comparative analysis of multiple
fields. Finally, the function plots exhibit the range of
activity, which allows the user to identify representa-
tive isovalues for further analysis. This further ana-
lysis is supported by the multi-run plot, which is a
similarity plot based on isocontour similarity of dif-
ferent time steps of different runs. Hence, it allows
for a comprehensive understanding of the entire en-
semble of simulation runs by depicting each of them
as a polyline, where divergence or convergence of the
polylines indicate how much simulations differ over
time. Our plots are incorporated in one interactive
analysis tool using coordinated views, which includes
brushing and linking to physical space renderings.

The visual encodings and interaction mechanisms
provided by MultiVisA are described in Section 3,
while Section 4 is dedicated to documenting how
MultiVisA is applied to a top-down analysis of physi-
cal simulations. We chose two application scenarios
of quite different data characteristics. The first appli-
cation provides multiple runs of astrophysical smoot-
hed particle hydrodynamics (SPH) simulations over
3D point-based spatial domains, where the runs differ
by setting different initial parameters. The second ap-
plication provides ensembles of climate simulations
over 2D gridded spatial domains with a set of diffe-
rent initial conditions. We show the effectiveness of
our analysis tool by documenting the processing pi-
peline of our approach, discussing the findings that
can be obtained at the various analysis stages, and re-
porting the feed-back from domain scientists.

2 RELATED WORK

Many approaches for the exploration and visualiza-
tion of time-varying data exist. They are based on
novel visual representations (Moere, 2004), exploring
derived spaces (Busking et al., 2010), volume visua-
lizations (Woodring and Shen, 2006), or coordinated
views (Akiba and Ma, 2007; Lee and Shen, 2009).
However, all these approaches only address single-
run data.

Recently, in (Phadke et al., 2012) some techni-
ques to support ensemble exploration and comparison
were proposed. These techniques are limited to com-
paring a small number of ensemble members at any
given time. The pairwise sequential animation techni-
que begins to suffer when more than three members
are shown. For the estimation of the uncertainty re-

presented by the simulations within an ensemble, in
(Pöthkow et al., 2011) authors proposed a method for
quantifying spatial uncertainty of isocontours consi-
dering arbitrary spatial correlations of the probability
distributions of the input data. In an approach presen-
ted by (Potter et al., 2009b), a collection of statistical
descriptors is used for analyzing ensemble data sets.
The same authors also presented “Ensemble-Vis”, a
framework consisting of a collection of overview and
linked statistical displays (Potter et al., 2009a). Si-
milarly, the “Noodles” approach has been developed
to interactively visualize ensemble output and asso-
ciated uncertainty of weather event datasets (Sanyal
et al., 2010). All these approaches are based on dis-
playing statistical information like mean and standard
deviation, which supports important analysis aspects,
but does not cover all analysis needs. In particular, the
influence of initial conditions cannot be evaluated.

In (Preston et al., 2016) authors present an inte-
ractive linked-view visualization system that focuses
on simultaneously exploring dark matter halos. De-
aling with large particle based simulation data it has
very narrow specialization on cosmology data look-
ing for a hierarchical tree-based structures. An appro-
ach for uncertainty-aware multidimensional ensemble
data visualization and exploration was recently pre-
sented by (Chen et al., 2015). Both approaches do
not allow for comparing behavior patterns of indivi-
dual simulations over time. An interactive approach
to enable a continuous analysis of a sampled parame-
ter space with respect to multiple target values was
investigated by (Berger et al., 2011). It is a suitable
approach for a certain frame analysis, but it does not
tackle spatio-temporal data. Follow-up studies such
as the one by (Konyha et al., 2012) looking into fami-
lies of curves also provide methods for the analysis of
non-spatial multi-run data.

In (Kehrer and Hauser, 2013) authors presented a
survey on multi-run multi-field data visualization and
referred to the data as multi-faceted. They concluded
in their paper that: “The majority of the approaches
discussed in this survey specifically address one or
two facets of scientific data. What is often missing
are general concepts for handling the heterogeneity
of multi-faceted data (e.g., multi-run data are often
spatio-temporal and multi-variate as well)”. An ap-
proach presented by (Fofonov et al., 2016) tackles the
aspect of multi-run multi-field spatio-temporal data
visualization and analysis, which allows for an explo-
ration of the parameter space in conjunction with the
physical space of the fields. For that an isosurface si-
milarity between the fields of different time steps and
different runs is used. However, to successfully apply
the approach, one needs to find representative isole-
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vels sufficient for capturing relevant information from
all simulation time steps.

Despite the availability of existing techniques,
most researchers who are trying to analyze their en-
semble simulations spend days or weeks to prepare
and analyze simulated data for further analysis. Usu-
ally they implement their own scripts (customized to
their needs) for data management, filtering, naviga-
tion, feature detection, pattern detection, outlier de-
tection, etc. Quite frequently this even involves some
manual or semi-automatic steps. Hence, it is desi-
red to develop visual approaches that support such a
processing pipeline for an intuitive and more efficient
analysis. After discussions with domain scientists of
different research areas within physics (namely, geo-
sciences and astrophysics) we identified general re-
quirements for the tools and methods for multi-run
data analysis, which led to the techniques and work-
flow below.

3 VISUAL ANALYSIS OF
MULTI-RUN SIMULATION
DATA

Since the main purpose of executing multi-run simu-
lations is to capture the variety in the model with re-
spect to different initial settings or parameter selecti-
ons, an ensemble can consist of tens or even hundreds
of simulations. Despite the same nature of all runs
within an ensemble, their outcome may have high dis-
persion that needs to be investigated. Independent of
the simulation method (Eulerian or Lagrangian), the
spatial data structure (gridded or point-based), and the
purpose (impact of simulation parameters or model
evaluation), the visualization tasks can be identified
as (1) defining visual encodings in the form of plots
that exhibit the proper level of aggregation and (2) de-
fining interaction methods for operating on differently
aggregated plots and physical space renderings using
coordinated views. The MultiVisA system is shown
in Figure 1(a).

For the development of a successful analysis tool,
several characteristics of multi-run spatio-temporal
simulation have to be considered. First, the data size
frequently exceeds hundreds of Gigabytes, i.e., the
data set does not fit into the main memory of a system.
Thus, every access to the entire data is extremely time
consuming. Even simple computations such as com-
puting the mean can take up to hours. Hence, aggre-
gated information plays an important role and being
able to concentrate on a region of interest (part of the
data) can substantially reduce the computational load.

Second, due to the multiple facets of multi-run data
(Kehrer and Hauser, 2013), different representations
are required to shed light on different aspects. Finally,
it is of interests to compare the simulations’ behavior
and evolution over time, which is complex task due to
the large number of simulation runs. Computing me-
ans is often not sufficient, as behaviors of individual
runs may not be reflected anymore.

Having pointed out the challenges we are facing,
the analysis of multi-run spatio-temporal data can be
executed according to the following workflow:
1. Overview analysis of field range distribution. In a

first stage, one is interested in getting an overview
of the ensemble, which can be achieved by inves-
tigating the range of the considered data field and
the distribution of field values within the simula-
tion runs. Respective histograms allow for first
conclusions and to narrow down the field range
for subsequent analysis stages (see Section 3.1).

2. Analysis of field distribution over time. In this
stage, one would like to investigate the change
within the simulation runs over time, which sup-
ports multiple important tasks. First, one can de-
tect features and the time intervals they occur,
which narrows down the time interval for further
analysis steps. Second, one can identify indivi-
dual field values of interest, which can be furt-
her examined, e.g., by choosing them as isova-
lues. Third, one can detect overall patterns in the
ensemble as well as outliers. A run identified to
be of interest can also be observed individually as
well as in further analyses with physical domain
visualizations. Finally, one can also compare and
correlate different fields of a multi-field data set at
this level (see Section 3.2).

3. Comparative analysis of individual runs. While
the second stage was operating on an aggregation
over multiple runs, this stage shall allow for a de-
tailed understanding of the behavior of individual
runs in a comparative view. Making appropriate
selections in the preceding stage (i.e., identifying
time interval and field value of interest) allows for
an accurate and efficient analysis approach (see
Section 3.3).
The overall structure of MultiVisA is illustrated

in Figure 1(b): Starting with the given data, the ana-
lysis pipeline is shown using orange arrows. First,
one extracts the field histogram. Then, after selecting
a region of interest and a desired field range, one
computes the function plots. Finally, after choosing
a representative time interval, the desired simulation
runs, and representative isovalues, one can generate
the multi-run plot. All the possible interactions bet-
ween different data representations including spatial
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(a) Screenshot of MultiVisA (b) System structure

Figure 1: (a) MultiVisA: Interactive visual analysis system for physical simulations: (left) interaction panel for options and
data settings; (top middle) transfer function used for function plots; (top right) plot view used for field distribution histograms
or function plots; (bottom right) similarity plot; (bottom middle) domain visualization. (b) System structure: orange arrows
show analysis pipeline, black arrows show possible interactions between different components.

domain rendering are shown using black arrows. Ba-
sed on this structure, we have designed our applica-
tion as shown in Figure 1(a).

3.1 Field Distribution Histogram

Assuming that the data to be analyzed have not
been studied yet and the simulation results are still
unknown, we propose to start with a simple overview
plot based on the estimation of the range of the inves-
tigated data field and the analysis of the probability
distribution of the occurrence of the field values. This
step allows us to detect simulations with outstanding
field values and to define the main global data features
such as global field range, shared field range (i.e., the
intersection of the ranges of all simulation runs), or
values with high and low frequencies of occurrence.

The visual encoding is implemented by building a
histogram with field values on the horizontal axis and
normalized frequencies of occurrence on the vertical
axis. The histogram aggregates information from all
points in space and time for all simulation runs. The
field values from the intersection of the ranges of all
time steps of all runs are colored in green, values from
the intersection of ranges of all runs (but not from all
their time steps) are colored in blue, and values that do
not occur in all runs are colored in red, see Figures 3
and 12 (a) for examples discussed in Section 4.

The interaction mechanisms that support the ana-
lysis allows for the selection of individual field va-
lues (using a vertical line), which reports back all si-
mulation runs where this field value occurs, which is
particularly useful for investigating outliers. Also, it
is possible to visualize frequencies of occurrence of
the selected field value over spatial domain (see Fi-

gure 12 (b,c)). Vice versa it is possible to select a
spatial region of interest and show the corresponding
field histogram only for the selected region (see Fi-
gure 12 (d,e)). Moreover, the user can select a field
range for further investigations by cutting intervals to
be neglected, which narrows down the analysis to a
region of interest.

3.2 Function Plot

At the next analysis stage, we aim at investigating
change over time. We propose to use function plots
that record how the field values at the spatial data
samples vary over time for the simulation runs. The
plot represents the function values of each spatial data
sample of each simulation run as a piece-wise linear
graph of a time series. For the visual encoding, we ag-
gregate the time series lines over a 2D grid leading to
a 2D density histogram (effectively aggregating over
spatial positions and simulation runs). Then, we can
apply a transfer function to map the accumulated den-
sity values to color. An example of a function plot is
shown in Figure 1(a) (top right) when applying the
transfer function shown in Figure 1(a) (top middle).
We use this transfer function throughout the paper.
Note that the transfer function is applied to the range
of interest that was selected using the field distribu-
tion histogram, i.e., the selection in the field distribu-
tion histogram makes the visual representation of the
function plot more effective.

Function plots (or time histograms) have been
used before for time-varying scalar fields (Akiba
et al., 2006; Akiba and Ma, 2007; Buono et al., 2005;
Kehrer et al., 2008). We extend their application to vi-
sualize ensembles of simulations. Moreover, we want
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to point out that the underlying data structure is that
of piecewise linear curves that represent time series.
Consequently, we do not generate static histograms,
but can perform interactions on our plot. More preci-
sely, we can brush on the function plots to interacti-
vely select all curves that traverse a selected region
of interest and interactively update the plot to only
render the aggregated selected curves (see Figure 13).
Furthermore, we can interactively switch between ag-
gregating over all runs, a selected subset of runs, or
individual runs. When rendering function plots of
individual runs, brushing on the plot (see Figure 5)
triggers linked physical space visualizations of the
selection (see Figure 6). Vice versa, we can select
a spatial region of interest and report the respective
function plot only for the selected region. When ob-
serving multi-fields, we can produce one function plot
per field, compare and correlate them with each other,
and have coordinated brushing and linking between
the multiple function plots (see Figure 13). Finally,
we can also select a specific region of interest for furt-
her analysis. In particular, when detecting a feature,
one can cut the time axis to a time interval that con-
tains the feature, which makes the subsequent analy-
sis steps more efficient and effective. Also, we can
select a field value for further analysis purposes (ba-
sed on similarity plots, see below) using a horizontal
line (see Figure 9).

Since we are typically dealing with a large amount
of runs with a high spatio-temporal resolution, we
have to accumulate many curves with many time steps
for the generation of a plot. To allow for their genera-
tion at interactive frame rates, we use a level-of-detail
representation of the curves coupled with progressive
rendering. The level-of-detail (LOD) approach uses
a hierarchical representation based on 1D Haar wave-
lets, where a sequence of values is successively de-
composed into a sequence of a coarser representation
and a sequence of detail coefficients. The progres-
sive rendering approach accumulates all curves first
at their coarsest resolution and refines the represen-
tation iteratively until the finest resolution is reached.
Moreover, using the LOD representation it is also pos-
sible to compute similarities between time series such
that when selecting a spatial region of interest we can
compute all other regions of the spatial domain with a
similar behavior (similar field values) over the whole
simulation time (see Figure 15). This is possible by
setting a threshold for a maximum field value devi-
ation from the values at the selected domain points
(e.g., in absolute field values or in a relative percen-
tage of the field range), such that points which have
their field values for all the time steps within the defi-
ned corridor are considered to be similar.

Figure 2: Schematic illustration of the similarity plot idea.
Curves represent simulation states over time, where distan-
ces between points on the curves represent dissimilarity of
corresponding simulation states.

3.3 Similarity Plot

In our third stage, we want to generate a visual enco-
ding that allows us to perform a comparative analysis
between the runs of an ensemble. Hence, we should
not anymore aggregate over the runs. The idea of the
proposed approach is to use time lines in a similarity
plot (or multi-run plot), where the similarity is measu-
red by looking at (2D or 3D) isocontours of individual
time steps. This plot is based on the work by (Fofonov
et al., 2016). Isocontours are known to be effective
field descriptors and can capture the simulation states
within the physical domain for the runs at each point
in time. Since data are spatio-temporal, we investi-
gate for each ensemble member a sequence of discrete
time steps. The simulation state for every time step
is represented by an isocontour, where the respective
isovalue was identified in the preceding stage using
the function plots. Considering the isocontours of the
selected scalar field, every ensemble member is repre-
sented by one thread, where the threads represent the
change of isocontours over time. Defining an appro-
priate isocontour distance function, we can use pro-
jection methods to generate a similarity (or distance)
plot of all the samples to visualize the data. The points
in the projection can be connected by polylines accor-
ding to the threads they belong to. Figure 2 sketches
the idea by showing four polylines for four different
simulation runs in different colors (e.g. color-coded
according to a parameter value of the simulation). The
four polylines start from the same point, but diverge
over time, where proximity in the plot encode simila-
rity of the isocontours. Points which represent similar
simulation states are expected to be located closely
(i.e., occurrence in one simulation will cause a self-
intersection), while a great distance between points
represents a high dissimilarity.

To compute isocontour similarity, we use a quasi-
Monte Carlo (qMC) approach to estimate a degree of
volume matching between two isocontours. Based on
the volumes enclosed by the isocontours, we use a
Jaccard distance d(A,B) between isosurfaces A and B
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defined by

d(A,B) = 1− MA∧B

MA∨B
.

The qMC approach allows for fast computations by
evaluating the fields at a number of quasi-random
points. Then, MA∧B denotes the number of points
inside both isocontours (logical and) and MA∨B the
number of points inside of, at least, one of the isocon-
tours (logical or).

Having defined a proper distance function, it is
possible to build a distance matrix (or dissimilarity
matrix) D = [di, j] with pairwise distances between
isosurfaces of all time steps of all simulation runs.
Based on the distance matrix, we can apply a pro-
jection method to map the high-dimensional binary
vectors to a 2D or 3D visual space for the multi-run
plot, where the high-dimensional binary vectors re-
present the inside-outside information for each of the
qMC points. Many projection methods exist. Since
we want to create the plots at interactive rates, we took
the simplest and, thus, fastest multi-dimensional sca-
ling (MDS) approach by (Wickelmaier, 2003). The
detailed discussion of the similarity-plot generation
can be found in (Fofonov et al., 2016).

We also support a number of interaction mecha-
nisms on the similarity plot. First, instead of sho-
wing all runs, we can show a subset or even indivi-
dual ones (see Figure 11(c)). Also, parts of the plot
can be selected and a new projection of the selected
part can be generated. Since the precomputed simi-
larity matrix can be re-used, this remains interactive.
In particular, we can select one time step such that
the time lines reduce to points (see Figure 11(b)). We
can also select individual points on the time lines to
trigger a physical-space visualization either in a coor-
dinated view (see Figure 10) or in an embedded view
(see Figure 11(b)). Furthermore, we allow for swit-
ching between projections to 2D and 3D visual space
using two or three principal components. Alternati-
vely, one can only use one principal component as a
vertical axis in a 2D plot, where the horizontal axis
represents time (see Figure 11(a)).

4 CASE STUDIES

4.1 Astrophysical Simulations

To test the effectiveness of MultiVisA for the ana-
lysis of multi-run physical simulations, we executed
two case studies, where we apply the methods and
workflow as described above. The first case study is
concerned with an astrophysical two-stars system of

Figure 3: Field distribution histogram (for astrophysical si-
mulation). Field values from the intersection of all time
steps’ ranges of all runs are colored in green, from the inter-
section of all simulations’ ranges (but not for all time steps)
in blue, otherwise red.

Figure 4: Function plot of the simulation of two stars both
with masses equal to 1.05 of the solar mass. Time steps
around 300 contain outliers in field values and exhibit a sig-
nificant change in the simulation structure, while before and
after this change almost steady patterns can be observed.

White Dwarfs. The ensemble consists of 45 simulati-
ons with two main parameters representing the mas-
ses of the two stars. Each simulation run consists from
400 to 1,300 time steps. Overall this data set contains
about 36,000 time steps, which sums to approxima-
tely 170 GB of data.
Stage 1 - Field Distribution Histogram. We start
our analysis by computing the field distribution histo-
gram for the scalar field of Internal Energy as shown
in Figure 3. It is a simple plot, but nevertheless allows
for some first interesting observations: (1) The distri-
bution is skewed towards the lower values. In fact,
only very few values are populating the upper half of
the histogram. The respective simulation runs can im-
mediately be identified as outliers by selecting the re-
spective regions in the histogram. (2) After having
identified the outliers, further analysis steps shall be
applied to a narrowed (more saturated) field interval
that excludes the outliers. This will make the automa-
tic application of the transfer function in Stage 2 more
effective. (3) Higher values do not occur in all simu-
lation runs (red). The intersection areas (green and
blue) are rather small. Still, due to the smooth tran-
sition, the entire range up to the dashed line seems to
be of interest.
Stage 2 - Function Plot. In the second stage, we ope-
rate on the function plots. Figure 4 shows the function
plot for a single simulation run that was identified as
an outlier in Stage 1. In this simulation run, both stars
have the same mass. To observe the outlier values, we
did not apply the narrowing of the field range from
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Figure 5: Function plot of the simulation of two stars with
different masses equal to 0.65 and 1.05 of the solar mass.
Same three phases can be distinguished as in Figure 4, but
additional feature can be observed for a hot matter. Inte-
ractive selection (shown in green) for coordinated view to
the linked physical domain visualization.

(a) (b) (c) (d)

Figure 6: Linked views of selections in Figure 5 in physical
domain. Selection (a) represents two separated stars. Se-
lection (b) shows that the shell of the core of one star is in
the same condition, while selection (c) shows that the mat-
ter of the other star is absorbed by the first one. Selection
(d) shows the merged structure. Note that the representation
of the heavier star seems smaller, as it represents data points
with higher internal energy and therefore is only a core.

Stage 1. We can observe that there are very few field
values with an internal energy greater than 3.0 and
that they occur around time step 300. Selecting those
outliers and investigating them in a coordinated phy-
sical space visualization, one can observe that they
belong to particles that transition from one star to the
other. When hitting the other star the internal energy
of these particles suddenly rises to high values, but
also very quickly drops down again.

Apart from the investigation of the outliers, Fi-
gure 4 clearly indicates that we can distinguish three
phases during the simulation. First, there is relati-
vely steady state up to a short period, where things
are changing (around time step 300), which is follo-
wed by another relatively steady state. Looking at
other simulation runs from the same ensemble, we
can observe a similar behavior pattern consisting of
three phases, but the distributions of field values du-
ring the simulations are different. Figure 5 shows the
function plot for a simulation run where one of the
stars is much larger than the other (now the field range
is cropped according to the observations in Stage 1).
When comparing Figures 4 and 5, we can observe an
additional feature. To further analyze this, we again
brush on the plot and investigate what corresponds to
those features in a coordinated physical space, see Fi-
gure 6. We observe that initially we have two stars (a)
in the first phase. In the second phase, for the hea-

Figure 7: Function plot aggregated from all 45 astrophysi-
cal multi-run simulations without synchronization. General
structure cannot be recognized. Vertical discontinuities in-
dicate ends of simulations.

Figure 8: Result of automatic function plot synchronization
for the astrophysical multi-run simulation data. As opposed
to the unsynchronized representation in Figure 7, details of
the general structure (three phases) can be observed.

vier one we have a slightly increasing internal energy
(b), while the lighter star loses its mass and internal
energy (c). At these time steps when the stars are mer-
ging, the function plot allows us to easily and clearly
separate the matter of the two stars according to their
field values. Finally, the lighter star is completely ab-
sorbed by the heavier star in the third phase (d).

As mentioned above, the three phases occur in
every simulation run. Moreover, the initial and the
final phase are pretty static. Not much is happening
there. Indeed, from an astrophysical point of view, the
transitions between the phases is of interest. Hence,
one can crop most of the initial phase and the final
phase without losing valuable information. Using our
function plots, we can interactively cut the simulation
runs to a small time interval that fully captures the
merging phase and only the end of the initial phase
and the beginning of the final phase. Hence, it still
includes all transitions. Identification of such time in-
tervals for multi-run simulations is crucial and usually
takes a significant amount of time. With our tool, it
is possible to visually identify the time intervals and
manually crop to the desired time interval.

Using side-by-side comparisons, we can intuiti-
vely compare the function plots of two simulation
runs. When trying to get an overview of the entire
ensemble, we proposed to aggregate the information
of all runs in one plot. When comparing the two plots
in Figures 4 and 5 we observe that the merging pha-
ses occur at different time steps during the simulation.
This lies in the nature of the simulation, as the runs are
not synchronized and different runs even have diffe-
rent amount of time steps. Thus, when aggregating all
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Figure 9: Function plot representing standard deviation
from Figure 8. Despite of similar structure of the field dis-
tribution in all simulation runs in the ensemble, this plot
shows high deviations for lower field values. Green hori-
zontal line indicates selection of representative field value
used for isocontour similarity computation.

45 simulation runs without synchronization, we can-
not observe any general pattern, see Figure 7. Using
the manual cutting of our function plots as described
above, a manual synchronization of all runs is intui-
tively possible. Although this just requires a single
selection for each run, we still need to go through
all plots once. Hence, we considered that it may be
useful to automate this step. The idea is to synchro-
nize the plots by the merging phase and to apply a
respective shifting. The advantage of our method is
that such features can be estimated using image-based
processing. We simply identify the highest gradient
of the plot density, as it is reached in the merging
phase. Since the duration of this phase is different for
the runs, we take the center of the time interval of 20
time steps with the highest sum of gradients as our sy-
nchronization point. Figure 8 shows the function plot
aggregated over all simulations runs after automatic
synchronization. Now, we can also clearly observe
the three phases in this function plot.

Another feature of our function plot approach is
that it is not restricted to create this one representa-
tion of the data field, but we can also derive further
fields. For example, when taking the function plot
aggregated over all synchronized runs as the average
mean, we can compute a plot representing the stan-
dard deviation. Figure 9 shows the result of such a
computation. We can see the benefit of such a stan-
dard deviation plot. While the plot in Figure 8 did
not exhibit strong differences, the standard deviation
plot exhibits more clearly visible structures. Despite
the similar structure of the field distribution in all the
simulation runs over the simulation time, we can ob-
serve that the highest deviation is present in the lowest
field values. The reason is that in every simulation run
there is the same total number of data points, but des-
cribing different simulation states the proportion of
data points representing the considered field range is
different. It means that a more detailed comparative
analysis is required to investigate, how the simulation
states differ in terms of physical structure. To do so,
we proceed to Stage 3 by choosing a representative

(a) Projection 3D view (b)

(c) (d)

Figure 10: 3D similarity plot (a) with selected keyframes
displayed in linked views to the domain visualization (b-d).

field value, i.e., a field value which describes best the
important data features in each individual simulation
run. Selecting the field value around 0.3, as shown
by the green horizontal line in Figure 9, we cover the
main part of the structure with the highest deviation
for all three simulation phases.
Stage 3 - Similarity Plot. Having cropped the time
intervals in Stage 2, which significantly reduces the
amount of data to be handled, and having identified
a representative field value, we can make use of that
field value as the selected isovalue for the isosurface
similarity computation. Having computed the iso-
surface similarity matrix, we generate the similarity
plot. For the given application, we decided to gene-
rate a 3D similarity plot (see Figure 10 (a)), which can
be visually inspected using rotation and zooming. It
shows all 45 astrophysical simulations. The polylines
are color-coded using a continuous transfer function
that maps the simulation parameter of the star’s mass
to the hue of the color. Increasing ratio between the
stars’ masses leads to changing the color towards yel-
low. We can observe a clear structure in the 3D si-
milarity plot. Figure 10 (a) confirms the finding from
Stage 2 that we have three simulation phases. When
selecting a point in the plot, the field of the respective
time step of the respective run is displayed in the phy-
sical space visualization. Figures 10 (b-d) show the
physical space visualization of the selections made in
Figure 10 (a). The linked views represent the initial
phase (b), the merging phase (c), and the final phase
(d). Moreover, when looking at the projection, we
can see that beside of the main behavior pattern there
is another repeating pattern, which produces a rotatio-
nal structure in the upper part of the projection. Inves-
tigating this feature using linked views for different
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(a) Projection, by time (b) MDS, one time step

(c) Single run thread (d) Single run thread

Figure 11: (a) Plotting first principal component of pro-
jection over time. (b) 2D similarity plot for one selected
time step with embedded physical space visualizations. (c)
Similarity plot of one selected simulation run after cropping
time interval. (d) Similarity plot of same selected simu-
lation run for the full time series but skipping every other
time step, which leads to down-sampling artifacts.

projection points it becomes clear, that this pattern is
due to the rotation of the stars around their center of
masses during the simulation.

Since we are displaying all simulation runs toget-
her, it is obvious that the visual complexity of the
plot increases with increasing number and duration
of the simulation runs. The similarity plot including
all geometry is meant to give an overview and exhi-
bit the main patterns. Interaction mechanisms such
as selecting, filtering, navigating, and linking to the
physical space support further analysis purposes. Fi-
gure 11 (c) shows the selection of an individual run in
the similarity plot. We observe that the simulation re-
mains for longer time in the initial and the final phase,
while the merging phase is represented by a short time
interval with a rapid change.

Another option we provided was to plot the first
principal component of our projection against the
time dimension, see Figure 11 (a). The red-to-yellow
color map encodes the increasing value of the simula-
tion’s input parameter reflecting the ratio of the stars’
masses. Now, we can easily see that increasing ratio
between the stars’ masses leads to a shift of the lines
to lower positions in the projection. Hence, there is
a straight dependence between initial parameter and
a simulation behavior, which is documented by the
continuous color transition in the plot.

To investigate this phenomenon, we propose to
operate with the projections interactively. We can se-
lect certain parts of the similarity plot and recompute

the projection only considering the selection, i.e., not
selected points do not affect the projection result. Fi-
gure 11 (b) shows a recomputed projection for a se-
lected single time step from the end of simulation.
There is a clear triangular structure shown, where the
yellow points, which are representing stars with big-
gest mass difference (i.e. with the highest ratio), have
been grouped in the right corner, while more reddish
points are located on the opposite edge of the triangle.
In between, there is a color transition visible. To cor-
relate that to physical space, we chose the option of
embedded views, i.e., the physical space visualizati-
ons of selected points are embedded as small icons in
the similarity plot.

Domain Expert Feedback. We discussed the Multi-
VisA tool and its components with the domain expert
who generated the data set. We asked for advantages
and limitations of our approach and to comment on
the effectiveness or usefulness of our approach. The
main findings were:

• To identify simulation features within a whole en-
semble, researchers are using their own scripts
and subroutines, as even advanced applications
such as SPLASH (Price, 2007) do not provide
enough functionality. With our tool a multi-run
simulation analysis becomes easy to visualize and
it allows for a faster data investigation.

• The task of time alignment is one of the most time
consuming for the researchers. From expert’s ex-
perience to perform the alignment on an ensemble
of 250 runs one needs to spend couple of weeks,
while with our tool one can do it by a single click.

• Correct and precise time definition of the analyzed
features leads to increased accuracy of the analy-
sis steps. For example, one can significantly in-
crease the quality of the MDS projection when
narrowing down the time interval. Figure 11 (d)
shows the same similarity plot as in (c), where in
(c) one could use all time steps within the shor-
ter time interval, while in (d) one could only use
every other time step of the full time series.

• The domain expert has been working on this data
set for a long time and knows it very well. Using
our tools he was able to recognize most of the
known data features in one session. Moreover, he
even identified some additional features for furt-
her investigation.

4.2 Climate Simulations

In the second application scenario we investigate an
ensemble simulation using a global climate simula-
tion model over one to three years with different ini-
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(a) Field histogram

(b) Value selection (c) Value’s appearance

(d) Area selection (e) Area’s histogram

Figure 12: (a) Field distribution histogram for sea snow
thickness in global climate simulation. (b) Interactive se-
lection of a field value and linked visualization (c) of its
distribution of appearance. (d) Interactive selection of a
domain area and linked visualization (e) of its field histo-
gram.

tial conditions. The 11 simulation runs have a dura-
tion of 1,460 to 4,380 time steps. The simulations
start at the same initial time, but are based on diffe-
rent initial conditions. The total data size is 23,5 GB
and includes four different scalar fields: sea surface
temperature, sea ice thickness, sea ice concentration,
and sea snow thickness.

Computing of the field distribution histogram for
sea snow thickness does not allow us to identify any
outlier (see Figure 12 (a)). Hence, we consider the
whole field range for further analysis. When a cer-
tain field value is of interest, it can be selected (see
Figure 12 (b)) and the distribution of the frequency of
occurrence of this value over spatial domain is rende-
red (see Figure 12 (c)). Vice versa, we can select a
spatial region of interest and show the histogram only
for that region (see Figures 12 (d, e)). Such interacti-
ons allow to estimate where and which isovalues can
be representatively used in a further analysis.

As it is of interest to analyze the multi-field aspect,
we generate function plots for multiple fields. Since
the simulations are synchronized, we can immedia-
tely aggregate over all runs. Figure 1(a) shows the
function plot for sea ice thickness, Figure 13 (top) the
respective plot for sea snow thickness. In both plots

Figure 13: (top) Function plot for snow thickness aggrega-
ted over all climate simulation runs exhibits annual patterns
of 3 years, which are selected as shown in green. (middle)
Function plots for snow thickness when filtering the trajec-
tories according to selections (a) and (b). (bottom) Function
plots for ice thickness (as in Figure 1) when filtering the tra-
jectories according to selection (a).

(a) (b)

Figure 14: Coordinated views to physical space visualizati-
ons of selections in Figure 13 exhibit that selections corre-
spond to arctic region (a) and antarctic region (b).

we can observe the repeating annual pattern, but the
overall structure of the plots is different. To investi-
gate the plot in Figure 13, we made two selections.
We rendered the selected trajectories in the function
plot, see Figures 13 (middle) and in a coordinated
physical domain visualization, see Figure 14 (a, b).
We observe that the selections exhibit two annual pat-
terns, which correspond to high snow thickness va-
lues for the winter season in the arctic and antarctic
region, respectively. Our tool also allows for brushing
and linking between multiple function plots. Thus, in
Figure 13, the selection for snow thickness (second
from top) is transferred to ice thickness (bottom). We
can clearly observe the correlation between the two
patterns, yet there are visible differences. Another ap-
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Figure 15: (top) Function plot for sea surface temperature
aggregated over all climate simulation runs exhibits annual
patterns of 3 years. (middle) Interactive selection of spatial
region of interest (red) and display of similarly behaving
spatial regions (green) using information from the function
plot. (bottom) Function plot for sea surface temperature
when filtering the trajectories according to selected area.

plication of the information from the function plots is
a search of similarly behaving points. In Figure 15
we select domain points which belong to Hudson Bay,
and using a small threshold for a desired deviation we
find all the points with a similar change of the field
value over the whole simulation time.

We also generate similarity plots for the ensem-
ble, see Figure 1 (bottom right). Annual patterns can
be observed again, but we also see that the runs differ
quite a bit for certain months (to the left), while they
are similar for other months (to the right). It is of inte-
rest to analyze, where in physical space the differen-
ces occur. We use the first principal component of the
MDS projection plotted against time and compute the
plots considering arctic and antarctic regions separa-
tely, see Figure 16. One can observe that both regions
exhibit a seasonal pattern, but in the arctic (a) there
is no activity during the summer season, while in the
antarctic (b) there is activity throughout the year. Mo-
reover, the plot in (b) has higher variance and outliers,
which are candidates for further investigations.

Again, we discussed the application of our tool
with the domain expert who generated the data and
had the following findings:

• Visualization of the entire ensemble at once al-
lows for estimating the diversity of the simula-
tions’ behavior and identifying patterns and out-
liers.

(a) (b)

Figure 16: Plotting principal component of projection (ver-
tical axis) over time (horizontal axis) for all 11 simulations
when selecting arctic (a) and antarctic (b) region separately.
For isocontour similarity, we considered isovalue 0.25 of
sea snow thickness. We observe no activity during summer
months in (a), but activity throughout the year in (b). Note
that the metric for the distance computation returns absolute
values such that both plots are oriented the same way.

• A strong advantage is the option to easily estimate
activities of subregions. Usually one would need
to look at some physical domain visualization for
some selected time steps. Our tools leads to incre-
ased accuracy of feature detection.

• Estimating the influence of initial conditions to
the simulation result is usually performed in sen-
sitivity studies. A large number of statistical des-
criptors needs to be used. While it is complicated
to capture the behavioral differences with a sin-
gle value descriptor, our approach captures them
in a multidimensional fashion and allows for inte-
raction and navigation.

5 DISCUSSION AND
CONCLUSION

We presented MultiVisA, a visual analysis approach
for multi-run spatio-temporal data analysis in the con-
text of physical simulations. We identified the needs
of domain scientists to have a visualization tool that
supports early steps of the analysis process. Multi-
VisA uses plots at different aggregation levels to sup-
port the analysis workflow in a top-down manner. We
applied our tool for case studies in climate research
and astrophysics. We were able to perform effective
and efficient analyses and got encouraging feedback
from the domain scientists saying that MultiVisA can
indeed improve their analysis tasks. All the proposed
algorithms were efficiently implemented using paral-
lelization on CPU and GPU where applicable, which
allowed for a smooth user experience during the inte-
ractive sessions using standard PCs or laptops.

The methods described in this paper scale quite
well, where steps early in the pipeline scale even bet-
ter than later ones, as the idea of the pipeline is to
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reduce the amount of data to be analyzed from step
to step, which is important for a successful compara-
tive visualization at high interactivity. Hardware limi-
tations such as data reading speed from hard disk or
GPU memory size are the main bottle necks of our sy-
stem. One of the features of our system is that it works
equally well with data of any type and any spatial con-
figuration. Thus, our general tools can be amended
for specific purposes.
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