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Abstract: Clustering is an important unsupervised machine learning method which has played an important role in 

various fields. Density-based clustering methods are capable of dealing with clusters of different sizes and 

shapes. As suggested by Alex Rodriguez et al. in a paper published in Science in 2014, the 2D decision 

graph of the estimated density value versus the minimum distance from the points with higher density 

values for all the data points can be used to identify the cluster centroids. However, there lack automatic 

methods for the determination of the cluster centroids from the decision graph. In this work, a novel 

statistic-based method is designed to identify the cluster centroids automatically from the decision graph. So 

the number of clusters is also automatically determined. Experiments on several synthetic and real-world 

datasets show the superiority of the proposed method in centroid identification from the datasets with 

various distributions and dimensionalities. Furthermore, it is also shown that the proposed method can be 

effectively applied to image segmentation. 

1 INTRODUCTION 

Clustering is the process of grouping a set of data 

objects into multiple groups or clusters so that 

objects within a cluster have high similarity, but are 

very dissimilar to objects in other clusters. 

Dissimilarities or similarities are assessed based on 

the attribute values describing the objects using 

certain distance measures (Law, Urtasun, and Zemel, 

2017). Clustering is an important technique for 

exploratory data analysis, and has been studied for 

many years. It has been shown to be useful in many 

practical domains such as data classification and 

image processing (Piotr, 2012). 

Clustering is generally considered as a difficult 

problem because the optimal number of clusters 

cannot be easily determined and clusters may have 

different distributions, shapes and sizes (Lu and 

Wan, 2012). It has been shown that clustering is a 

nonconvex, discrete optimization problem. Due to 

the existence of many local minima, there is 

typically no way to find a globally minimal solution 

without trying all possible partitions (Kleinberg, 

2003). Although many heuristic methods have been 

developed, most of them are not generic enough and 

can only be used for particular clustering problems. 

Most clustering algorithms are based on two popular 

techniques known as hierarchical and partitional 

clustering. The partitional clustering algorithms 

include square-error-based clustering methods, 

density-based clustering methods, distribution-based 

clustering methods and so on. 

For hierarchical methods, they can be classified 

as being either agglomerative or divisive, based on 

how the hierarchical decomposition of the given set 

of data objects is formed (Grant and Flynn, 2016; 

Charikar and Chatziafratis, 2017). Hierarchical 

clustering methods don’t need some strict initial 

conditions, but they suffer from the mechanism that 

a previous merge or split cannot be changed during 

the following process. 

For square-error-based clustering methods, such 

as k-means (Wagstaff et al., 2001), k-medoids 

(Kaufman and Rousseeuw, 2009), and affinity 

propagation (Frey and Dueck, 2007; Serdah and 

Ashour, 2016). An objective function, typically the 

sum of the distance to a set of putative cluster 

centers, is optimized until the best cluster center 

candidates are found (Serdah and Ashour, 2016; 

Ward, 1963; Hoppner, 1999; Jain, 2010). However, 

for k-means and k-medoids, because a data point is 

always assigned to the nearest center, they cannot be 

used to detect non-globular clusters (Jain, 2010). For 

affinity propagation method, with an improper initial 

exemplar preference, it may fail to work properly. 

Most square-error-based methods are greedy 
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algorithms that depend on initial conditions and may 

converge to suboptimal solutions. 

Unlike square-error-based clustering, density-

based clustering can detect clusters with arbitrary 

shapes or sizes. The most popular density-based 

clustering methods include DBSCAN (Ester et al., 

1996), mean-shift (Fukunaga et al., 1975), OPTICS 

(Campello et al., 2015), and DENCLUE (Campello 

et al., 2015), etc. A drawback of these methods is 

that the parameter setting is not a straightforward 

task that user has to take care of. An excellent 

density-based clustering method published in 

Science in 2014 is proposed by Alex Rodriguez et 

al. (Rodriguez and Laio, 2014). The method is called 

Clustering by Fast Search and Find of Density Peaks 

(CFSFDP). It is based on the simple idea that a 

cluster centroid has a higher density value than its 

neighbors and is far away from the other objects 

with higher density values. CFSFDP can predict the 

number of clusters by identifying the cluster 

centroids in a 2D decision graph whose axes are the 

density value and the minimum distance from the 

points with higher density values respectively. But 

the cluster cendroids in the decision graph must be 

manually decided. 

To address this issue, we propose a novel 

clustering method called Automatic Density Peak 

Detection (ADPD) in this paper. A new outlier 

detection method is designed to identify the cluster 

centroids automatically from the decision graph 

using a statistical-based nonparametric density 

estimation. This method can identify clusters with 

arbitrary shapes or sizes and can determine the 

number of clusters automatically. 

The rest of the paper is organized as follows. The 

original CFSFDP method  is introduced in Section 2. 

The proposed ADPD algorithm is described in 

Section 3. The experimental results are presented in 

Section 4. And conclusions are drawn in Section 5. 

2 THE CFSFDP METHOD 

The CFSFDP method (Rodriguez and Laio, 2014) 

generates clusters by assigning data points to the 

same cluster as its nearest neighbor with higher 

density after cluster centroids are selected by users. 

A heuristic method named decision graph is 

designed to select these centroids. For each data 

point 𝑖, two important indicators are considered in 

the decision graph: local density 𝑝𝑖 , and the 

minimum distance 𝑑𝑖 from points of higher density 

values. Their definitions are: 

Local Density 𝒑𝒊: The local density  𝑝𝑖 of point 𝑖 
is defined as 

𝑝𝑖 = ∑ 𝜒(𝑟𝑖𝑗 − 𝑟𝑐)𝑗                           (1) 

where 𝜒(𝑥) is a kernel function, 𝑟𝑖𝑗  is the distance 

between point 𝑖  and point 𝑗 , and 𝑟𝑐  is the cutoff 

distance threshold. In the CFSFDP method, 𝑟𝑐  is a 

parameter which needs to be determined manually. 

In our experiments, the Gaussian kernel function is 

used. So the local density 𝑝𝑖  is defined as: 𝑝𝑖 =

∑ 𝑒−𝑟𝑖𝑗
2 2𝑟𝑐

2⁄
𝑗 . 

Minimum Distance 𝒅𝒊: The minimum distance 

𝑑𝑖  of point 𝑖  is measured by computing the 

minimum distance between the point 𝑖 and any other 

points of higher density values: 

𝑑𝑖 = {
min

𝑗
(𝑟𝑖𝑗)  , 𝑖𝑓  ∃𝑗  𝑠𝑡  𝑝𝑗 > 𝑝𝑖

max
𝑗

(𝑟𝑖𝑗)  , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
         (2) 

The value 𝑑𝑖  is much larger than the typical 

distances between nearest neighbours if the 𝑝i  of 

point i is a local or global maximum density value. 

This observation, which is the core of the algorithm, 

is illustrated by an example in Figure 1. Figure 1A 

shows 30 points from two normal distributions. 

Figure 1B is the decision graph which shows the plot 

of 𝑑𝑖  as a function of 𝑝𝑖  for each point. From the 

decision graph, the two points having high local 

density values and large minimum distances can be 

easily identified. The two points are identified as 

cluster centroids, which are shown as filled triangle 

or square in both Figure 1A and Figure 1B. 

 

Figure 1: (A) Points distribution in a 2D space. (B) 

Decision graph for the data in (A). 
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3 IDENTIFYING CENTROIDS 

FROM THE DECISION GRAPH 

AUTOMATICALLY 

As shown in Figure 1B, the cluster cendroids are 

usually the points that have large 𝑑𝑖  values and 

relatively high 𝑝𝑖  values, a simple threshold-based 

method suggested by Alex Rodriguez et al. 

(Rodriguez and Laio, 2014) for selecting the cluster 

centroids is to use the following formula: 

𝛾𝑖 = 𝑝𝑖 × 𝑑𝑖 > 𝑇𝐻𝛾                             (3) 

where the threshold parameter 𝑇𝐻𝛾  has to be 

decided by users. The drawbacks of the method are 

that it does not use the distribution information of 

the points in the decision graph and the parameter  

𝑇𝐻𝛾  can not be easily determined for different 

datasets. 

To deal with the drawbacks of the above method, 

a statistic-based method for selecting the cluster 

centroids is developed based on the following 

observation: the value 𝑑𝑖  is much larger than the 

typical distances between nearest neighbors if the 

point 𝑖 is a point having local or global maximum 

density value. Thus, an important feature for 

identifying a cluster cendroid is that its 𝑑𝑖 value is 

anomalously large. So, in our method, cluster 

cendroids are identified using a specially designed 

outlier detection method which contains mainly 

three steps: firstly, the probability density 𝑝𝑦(𝑝𝑖 , 𝑦) 

in the decision graph at a specific density value 𝑝𝑖 

and an arbitrary distance value 𝑦  is estimated; 

secondly, the expectation value and the variance of 

the distance 𝑦 are computed at the specific 𝑝𝑖 value 

using the probability density 𝑝𝑦(𝑝𝑖 , 𝑦); thirdly, the 

cluster cendroids are identified using the expectation 

value and the variance of the distance 𝑦. 

Two-dimensional Gaussian function is used to 

estimate the probability density at the specific  𝑝𝑖  in 

the decision graph, which is given by: 

𝑝𝑦(𝑝𝑖 , 𝑦) =
∑  

1
2𝜋𝑎𝑏

𝑒
−

1
2

×(((𝑝𝑗−𝑝𝑖)/𝑎)
2

+((𝑑𝑗−𝑦)/𝑏)
2

)
𝑁
𝑗=1 ,𝑗≠𝑖

∑  
1

√2𝜋𝑎
𝑒−

1
2

×(
𝑝𝑧−𝑝𝑖

𝑎
)

2
𝑁
𝑧=1,𝑧≠𝑖

 (4)  

where the 𝑁 is the total number of the data points, 

𝑎 and 𝑏 are the 2D kernel widths. The denominator 

is a normalization factor which is used to ensure that 

∫ 𝑝𝑦(𝑝𝑖 , 𝑦) = 1
+∞

−∞
. 

The selection of the values for the 2D kernel 

widths 𝑎 and 𝑏 are important. It is found that 𝑎 and 

𝑏 can be estimated using the standard deviations of 

𝑝𝑖 and 𝑑𝑖 of all the data points: 

{
𝑎 = 𝛼 × 𝜎𝑝𝑖

        0 < 𝛼 < 1

𝑏 = 𝛽 × 𝜎𝑑𝑖
       0 < 𝛽 < 1

                 (5) 

The selection of the parameters 𝛼 and 𝛽 will be 

discussed in Subsection 4.2. 

Using the probability density defined in (4), the 

expectation value and the variance of the distance 𝑦 

at the specific 𝑝𝑖 can be computed using: 

𝜇𝑦(𝑝𝑖) = ∫ 𝑝𝑦(𝑝𝑖 , 𝑦)𝑦𝑑𝑦
+∞

−∞
                (6) 

𝜎𝑦
2(𝑝𝑖) = ∫ 𝑝𝑦(𝑝𝑖 , 𝑦) (𝑦 − 𝜇𝑦(𝑝𝑖))

2

𝑑𝑦
+∞

−∞
    (7) 

By substituting (4) into (6) and (7), it follows 

that:  

𝜇𝑦(𝑝𝑖) =
∑ 𝑑𝑗×𝑒

−
1
2×(

𝑝𝑗−𝑝𝑖
𝑎 )

2

𝑁
𝑗=1,𝑗≠𝑖

∑ 𝑒
−

1
2×(

𝑝𝑧−𝑝𝑖
𝑎 )

2
𝑁
𝑧=1,𝑧≠𝑖

              (8) 

𝜎𝑦
2(𝑝𝑖) =

∑ [𝑏2+(𝑑𝑗−𝜇𝑦(𝑝𝑖))
2

]×𝑒
−

1
2×(

𝑝𝑗−𝑝𝑖
𝑎 )

2

𝑁
𝑗=1,𝑗≠𝑖

∑ 𝑒
−

1
2×(

𝑝𝑧−𝑝𝑖
𝑎 )

2
𝑁
𝑧=1,𝑧≠𝑖

    (9) 

Using (8) and (9), the expectation value and the 

variance at the specific 𝑝𝑖 can be easily computed 

using the summation instead of the integration in (6) 

and (7). Then, the outliers are identified using the 

following threshold: 

𝑇𝐻𝑑(𝑝𝑖) = 𝜇𝑦(𝑝𝑖) + 3 × 𝜎𝑦(𝑝𝑖)          (10) 

For any point i, if its minimum distance 𝑑𝑖 >
𝑇𝐻𝑑(𝑝𝑖), it is identified as an outlier, and thus is 

used as a cluster cendroid in our experiments. 

The process and result of identifying the cluster 

centroids using the proposed method is shown in 

Figure 2, where the data is from the Figure 1A.   

 

Figure 2: (A) The process of identifying cluster centroids 

in the decision graph. (B) The result of clustering, 

different colors correspond to different clusters. 
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Using the threshold defined in (10), two points 

represented as filled triangle and square are 

identified as the cluster centroids. 

4 EXPERIMENTAL RESULTS 

There are six synthetic datasets and eight real-world 

datasets used in the experiments. Two synthetic 

datasets, called Dataset A and Dataset B generated 

by ourselves, are shown in Figure 3, where different 

colors represent different classes. The other four 

synthetic datasets, including Aggregation, Flame, 

Spiral, and R15, are downloaded from the internet, 

which are shown in Table 1. Eight UCI real-world 

datasets, including Iris, Breast cancer (Wisconsin), 

Glass Identification, Wine Quality-red, Liver 

Disorders, Seeds, Banknote authentication, Ecoli, 

are also shown in Table 1. 
 

 

Figure 3: Dataset A: Three 2D normal distributions with 

the same size (𝑛 = 200, 𝜎 = 1) centered at (0,0) , 

(2.5,4)and (5,0). Dataset B: Four 2D normal distributions 

with different size: 𝑛 = 100 , 𝜎 = 2 , centered at (0,0) ; 

𝑛 = 200 , 𝜎 = 3 , centered at (6,13) ; 𝑛 = 300 , 𝜎 = 4 , 

centered at (12,0) and 𝑛 = 400 , 𝜎 = 2 , centered at 

(16,11). 

4.1 Evaluation Criterion 

Because for all the datasets, ground truth cluster 

labels are available, the Fowlkes-Mallows index 

(FM-index) is used to evaluate the clustering result 

(Fowlkes and Mallows, 1983), which is defined as: 

𝐹𝑀 = √
𝑇𝑃

𝑇𝑃+𝐹𝑃
×

𝑇𝑃

𝑇𝑃+𝐹𝑁
                      (11) 

where TP is the number of true positives, FP is the 

number of false positives, and FN is the number of 

false negatives. A higher value for the FM-index 

indicates a greater similarity between the clusters 

and the ground truth. 

4.2 Parameter Selection 

In the CFSFDP method, the parameter 𝑟𝑐  must be 

determined before computing the density values. It 

can be chosen under the condition that the average 

number of neighbors is around 1% to 2% of the total 

number of the points, as suggested by Alex 

Rodriguez et al (Rodriguez and Laio, 2014). In our 

experiments, it is found that 4% is a better choice. 

So, in our experiments, the parameter 𝑟𝑐  is 

determined with the condition that the average 

number of neighbors is around 4% of the total 

number of the points. 

In our method, the parameters  and  defined in 

(5) have to be determined. To decide the value of , 

we first set =0.5, then different values of  are used 

to compute 𝑇𝐻𝑑  and identify the cluster centroids. 

The clustering results of three datasets including Iris, 

Seeds and Dataset B are shown in Figure 4A when 

different  values are used. It can be seen from 

Figure 4A that the clustering results are not sensitive  

Table 1: Details of datasets in our experiments. 

Dataset Na Db Mc Source 

Aggregation 788 2 7 http://cs.joensuu.fi/sipu/datasets/ 

Flame 240 2 2 http://cs.joensuu.fi/sipu/datasets/ 

R15 600 2 15 http://cs.joensuu.fi/sipu/datasets/ 

Spiral 312 2 3 http://cs.joensuu.fi/sipu/datasets/ 

Iris 150 4 3 http://archive.ics.uci.edu/ml/datasets/ 

Seeds 210 7 3 http://archive.ics.uci.edu/ml/datasets/ 

Ecoli 336 8 8 http://archive.ics.uci.edu/ml/datasets/ 

Wine Quality-red 1599 12 6 http://archive.ics.uci.edu/ml/datasets/ 

Liver Disorders 345 7 2 http://archive.ics.uci.edu/ml/datasets/ 

Glass Identification 214 9 7 http://archive.ics.uci.edu/ml/datasets/ 

Banknote authentication 1372 4 2 http://archive.ics.uci.edu/ml/datasets/ 

Breast cancer (Wisconsin) 699 9 2 http://archive.ics.uci.edu/ml/datasets/  

a The number of the data points 
b The number of features 

c The actual number of the clusters 
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to the selection of the parameter 𝛼 . So, in our 

experiments, the parameter  is set to 0.5. 

To determine the parameter , the parameter  is 

set to 0.5, and different values of  are used in our 

experiments. The clustering results produced with 

different  values are shown in Figure 4B. It is 

found that good clustering results with FM-

index>0.7 can be produced within a relatively wide 

range of the parameter , while =0.5  is a relatively 

good choice. So, the parameter =0.5 is selected in 

our experiments. 

 

Figure 4: The FM-indices of the clustering results 

produced with (A) different α values and (B) different 

β values. 

4.3 Comparison of the Clustering 

Results 

In order to evaluate the statistic-based centroid 

identification method in ADPD algorithm, it is 

compared with the simple threshold-based CFSFDP 

method proposed by Alex Rodriguez et al 

(Rodriguez and Laio, 2014). First, the percentile-

based method is used to select the centroids for 

CFSFDP, the f-th percentile value from the set 

{𝛾𝑖|𝛾𝑖 = 𝑝𝑖 × 𝑑𝑖 , 1 ≤ 𝑖 ≤ 𝑁}  is used to determine 

the threshold 𝑇𝐻𝛾. The three datasets, including Iris, 

Seeds and Dataset B, are also used in the 

experiments. The clustering results under different 𝑓 

values for the three datasets are shown in Figure 5. 

From Figure 5, it can be found that f = 1 is a 

good choice. So the 1st percentile from the set 
{𝛾𝑖|𝛾𝑖 = 𝑝𝑖 × 𝑑𝑖 , 1 ≤ 𝑖 ≤ 𝑁} is used as the threshold 

𝑇𝐻𝛾 for the percentile-based method. 

The comparison of the FM-indices of the 

clustering results for the percentile-based method 

and the proposed ADPD method are shown in Table 

2 for different datasets. As shown in Table 2, 

compared with the percentile-based method, the 

ADPD method has produced better results for 11 

datasets out of the total 14 datasets.  

Our method ADPD only has a worse result for 

the Banknote authentication dataset. From the results 

of the two method, it is found that accurate 

identification for cluster centroids is important. 

Automatic threshold-based methods, such as the 

percentile-based method, cannot always work well 

for different datasets. 

 

Figure 5: The FM-indices of the clustering results 

produced with different f values. 

 

Table 2: The FM-indices and the number of clusters produced by the percentile-based method and our method on 14 

different datasets. 

  Dataset Percentile-based method  ADPD 

FM-index #Clusters  FM-index #Clusters 

Dataset A 0.854 6  0.964 3 
Dataset B 0.777 10  0.996 7 

Aggregation 0.800 8  0.937 6 
Flame 0.865 3  0.994 3 
R15 0.374 6  0.993 15 

Spiral 0.919 4  1 3 
Iris 0.771 2  0.771 2 

Seeds 0.809 3  0.809 3 
Ecoli 0.544 4  0.672 5 

Wine Quality-red 0.380 16  0.508 9 
Liver Disorders 0.523 4  0.689 9 

Glass Identification 0.480 3  0.544 5 
Banknote authentication 0.550 14  0.513 35 

Breast cancer (Wisconsin) 0.402 7  0.719 2 
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To further evaluate the effectiveness of our 

method, it is also compared with the CFSFDP 

method using manual parameter selection, in which 

different 𝑇𝐻𝛾 values are tuned for different datasets. 

A lot of values of the parameter 𝑇𝐻𝛾  are tried for 

each dataset and the best one is used in the 

experiments for the manual CFSFDP method. The 

FM-indices of the clustering results and the number 

of clusters are recorded in Table 3. 

As is shown in Table 3, the method ADPD has 

similar performance as the manual method. The 

proposed ADPD method and the manual CFSFDP 

method has the same results for 8 datasets out of the 

total 14 datasets, noticing that the ADPD method 

uses fixed parameters for all the datasets while the 

manual method use different tuned parameters for 

different datasets. Furthermore, the ADPD method 

has produced the best results for 4 datasets which all 

have complex distribution or high dimensions, while 

the manual CFSFDP method has produced the best 

results for only 2 datasets. For dataset Banknote 

authentication, the ADPD fails to produce a 

satisfying result. To study the special case, the 

decision graph for the Banknote authentication 

dataset is shown in Figure 6 from which it is found 

that it is difficult to identify the centroids from the 

decision graph, which may be why APDP does not 

perform well. 

In addition, from analysis of the results of 

Dataset B, Flame, and Glass Identification, it is 

found that the centroids located at the area of low 

density points or isolated points can not be identified 

by the simple threshold-based methods. So for some 

unbalanced datasets, the threshold-based method 

may produce bad results. 

 

Figure 6: The decision graph for Banknote authentication. 

From both Table 2 and Table 3, it can be seen 

that the proposed ADPD method can produce better 

results compared to the percentile-based CFSFDP 

method, and can produce competitive results 

compared to the manual CFSFDP method which 

needs manual tuning of the parameters. 

4.4 Application on Image Segmentation 

Image segmentation is the decomposition of a gray 

level or color image into homogeneous tiles. It is 

arguably the most important low-level vision task. 

Homogeneity is usually defined as similarity in pixel 

values, so clustering algorithms can be used for 

image segmentation. In our experiments, the 

proposed ADPD method and the percentile-based 

CFSFDP method are used to do automatic image 

segmentation for two color images named City and 

Flower, which have 30000 and 31440 pixels 

respectively. In the experiments, only the RGB 

values of each pixel are used as features for both 

methods. The results of the image segmentation are 

shown in Figure 7. 

Table 3: The FM-indices and the number of clusters produced by the manual method and our method on 14 different 

datasets. 

Dataset Manual method  ADPD 

FM-index #Clusters  FM-index #Clusters 

Dataset A 0.964 3  0.964 3 
Dataset B 0.993 4  0.996 7 

Aggregation 0.937 6  0.937 6 
Flame 1 2  0.994 3 
R15 0.993 15  0.993 15 

Spiral 1 3  1 3 
Iris 0.771 2  0.771 2 

Seeds 0.809 3  0.809 3 
Ecoli 0.649 2  0.672 5 

Wine Quality-red 0.508 3  0.508 9 
Liver Disorders 0.526 3  0.689 9 

Glass Identification 0.537 2  0.544 5 
Banknote authentication 0.693 3  0.513 35 

Breast cancer (Wisconsin) 0.719 2  0.719 2 
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Figure 7: The image segmentation results by the percentile-based method (middle) and our ADPD method (right) for the 

color image Flower and City. 

As shown from the Figure 7, the first column on 

the left are the original images, the middle column 

shows the segmentation produced by the percentile-

based CFSFDP method, and the last column on the 

right shows the segmentation produced by the 

proposed ADPD method. The first row contains the 

results for the Flower image, and the second row 

contains the results for the City image. For the 

Flower image, the percentile-based CFSFDP method 

produces 315 clusters, while the ADPD method 

produces 280 clusters. For the City image, the 

percentile-based CFSFDP method produces 300 

clusters, while the ADPD method produces 280 

clusters. So, the percentile-based CFSFDP method 

produces more clusters than the proposed ADPD 

method for both images. 

From the segmentation results in Figure 7, it can 

be seen that the proposed ADPD method can 

identify good homogenous segmented regions, such 

as sky, clouds, walls, roofs, cars, flowers, stamens, 

etc. The percentile-based CFSFDP method can also 

identify homogenous segmented regions, but it fails 

to identify the clouds, cars, and stamens. So, 

although the percentile-based CFSFDP method 

produces more clusters, it identifies fewer details of 

the images compared to the ADPD method. It can be 

seen that with the proposed automatic centroid 

identification in the ADPD method, good image 

segmentation can be produced with only the RGB 

features. 

5 CONCLUSIONS 

In this paper, a novel clustering method is proposed 

based on a statistical-based automatic centroid 

identification from the decision graph. It is shown 

that the proposed ADPD method can deal with 

datasets of various distributions and dimensionalities, 

and the proposed statistical-based centroid 

identification is better than the simple threshold-

based centroid identification. Besides, the ADPD 

method can also be used for image segmentation 

effectively. In future work, we plan to improve the 

ADPD method to estimate the number of clusters 

more accurately with advanced density estimation. 

ACKNOWLEDGEMENTS 

This work is supported by the National Natural 

Science Foundation of China (Grants No. 61272213) 

and the Fundamental Research Funds for the Central 

Universities (Grants No.lzujbky-2016-k07). 

REFERENCES 

Law, M. T., Urtasun, R., and Zemel, R. S., 2017. Deep 

spectral clustering learning. In International 

Conference on Machine Learning , pp. 1985-1994. 

Lu, Y., and Wan, Y., 2012. Clustering by Sorting Potential 

Values (CSPV): A novel potential-based clustering 

method. Pattern Recognition, 45(9), pp. 3512-3522. 

Piotr, K., 2012. The complete gradient clustering 

algorithm: properties in practical applications. Journal 

of Applied Statistics, 39(6), pp. 1211-1224. 

Kleinberg, J., 2003. An impossibility theorem for 

clustering. Advances in neural information processing 

systems, pp. 463-470. 

Grant, J., and Flynn, P., 2016. Hierarchical Clustering in 

Face Similarity Score Space. arXiv preprint 

arXiv:1605.06052. 

Density-based Clustering using Automatic Density Peak Detection

101



Charikar, M., and Chatziafratis, V., 2017. Approximate 

hierarchical clustering via sparsest cut and spreading 

metrics. In Proceedings of the Twenty-Eighth Annual 

ACM-SIAM Symposium on Discrete Algorithms . 

Society for Industrial and Applied Mathematics, pp. 

841-854. 

Wagstaff, K., Cardie, C., Rogers, S., and Schrödl, S., 2001. 

Constrained k-means clustering with background 

knowledge. In ICML, pp. 577-584. 

Kaufman, L., and Rousseeuw, P. J., 2009. Finding groups 

in data: an introduction to cluster analysis (Vol. 344). 

John Wiley & Sons. 

Frey, B.J. and Dueck, D., 2007. Clustering by passing 

messages between data points. science, 315(5814), pp. 

972-976. 

Serdah, A. M., and Ashour, W. M., 2016. Clustering large-

scale data based on modified affinity propagation 

algorithm. Journal of Artificial Intelligence and Soft 

Computing Research, 6(1), 23-33. 

Ward Jr, J.H., 1963. Hierarchical grouping to optimize an 

objective function.Journal of the American statistical 

association, 58(301), pp. 236-244. 

Höppner, F., 1999. Fuzzy cluster analysis: methods for 

classification, data analysis and image recognition. 

John Wiley & Sons. 

Jain, A.K., 2010. Data clustering: 50 years beyond K-

means. Pattern recognition letters, 31(8), pp. 651-666. 

Ester, M., Kriegel, H. P., Sander, J., and Xu, X, 1996. A 

density-based algorithm for discovering clusters in 

large spatial databases with noise. In Kdd (Vol. 96, No. 

34, pp. 226-231). 

Fukunaga, K. and Hostetler, L., 1975. The estimation of 

the gradient of a density function, with applications in 

pattern recognition. IEEE Transactions on information 

theory, 21(1), pp. 32-40. 

Campello, R. J. G. B., Moulavi, D., Zimek, A., and Sander, 

J. 2015. Hierarchical density estimates for data 

clustering, visualization, and outlier detection. Acm 

Transactions on Knowledge Discovery from 

Data,10(1), 5. 

Rodriguez, A. and Laio, A., 2014. Clustering by fast 

search and find of density peaks. Science, 344(6191), 

pp. 1492-1496. 

Fowlkes, E. B., and Mallows, C. L.,1983. A method for 

comparing two hierarchical clusterings. Journal of the 

American statistical association,78(383), 553-569. 

 

ICPRAM 2018 - 7th International Conference on Pattern Recognition Applications and Methods

102


