
An Integrated Framework to Specify Domain-Specific Modeling
Languages∗

Bahram Zarrin and Hubert Baumeister
DTU Compute, Technical University of Denmark, Kgs Lyngby, 2800, Denmark

Keywords: Domain-Specific Modeling Languages, Formal Approach, Semantics Specification, DSL-Tools, FORMULA.

Abstract: In this paper, we propose an integrated framework that can be used by DSL designers to implement their de-
sired graphical domain-specific languages. This framework relies on Microsoft DSL Tools, a meta-modeling
framework to build graphical domain-specific languages, and an extension of ForSpec, a logic-based specifi-
cation language. The drawback of MS DSL Tools is it does not provide a formal and rigorous approach for
semantics specifications. In this framework, we use Microsoft DSL Tools to define the metamodel and graphi-
cal notations of DSLs, and an extended version of ForSpec as a formal language to define their semantics.
Integrating these technologies under the umbrella of Microsoft Visual Studio IDE allows DSL designers to
utilize a single development environment for developing their desired domain-specific languages.

1 INTRODUCTION

Domain-specific modeling languages (DSMLs) are
specialized languages for a particular application
area, which use the concepts and notations establis-
hed in the field. Therefore, they allow domain ex-
perts, who are usually non-programmers, to directly
employ their domain knowledge about what a system
under development should do. Domain-specific mo-
deling languages (DSMLs) not only increase the pro-
ductivity of the domain experts to specify a problem
domain in a manageable and analyzable way but also
improve the readability and understandability of the
problem specifications as well. Furthermore, they uti-
lize the domain rules as constraints to disallow the
specification of illegal or incorrect models in the pro-
blem domain.

Since the development of DSMLs is expensive in
terms of time and cost, a proper framework can help
to reduce the development time and cost. There are
a number of language tools and frameworks to deve-
lop DSMLs such as EMF, MetaEdit+, MS DSL-tools,
Onion, Rascal, Xtext, SugarJ, and MPS. Most of these
tools and frameworks provide enough support for spe-
cifying the abstract and concrete syntax of DSMLs.
Based on these specifications, they automatically ge-
nerate graphical or textual editors with a set of IDE

∗This research has been partially sponsored by the IR-
MAR project funded by Danish Council for Strategic Rese-
arch.

features, e.g. syntax coloring, synthetic compilation,
for the DSML under the development.

Abstract syntax and concrete syntax do not pro-
vide any information about what the concepts in a
language actually mean. Therefore, defining the se-
mantics of a language is important in order to be clear
about what the language describes and means. If the
language semantics are not defined clearly and preci-
sely, the language will be open to incorrect use and
misinterpretation. Therefore it is essential to capture
the semantics in a way that is precise and useful to
the user of the language. Formal methods provide the
required rigidity and precision for semantic specifica-
tions (Gargantini et al., 2009). They provide an unam-
biguous and precise specification of the language and
aid reasoning about the properties of the language by
utilizing the tools of mathematical logic. In addition,
formal specifications can facilitate an automated ge-
neration of language editors, interpreters, compilers,
debuggers and other related tools. Although most of
the aforementioned tools provide generative approa-
ches, e.g., model-to-model and model-to-text trans-
formation, to specify the semantics of DSMLs, they
do not provide a rigorous or formal approach for se-
mantics specifications.

In this paper, we propose an integrated framework
to formally specify the syntax and the semantics of
DSMLs. We combine MS DSL-Tools and an exten-
ded version of ForSpec (Simko et al., 2013), a logic-
based specification language which is an extension of

Zarrin, B. and Baumeister, H.
An Integrated Framework to Specify Domain-Specific Modeling Languages.
DOI: 10.5220/0006555800830094
In Proceedings of the 6th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2018), pages 83-94
ISBN: 978-989-758-283-7
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

83

FORMULA (Jackson and Sztipanovits, 2009) deve-
loped at Microsoft Research, under the Visual Stu-
dio umbrella. This work is motivated by the lack of
supporting a formal approach by DSL Tools for spe-
cifying the semantics of the DSML proposed in an
experience paper (Zarrin and Baumeister, 2014).

Our work in this paper is inspired by the appro-
ach presented at (Lindecker et al., 2015). The aut-
hors utilize FORMULA for specifying the semantics
of DSMLs, and they provide a transformation tool
to convert metamodels and models specified within
Generic Modeling Environment (GME) (Lédeczi et
al., 2001) to FORMULA for analyzing the seman-
tics of the models. The drawback of their appro-
ach is switching between different programming tools
and development environments. In this paper, we
combine the aforementioned technologies under the
umbrella of Microsoft Visual Studio IDE to facili-
tate the development of DSMLs within a single en-
vironment. Furthermore, we employ our extension
of ForSpec instead of FORMULA that offers better
support for semantic specifications. We also provide
some language tools, as Visual Studio’s extensions
for ForSpec, such as code editor, command window,
and LATEXgenerator for pretty-printing specifications,
which has been used to generate the specifications
presented in this paper.

The remainder of this paper is organized as fol-
lows: in Sec. 2, we give a brief introduction to
domain-specific modeling languages, we also discuss
some of the approaches and existing formal langua-
ges for specifying the semantics of domain-specific
languages. Afterwards, in Sec. 3 and Sec. 4, we in-
troduce FORMULA and ForSpec. In Sec. 5, we pre-
sent our extension of ForSpec. Finally in Sec. 6, we
propose our integrated framework to design domain-
specific modeling languages, illustrated via an exam-
ple. We evaluate and conclude the paper in Sec. 7.

2 DOMAIN-SPECIFIC
MODELING LANGUAGES

Modeling languages, regardless of their general or
domain-specific nature, are formally defined (Clark et
al., 2001) as a five-tuple: L = 〈A,C,S,MC,MS〉 where
• A is the abstract syntax of the language.
• C is the concrete syntax of the language.
• S is the semantic domain of the language.
• MC is the mapping from concrete syntax to the

abstract syntax.
• MS is the mapping from abstract syntax to the se-

mantic domain.

The abstract syntax (A) defines the language con-
cepts, their relationships, and well-formlessness rules
that state how the concepts may be legally combined.
It is important to highlight that the abstract syntax of
a language is independent of the concrete syntax (C)
of the language. The syntax only defines the form
and structure of concepts in a language without dea-
ling with their presentation or meaning. The concrete
syntax (C) defines the notations that are used for re-
presenting programs or models. There are two main
types of concrete syntax; textual syntax and graphical
syntax. A textual syntax presents a model or program
in a structured textual form which typically consists of
a mixture of declarations and expressions. A signifi-
cant advantage to them is their ability to capture com-
plex expressions. A graphical syntax presents a mo-
del or program as a diagram consisting of a number
of graphical icons and arrows that represent the mo-
del elements and their relationships. The main benefit
of these is their ability of expressing a large amount
of details in an understandable and intuitive form.

The syntactic mapping, MC : C → A, provides a
realization of the abstract syntax, by mapping the ele-
ments of the concrete syntax to corresponding ele-
ments of the abstract syntax. The semantics of a lan-
guage are defined by choosing a semantic domain S
and defining a semantic mapping MS : A→ S which
relates the concepts and terms of its abstract syntax to
corresponding elements of the semantic domain.

In contrast to traditional programming languages,
modeling languages are specified with the aid of me-
tamodels, which describe graph structures, therefore
instead of static semantics, they have structural se-
mantics (Chen et al., 2005). Similar to static seman-
tics, they define the well-formedness rules of the mo-
deling language, which categorize the model instan-
ces into well-formed or ill-formed models. Their be-
havioral semantics declares the dynamic behavior of
modeling languages as a mapping of the language’s
instances into a semantic domain that is rich enough
for capturing essential aspects of the execution beha-
vior of the modeling language (Chen et al., 2008).
The semantic domain and the semantic mapping can
be defined by different approaches. We will discuss
some of them in detail in the following section.

2.1 Formal Approaches for Semantics
Specifications of Modeling
Languages

A number of formal approaches have been proposed
for specifying the semantics of modeling languages.
They can be classified into rewriting, weaving, and
translational approaches.

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

84

In the rewriting approaches (Karsai et al., 2003;
Agrawal et al., 2004; Balasubramanian et al., 2007;
Wachsmuth, 2008), the behavior of a modeling lan-
guage is specified by a set of rewriting rules, which
define a mapping from the left-hand side of the rule
to its right-hand side. Matching a specification phrase
with the left-hand side of a rule triggers substituting
it with the right-hand side of the rule. Substituting
ends when there are no more applicable rules. The
advantage of this approach is that the behavioral spe-
cification is directly defined in terms of the metamo-
del. This approach is more suitable for modeling lan-
guages where their behavior can be specified in the
operational semantic style.

In the weaving approaches (Montages, 2007;
Scheidgen and Fischer, 2007; Gargantini et al., 2009;
Ducasse et al., 2009; Mayerhofer et al., 2013), in-
spired from the UML action semantics (Semantics,
2001), the behavioral semantics of a modeling lan-
guage are specified directly in the metamodel of the
underlying language by attaching operations to the
meta-classes and employing a meta-language, e.g.
xOCL (Montages, 2007), QVT (QVT, 2008), for the
behavioral specification of these operations. These
meta-languages are usually a set of primitive actions,
e.g. assignment, declaration, conditions, loops, and
object manipulations, to specify the behavior of the
language. The advantage of this approach is that syn-
tactical and semantical specifications of the language
are encapsulated. Its main drawback is that some of
these meta-languages are simplified versions of tradi-
tional programming languages. Therefore the seman-
tic specifications written with these languages have
the same complexity as the specification written in
a conventional programming language (Gargantini et
al., 2009).

In the translational approaches (Chen et al., 2005;
Di Ruscio et al., 2006; Romero et al., 2007; Gar-
gantini et al., 2009; Sadilek and Wachsmuth, 2009;
Simko et al., 2012; Simko, 2014), the semantics of a
modeling language are specified as a mapping from
the metamodel of the underlying language to a meta-
model of another language which already has a wel-
lknown semantics, e.g. abstract state machines (Gu-
revich, 1995). The benefit of this approach is that the
available tools of the target language can be used for
performing formal analysis. Its disadvantage is that
the DSL designer should have knowledge of the tar-
get language in order to specify and understand the
semantics of the underlying language.

The approach utilized in this paper is the continu-
ation of (Balasubramanian and Jackson, 2009; Simko
et al., 2012; Simko, 2014), in which the metamo-
del of the underlying modeling language is translated

into a formal specification language, e.g. FORMULA
and ForSpec, and its behavioral semantics are speci-
fied using the constructs of the specification language.
Therefore, in the following, we describe these speci-
fication languages in more details.

3 FORMULA

FORMULA (Jackson et al., 2010) is a specifica-
tion language based on Constraint Logic Program-
ming (Jaffar and Lassez, 1987; Frühwirth et al., 1992)
which is the combination of the declarativity of logic
programming and the efficiency of constraint solving.

Each program in FORMULA consists of several
constructs called “module”s. Different kinds of mo-
dules are defined in this language, of which the most
important ones are “domain”, “model”, and “trans-
form”. The domain module is a blueprint for a set
of models which are composed of type definitions,
data constructors, rules, and queries. The other mo-
dule called “model” is a model of a domain that con-
sists of a set of facts that are defined through the
data constructors of the domain. Accordingly, given
a model and its related domain, FORMULA is able
to deduce a set of final facts which provide the mini-
mum fixed-point solution for the initial specifications
in the model. FORMULA leveraging Microsoft’s Z3
(e.g. an SMT solver), therefore, for any given partial
model i.e. a model with some underspecified facts
and a set of constraints, it can search for a solution
i.e. a completion of the model, where all the con-
straints are satisfied. If such a solution is not feasible,
it returns “unsatisfiable” which indicates that the ex-
pected solution does not exist. FORMULA benefits
from some important features; for example, bounded
model checking is supported, model finding tools are
provided, and finally FORMULA provides metamo-
dels and straightforward representation of models. It
has been used in several research works such as (Jack-
son and Sztipanovits, 2009; Jackson et al., 2009) to
specify the structural semantics of DSMLs. In addi-
tion, some core components of Windows 8.0, e.g. the
USB 3.0 stack, were built using DSLs specified with
this language (Jackson, 2014). In the following we
explain the notations of FORMULA, with some ex-
amples, that are used in this paper. A more detailed
description of this language can be found in (Jackson
et al., 2011; Jackson et al., 2010).

The “DirectedGraph” domain presented in the fol-
lowing example formalizes the metamodel of a sim-
ple directed graph language, and represents a model
of this domain. Two data types called “Node” and
“Edge” are used to specify the elements of the graph,

An Integrated Framework to Specify Domain-Specific Modeling Languages

85

and also a union type called “Element” is used to refer
to these elements.

domain DirectedGraph {
Node ::= new (label : String).
Edge ::= new (src : Node, dst : Node).
Element ::= Node + Edge.

conforms no { n.label | n : Node , m :
Node , n.label = m.label , m != n }. }
model simple graph of DirectedGraph {
node1 is Node ("a").
node2 is Node ("b").
edge1 is Edge (node1 , node2).}
A query called “conforms” defined at the end of

the domain definition guarantees the uniqueness of
the node’s labels in a graph. Queries are Boolean ex-
pressions that use the same constraint logic expressi-
ons as rules. Queries can also be defined as conjuncti-
ons, disjunctions, and negations of other queries. The
“conforms” keyword denotes a special query that is
used to distinguish between the well-formed models
and ill-formed models of the domain.

Domain composition is supported by the “ex-
tends” and “includes” keywords. Both denote the in-
heritance of all types (data constructors and rules).
While “A extends B” ensures that all the well-formed
models of A are well-formed models of B, “A inclu-
des B” may contain well-formed models in A, which
are ill-formed models of B. The domains represented
in the following example formalize the metamodels of
a directed acyclic graph and a tree languages. These
domains illustrate how domains can be extended and,
particularly, how queries can be used in domains to
specify the structural semantics of these simple lan-
guages.

domain DAG extends DirectedGraph {
Path ::= (Node , Node).
Path (u , w) :- Edge (u , w) ; Edge (u
, v) , Path (v , w).
conforms no Path (u , u). }
domain Tree extends DAG {
conforms no { w | Edge (u , w) , Edge (v
, w) , u != v }. }

FORMULA supports relational constraints, such
as equality of ground terms, and arithmetic con-
straints over real and integer data types. A special
data type called Data in FORMULA refers to all the
data types defined in the domain. The special sym-
bol “ ” denotes an anonymous variable that cannot be
referenced anywhere else.

FORMULA also supports model transformation
using transform modules. This module consists of ru-
les for deriving initial facts in an output model from

initial and derived facts in an input model as well as
input parameters. The rules are the same as they are in
domains, except that the left-hand side contains facts
in the output model and the right-hand side contains
facts from the input and output models. The trans-
form modules can also contain data constructors and
type declarations for transform-local derived facts and
union types. The following specifications transforms
a given graph to a complete graph by adding all the
possible edges between the given graph’s nodes.

transform Complete (GraphIn :: DAG)

returns (GraphOut :: DAG) {
GraphOut.Node (x) :- GraphIn.Node (x).
GraphOut.Edge (x , y) :- GraphIn.Node (x

) , GraphIn.Node (y) , x != y. }
Name-spaces are used for handling multiple defi-

nitions with the same name in different ancestor dom-
ains. For example, domain “GraphIn :: DAG” uses
the name GraphIn for referring to elements of DAG.
We can refer to the elements of GraphIn by inserting
a dotted qualification “GraphIn.” in front of the type
identifiers defined in the domain.

4 ForSpec LANGUAGE

ForSpec is an extended version of FORMULA, pro-
posed by Gabor Simko (Simko, 2014) to support
the structural and behavioral semantics specificati-
ons of modeling languages for cyber-physical sys-
tems. ForSpec extends FORMULA with goal-driven
and functional terms, semantic functions and seman-
tic equations to provide support for operational, de-
notational and translational style specifications. For-
Spec also has been used to specify the denotational
semantics of a bond graph language, which is a phy-
sical modeling language (Simko et al., 2012), and to
specify the structural and behavioral semantics of a
cyber-physical system modeling language (Simko et
al., 2013). In the following, we briefly introduce these
extensions. For a more detailed description of the lan-
guage see (Simko, 2014).

4.1 Functional Terms

Functions are very important in order to define com-
putations within any system. Despite this, a set of
function that mostly define the type of the relati-
ons between the data types (e.g. one-to-one, one-to-
many, and etc.) defined within a domain, FORMULA
does not provide means to specify a function, e.g. a
function to sum up two numbers, as we know it in

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

86

other programming languages. The following speci-
fication is the conventional way to define a function
called Add. In this example, two data types “Add” and
“Add triger” are defined. The first data type specifies
the input parameters and the output parameter of the
function as a three-tuple. The second data type speci-
fies only the input arguments of the function. In addi-
tion, a rule is defined to specify the computation. This
rule has a predicate to check if the function should be
computed. These specifications will be more compli-
cated if a function needs to use another function to do
a part of its computation.

domain Equation {
Add ::= (Integer, Integer, Integer).
Add trigger ::= (Integer, Integer).
Add (x, y, z) :- z = x + y, Add trigger (x,
y). }

ForSpec addresses this deficiency by introducing
functional terms. The function mentioned above can
be defined in ForSpec as follows:

domain Equation {
Add ::= [Integer, Integer ⇒ Integer].

Add (x, y) ⇒ (z) :- z = x + y. }
Given these specifications, ForSpec automatically

generates the required data types and adds the requi-
red predicates to trigger the related rules. Therefore,
the above specification will be converted into the fol-
lowing specifications by the ForSpec compiler (# is
a reserved character in ForSpec which is used by its
compiler).

Add ::= (Integer, Integer, Integer).
#Add ::= (Integer, Integer).
Add (x, y, z) :- z = x + y, #Add (x, y).

4.2 Semantic Functions

ForSpec introduces syntactic elements for defining
semantic functions. The following example specifies
a simple equation language and provides its denotati-
onal semantics by using a semantic function and a set
of semantic equations.

Exp ::= Plus + Mult + Minus + Real.
Mult ::= new (lhs : Exp , rhs : Exp).
Plus ::= new (lhs : Exp , rhs : Exp).
Minus ::= new (lhs : Exp , rhs : Exp).
E : Exp → Real.

E JPlusK = addition where addition =
E JPlus.lhsK + E JPlus.rhsK.

E JMultK = multiplication where
multiplication = E JMult.lhsK * E JMult.rhsK.

E JMinusK = subtraction where subtraction =
E JMinus.lhsK - E JMinus.rhsK.

The semantic function first declares a data type
of the same name. Secondly, it creates rules for ex-
tracting information from the semantic functions. For
example, the semantic function “E : Exp − > Real”
declares a data type equivalent to “E ::= [Exp =>
Real]”, and the generated rules extract every possible
instant of the Exp over which the function ranges in a
concrete model (Simko, 2014).

4.3 Union Type Extension

Union types are supported well in ForSpec. This al-
lows extending the existing union type declarations
with additional data types. This is essential in the
modular development of modeling languages, since
it facilitates the language composition (Jackson and
Sztipanovits, 2009). The following example specifies
a simple language for defining arithmetic equations:

domain Equations {
Exp ::= Real + Operation.
Operation ::= BinOp + UniOp.
UniOp ::= Neg.
Neg ::= new (any Exp).
BinOp ::= Plus + Minus + Mult.
Plus ::= new (any Exp, any Exp).
Minus ::= new (any Exp, any Exp).

Mult ::= new (any Exp, any Exp). }
If we need to reuse this language and extend it to

support relational expressions, the extended domain
can be specified in ForSpec as follows:

domain AdvancedEquations extends Equations {
Exp += Boolean.
BinOp + = LT + LET + GT + GET + EQ + NotEQ.
LT ::= new (any Exp, any Exp).
LET ::= new (any Exp, any Exp).
GT ::= new (any Exp, any Exp).
GET ::= new (any Exp, any Exp).
EQ ::= new (any Exp, any Exp).
NotEQ ::= new (any Exp, any Exp).
UniOp += Not.

Not ::= new (any Exp). }
As presented in this example, we can extend Exp,

BinOp, and UniOp data types in the base domain with
the new data types introduced in the extended domain.
This is a useful feature in ForSpec which can help
avoid code duplication by using union type extension.

An Integrated Framework to Specify Domain-Specific Modeling Languages

87

5 EXTENDING ForSpec

ForSpec provides essential means for the structural
and behavioral specifications of DSMLs. However,
it has some limitations for specifying the semantics
of the DSML proposed in the experience paper (Zar-
rin and Baumeister, 2014). In this section, we address
these limitations and extend ForSpec to support these
deficiencies.

5.1 List Data Type

ForSpec does not support List data types explicitly.
The following example shows how a list can be defi-
ned at the moment in ForSpec. It specifies a domain
which includes a type called Substance and a list cal-
led SubstanceList. The elements of the list are the
type of Substance. A model is defined as an instance
of this domain, and it describes three substances and
one list that includes them.

domain Material {
Substance ::= new (name:String, value:Real).
SubstanceList ::= new (hd : Substance ,
tail : {SubstanceList + Nil}). }
model material of Material {
CH4 is Substance ("CH4", 0.23).
H2 is Substance ("H2", 2.44).
SubstanceList(H2, SubstanceList(CH4, Nil)).}
Although we are able to define a list structure im-

plicitly as above, this will require more effort when
we need to apply operations on the lists, e.g. add
elements, or remove elements. To this end, we ex-
tend ForSpec syntax to support List as a primitive data
type. The following example presents the same spe-
cification as the example given above but using our
explicit list construct.

domain Material {
Substance ::= new (name:String, value:Real).

SubstanceList ::= list < Substance >. }
model material of Material {
CO is Substance ("CO", 0.23).
H2 is Substance ("H2", 2.44).
CH4 is Substance ("CH4", 1.03).
SubstanceList <CO, H2, CH4> }
The extension provides a syntactic sugar to expli-

citly define a list data type in ForSpec, and it trans-
fers the list data type in the first specifications to the
equivalent specification in the second specifications.
Therefore, head and tail of a list can be obtained by
accessing the structural fields of the list, e.g. “hd” and
“tail”. We also extend the built-in functions of For-
Spec with some list operation functions as follows:

• append (list1, list2): this function appends list1
and list2 and returns the result as a list.

• count (list): this function counts the number of
elements in the list.

• isin (element , list): this function indicates whet-
her or not the list contains the given element. It
can also provide information on whether or not
the list contains an item with the value of a par-
ticular field of the item matches with the given
element. The syntax to do this is isin(element,
list[field name]). The following specifications
count the number of SubstanceList that contains
a Substance named “CO” in the model.

NoSubstanceListForCO ::= new (Integer).
NoSubstanceListForCO (n) :-
n = count ({ sl | sl is SubstanceList ,

isin ("CO", sl[name]) }).

5.2 Set Comprehensions

Set comprehensions in ForSpec are defined as {head |
body}, and they are used by built-in functions count
and toList. Count computes the number of elements
in the set and toList stores the items in the set in a list
data structure as presented earlier. We extend the to-
List function to accept the data type of the list as the
arguments. The extended function stores the elements
of the set comprehension in an instance of the given
list, and it uses constant value Nil to represents the end
of the list. For example, the following example spe-
cifies a list of all the substances which have positive
values.

PositiveSubstance ::= new (SubstanceList).
PositiveSubstance (sl) :-
sl = toList (SubstanceList , { s | s is

Substance , s.value > 0 }).

Furthermore, we also extend ForSpec by provi-
ding syntax to iterate the list elements within set com-
prehensions. This extension allows ForSpec to sup-
port some list operations, e.g. filter(), map(), and re-
duce(), which are quite useful in functional program-
ming. The following specifications defines a function
that rescales a SubstanceList. It maps each element of
a given SubstanceList to the rescaled element in the
list, called result. The list iterator is defined as e← sl
where sl is the given list, and e is a variable represen-
ting an element of the list.

RescaleSubstanceList ::= [SubstanceList ,
Integer ⇒ SubstanceList].
RescaleSubstanceList (sl, n) ⇒ (result) :-
result = toList (SubstanceList,
{Substance(e.name, e.value * n) | e← sl}).

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

88

Given the above specifications, the extension au-
tomatically generates a data type called #iterator and
the required rules to iterate the list elements. There-
fore, the following specifications present the ForSpec
translation of the given example:

RescaleSubstanceList ::= [SubstanceList ,
Integer ⇒ SubstanceList].
RescaleSubstanceList (sl , n) ⇒ (result):-
result = toList(SubstanceList,
{Substance(e.name, e.value * n) |
#iterator 0x0 (e ,)}).

#iterator 0x0 ::= new (value : Substance ,
seq : SubstanceList).
#iterator 0x0 (sl.hd , sl.tail) :-
#iterator 0x0 (, sl) , sl != Nil.
#iterator 0x0 (sl.hd , sl.tail) :-
#RescaleSubstanceList (sl ,).

We also provide support for union and intersection
operators for the set comprehensions. The following
example specifies a function that merges two sub-
stance lists.

MergeSubstanceList ::= [SubstanceList ,
SubstanceList ⇒ SubstanceList + {Nil}].
MergeSubstanceList (l1 , l2) ⇒ (l3) :-
l3 = toList (SubstanceList ,
{ Substance (e1.name , e1.value + e2.value
) | e1← l1 , e2← l2 , e1.name = e2.name}
union {e1 | e1← l1 , e1.name 6∈ l2[name]}
union {e2 | e2← l2 , e2.name 6∈ l1[name]}).

5.3 Reduce Function

In functional programming, reduce refers to a
function that operates on a list or any recursive data
structure to collapse or accumulate its elements into a
single element or value by applying the same compu-
tation to each element. In this work, we extend For-
Spec to be able to specify the reduce function.

The following example defines a reduce function
called MergeSubstanceLists to aggregate the substan-
ces of a list of SubstanceList:

SubstanceLists ::= list < SubstanceList >.
MergeSubstanceLists ::= [SubstanceLists >>

MergeSubstanceList >> SubstanceList].

The following example defines a reduce function
called Sum to calculate the sum of the numbers in the
given list:

NumberList ::= list <Real>.
Add ::= [Real , Real ⇒ Real].
Add (x , y) ⇒ (z) :- z = x + y.
Sum ::= [NumberList >> Add >> Real].

5.4 Typed Union Type

FORMULA and ForSpec allow us to freely combine
different types e.g. built-in types, composite types,
and union types. The current limitation is that they
do not provide any mechanism to define constraints
on the components of a union type. This is essen-
tial when a union type should be extended from other
domain modules by using union type extension, since
any arbitrary types can be added to the components
of the union type. For instance, in the Equations ex-
ample the BinOp union type can be extended in the
extended domain by any type, which may not be a bi-
nary operation anymore. Therefore, we need to spe-
cify that any binary operator should have at least a
left and right fields of type Exp. To support this, we
introduce a new built-in type to ForSpec that allows
defining a type for the union types. This data type can
be considered as the equivalent of interfaces in object
oriented paradigm.

The syntax to define a typed union is the same
as the syntax to define a composite type. The main
difference is using “:;=” instead of “::=”. This helps
us to distinguish between the definition of these two
built-in types. A typed union is a particular union type
which can declare the new keyword and a set of na-
med fields. It enforces a set of type checking rules to
ensure that all of the components of the typed union
match this common declaration. The rules of the type
checking is as follows:

• If the typed union has the new keyword in its defi-
nition, then all of its components should have the
new keyword in their declaration.

• All the fields defined in the typed union definition
should have a unique name.

• For each field specified in the typed union declara-
tion, all the components of the typed union should
have the same field with the same type (not neces-
sarily the same order) in their declaration.

Union type extension “+=” can be used to add a
type component to a typed union type. It can be used
both within the same domain that contains the decla-
ration or within other domains modules extending the
domain.

A typed union type cannot be used to generate a
fact either via rules or constructors within a model of
a domain. But its signature can be used as a compo-
site type to match the facts of the type of its compo-
nents in the knowledge base of the ForSpec interpre-
ter. There is a difference between matching a compo-
site type and a typed union type. For the composite
type, the matching is done by comparing the argu-
ments of the fact and matching terms in the sequence,

An Integrated Framework to Specify Domain-Specific Modeling Languages

89

and comparing the type of the fact with the type of
matching term. While in the typed union the argu-
ment matching is done according to the name of the
fields and not their position in the constructor (same
fields should have the same value and the type mat-
ching is done according to the type of component.

The following example utilizes a typed union type
to define an interface for a type of Component. This
type has been extended with a type of Network using a
union type extension operator in another domain cal-
led “Network”. The typed union type is also used to
match the facts of the type of Component to check if
they have ports with duplicated name.

domain Core {
InPort ::= new (id: String, type: String).
OutPort ::= new (id: String, type: String).
Port ::= InPort + OutPort.
PortList ::= list < Port >.
Component :;= new (id: String, ports:
PortList).
...
InvalidComponent ::= (String).
InvalidComponent (id) :-
Component (id , ports),

no { x | x ← ports , y ← ports , x != y ,
x.id = y.id }. }
domain Network extends Core {
Component += Network.
Network ::= new (id : String , ports :
PortList, ...).
... }

6 INTEGRATION WITH
MICROSOFT DSL TOOLS

The Visualization and Modeling Software Develop-
ment Kit (VMSDK) is a meta-modeling framework to
build powerful graphical domain-specific languages
that can be integrated into Microsoft Visual Studio.
The core of Visualization and Modeling Software De-
velopment Kit (VMSDK) is a DSL definition diagram
for specifying both the metamodel and the graphical
notations of a domain-specific language. The defini-
tion diagram is used by the framework to generate a
graphic editor for the VMSDK, so that modelers can
edit and view the whole or parts of the model, seriali-
zation objects which store the models in XML for-
mat, model transformation commands, mechanisms
for generating code or other artifacts from the mo-
del by using text templates, customized Visual Studio
Shell, and APIs to interact with the shell (Microsoft,
2014).

In this paper, we use a simple example to explain

Expression

SubtractMultipleSum

Binary Operator
Constant

Value : Real

Input

Value : Real
Output

DataFlowGraph

Name

Element

Name : String0 - n

1 exp

1 right1 left

Figure 1: Metamodel of a simple data flow language.

the integration of these tools. More complex DSLs,
e.g., domain specific language for modeling waste
management systems, developed within this frame-
work can be found in (Zarrin, 2016).

Figure 1 presents the metamodel of a simple data-
flow language. This language is composed of input,
output, constant, and three binary operators including
sum, multiply, and subtract. By this simple language,
a modeler can specify the computation of a simple
arithmetic expression, e.g. Z = 5 ∗X + 6 ∗Y . In the
following, we briefly introduce MS DSL Tools and
specify the metamodel and concrete syntax of this
language. Afterwards, we explain our approach for
transferring the metamodel and the models of this lan-
guage to ForSpec specification. At the end, we pro-
vide an operational semantics of this language.

6.1 Defining the Proposed DSL

The DSL definition diagram for the proposed DSL in
Visual Studio is illustrated in Figure 2. The diagram
has two swim lanes, one of which is used to show the
domain classes and their relationships (abstract syn-
tax) and the other of which is used to show the dia-
gram notations (concrete syntax). The domain classes
are used to define the model elements and the domain
relationships are used to define the relationships bet-
ween the elements. The appearance of the model ele-
ments in the diagram is defined by using shape classes
and connectors.

Domain classes can be defined as abstract or non-
abstract classes, and they can be inherited from each
other to define the model elements. Model elements
can be linked to each other by using relationships.
These links are binary and they precisely connect two
elements of the model, while each element of the mo-
del can be linked to multiple elements. There are two
different kinds of domain relationships; embedding
relationships and reference relationships.

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

90

Figure 2: DSL definition diagram for a simple data flow language.

As presented in Figure 2, a domain class called
DataFlowGraph is used as the root element of the
diagram representing the language. An embedded
relationship, representing the composite relationship
in the metamodel, is defined from the root element

to an abstract domain class called Element, which is
the base class of all of the model elements. Accor-
ding to the metamodel presented in Figure 1, the ot-
her domain classes are defined and inherited from the
Element class. The left and right relationship of the

An Integrated Framework to Specify Domain-Specific Modeling Languages

91

binary operators and the exp relationship of the out-
put elements are defined as reference relationships,
which provide connectivity between the model ele-
ments. Finally, for all of the non-abstract domain
classes, which should appear as an element in the
DSL diagram, a shape class is defined to describe the
concrete syntax of the element in the model diagram.

6.2 Generating ForSpec Specifications

VMSDK generates code for domain classes, connec-
tors, shapes, diagram editor, model explorer, valida-
tions, and other artifacts based on the DSL definition
file (.dsl). The code generation is done by using a set
of text templates files (.tt) located in a folder, within a
DSL project, called Generated Code.

We use the same method to generate ForSpec
specifications for the metamodel specified within the
DSL definition file and its corresponding models. To
this end, we extend the DSL project template to in-
clude two additional text template files in the Genera-
ted Code folder, for whenever DSL developers create
a new DSL project. These text template files, along
with the other templates located in the folder, rege-
nerate the required code automatically whenever the
DSL definition file is changed. One of these files is
used to generate the ForSpec specification for the me-
tamodel of the DSL. This template directly generates
a ForSpec file (.4sp) which contains a domain module
equivalent to the metamodel. Therefore, the specifi-
cations are available at the design time of the DSL,
and the DSL developer can extend these specificati-
ons with the DSL semantics. The following ForSpec
specification is generated for the metamodel of the
language defined in the DSL definition diagram pre-
sented in Figure 2.

domain SimpleLanguage {
DataFlowGraph::= new (Elements:ElementList).
Element :;= new (name: String).
Element += Output + Expression.
Input ::= new (value:Single, name:String).
Output ::= new (name: String, Expression:
Expression).
Constant::= new (value:Single, name:String).
Expression :;= new (name: String).
Expression += Input + Constant +
BinaryOperator.
BinaryOperator :;= new (name: String, Left:
Expression, Right: Expression).
BinaryOperator += Sum + Multiple + Subtract.
Sum ::= new (name: String, Left:
Expression, Right: Expression).
Multiple ::= new (name: String, Left:
Expression, Right: Expression).

Figure 3: A a model to compute Z = 6∗Y +5∗X.

Subtract ::= new (name: String, Left:
Expression, Right: Expression).

ElementList ::= list < Element >. }
The ForSpec specification is generated according

to the following procedures: For each non-abstract
domain class (e.g. Sum), a data type with the same
name will be generated. The parameters of the data
type include all the domain properties explicitly de-
fined for the domain class and its base classes (e.g.
name are defined in the Element domain class). In ad-
dition, for each domain relationship with which their
source is associated, the domain class or its base clas-
ses (e.g. the Left and Right domain relationship as-
sociated to the BinaryOperator), a parameter will be
generated. The type of parameter is defined accor-
ding to the multiplicity of the relationship. For one
to one relationships, the type is the same as the type
of the domain class associated with the target of the
relationship. For the one to many relationships, the
type is defined as a list of the type of the domain class
targeting the relationship. For each abstract class (e.g.
Element), depending on its domain properties, a union
type or a typed union type is generated. The first is
generated if the class does not have any domain pro-
perty. The later is generated if the class or its base
class has one or more domain properties. In both ca-
ses, the classes inherited from the abstract class are
added to the union definition.

The other template is used for generating ForSpec
specifications for the model instances of the DSL. To
this end, it generates, e.g. C#, VB, code for an adapter
that can transfer the model instances of the DSL to
ForSpec. This adapter can be used by applications or
within another text template file in Visual Studio IDE.
Figure 3 illustrates a concrete model of the language,
designed with the diagram editor of the language, to
model Z = 6∗Y +5∗X. The following specifications
are produced for this model by the adapter generated
for the language.

model simple exp of SimpleLanguage {
Constant1 is Constant (5, "Constant1").
Constant2 is Constant (6, "Constant2").

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

92

X is Input (5, "X").
Y is Input (2, "Y").
Multiple1 is Multiple ("Multiple1",
Constant1 , X).
Multiple2 is Multiple ("Multiple2",
Constant2 , Y).
Sum1 is Sum ("Sum1", Multiple2, Multiple1).
Z is Output ("Z", Sum1).
DataFlowGraph (ElementList<Constant1,
Constant2, Y, Multiple1, X, Sum1, Multiple2,
Z>). }

To make this language executable, we extend the
domain with the semantic specifications. For this ex-
ample, we first define a semantic domain for the lan-
guage, which has a data type and the required functi-
ons over this data type. Then, we use denotational se-
mantics to specify the mapping from the syntactic ele-
ments to the semantic elements. Although we could
use integer as the semantic domain here, we choose
to use a simple semantic domain to show the general
approach.

domain ExecutableSimpleLanguage extends
SimpleLanguage {
// Semantic domain :
SD ::= Mult + Add + Sub + Val.
Val ::= new (Integer).
Mult ::=[Val , Val ⇒ Val].
Mult (Val (a) , Val (b)) ⇒ (Val (c
)) :- c = a * b.
Add ::=[Val , Val ⇒ Val].
Add (Val (a) , Val (b)) ⇒ (Val (c)
) :- c = a + b.
Sub ::= [Val , Val ⇒ Val].
Sub (Val (a) , Val (b)) ⇒ (Val (c)
) :- c = a - b.
// Semantics functions :

G : DataFlowGraph → SD.

E : Element → SD.
G JDataFlowGraphK = value where

e ← DataFlowGraph.Elements , e : Output
, E JeK = value.

E JConstantK = Val (Constant.value).

E JInputK = Val (Input.value).

E JOutputK = value where

E JOutput.ExpressionK = value.

E JSumK = value where

E JSum.LeftK = l , E JSum.RightK = r , Add (
l , r) ⇒ (value).

E JSubtractK = value where

E JSubtract.LeftK = l , E JSubtract.RightK =
r , Sub (l , r) ⇒ (value).

E JMultipleK = value where

E JMultiple.LeftK = l , E JMultiple.RightK =
r , Mult (l , r) ⇒ (value). }

According to the given semantics and the metamo-
del, we can execute the given model in ForSpec. The
result of the expression specified in the model is com-
puted by the semantic function G which is evaluated
to 37 for the expression.

7 CONCLUSIONS

The integrated framework presented in this paper can
be used to specify graphical domain-specific langua-
ges. In this framework, DSL Tools are used to for-
mally define the concrete syntax and ForSpec is used
to specify the semantics of domain-specific langua-
ges. We extended ForSpec with list datatypes, union
operators, iterators, map and reduce functions, and
typed union datatype which helps write more com-
plicated specifications within the language. We com-
bined ForSpec with Microsoft DSL Tools under the
umbrella of Microsoft Visual Studio IDE. This allows
DSL designers to utilize a single development envi-
ronment to develop their desired domain-specific lan-
guages. Since we developed this framework based on
existing technologies and languages, the users do not
need to learn new programming languages or tools to
develop DSLs.

One of the drawbacks of function calls in ForSpec
is that it executes functions through a set of rules,
which means that for each call it adds the facts ge-
nerated during the execution to the knowledge-base.
These facts will stay there forever, even after the
function returns. This makes the execution slower and
slower after each function call, due to increasing the
number of facts in the knowledge-base. This could be
addressed by proposing a mechanism which allows to
remove facts from the ForSpec’s knowledge-base.

The integrated framework presented in this paper
is not suitable for developing none graphical DSLs.
Combining this framework with other language deve-
lopment tools for developing textual languages such
as Microsoft Irony is our future work.

REFERENCES

Agrawal, A., Simon, G., and Karsai, G. (2004). Semantic
translation of simulink/stateflow models to hybrid au-
tomata using graph transformations. Electronic Notes
in Theoretical Computer Science.

Balasubramanian, D. and Jackson, E. K. (2009). Lost in
translation: Forgetful semantic anchoring. In Pro-
ceedings of the 2009 IEEE/ACM International Confe-

An Integrated Framework to Specify Domain-Specific Modeling Languages

93

rence on Automated Software Engineering, ASE ’09.
IEEE Computer Society.

Balasubramanian, D., Narayanan, A., van Buskirk, C., and
Karsai, G. (2007). The graph rewriting and transfor-
mation language: Great. Electronic Communications
of the EASST.

Chen, K., Sztipanovits, J., Abdelwalhed, S., and Jackson, E.
(2005). Semantic anchoring with model transformati-
ons. In Model Driven Architecture–Foundations and
Applications. Springer.

Chen, K., Sztipanovits, J., and Neema, S. (2008). Compo-
sitional specification of behavioral semantics. In De-
sign, Automation, and Test in Europe, pages 253–265.
Springer Netherlands.

Clark, T., Evans, A., Kent, S., and Sammut, P. (2001). The
MMF Approach to Engineering Object-Oriented De-
sign Languages. In Proceedings of the First Works-
hop on Language Descriptions, Tools and Applicati-
ons, LDTA 2001. Middlesex University.

Di Ruscio, D., Jouault, F., Kurtev, I., Bézivin, J., and Pie-
rantonio, A. (2006). Extending amma for supporting
dynamic semantics specifications of dsls. Technical
report, LINA Research Report.

Ducasse, S., Girba, T., Kuhn, A., and Renggli, L.
(2009). Meta-environment and executable meta-lang-
uage using smalltalk: an experience report. Software
& Systems Modeling, 8(1):5–19.

Frühwirth, T., Herold, A., Küchenhoff, V., Le Provost, T.,
Lim, P., Monfroy, E., and Wallace, M. (1992). Con-
straint logic programming. Springer.

Gargantini, A., Riccobene, E., and Scandurra, P. (2009). A
semantic framework for metamodel-based languages.
Automated Software Engineering, 16(3-4):415–454.

Gurevich, Y. (1995). Evolving algebras 1993: Lipari guide.
Specification and validation methods, pages 9–36.

Jackson, E., Porter, J., and Sztipanovits, J. (2009). Seman-
tics of domain specific modeling languages. Model-
Based Design of Heterogeneous Embedded Systems.

Jackson, E. and Sztipanovits, J. (2009). Formalizing the
structural semantics of domain-specific modeling lan-
guages. Software and Systems Modeling, 8(4).

Jackson, E. K. (2014). A module system for domain-
specific languages. Theory and Practice of Logic Pro-
gramming, 14(4-5).

Jackson, E. K., Bjørner, N., and Schulte, W. (2011). Ca-
nonical regular types. ICLP (Technical Communicati-
ons).

Jackson, E. K., Kang, E., Dahlweid, M., Seifert, D., and
Santen, T. (2010). Components, platforms and possi-
bilities: towards generic automation for mda. In Pro-
ceedings of the tenth ACM international conference
on Embedded software. ACM.

Jaffar, J. and Lassez, J.-L. (1987). Constraint logic pro-
gramming. In Proceedings of the 14th ACM SIGACT-
SIGPLAN Symposium on Principles of Programming
Languages, POPL ’87, pages 111–119. ACM.

Karsai, G., Agrawal, A., Shi, F., and Sprinkle, J. (2003).
On the use of graph transformation in the formal spe-
cification of model interpreters. Journal of Universal
Computer Science, 9(11).

Lédeczi, Á., Bakay, A., Maroti, M., Volgyesi, P., Nord-
strom, G., Sprinkle, J., and Karsai, G. (2001). Compo-
sing domain-specific design environments. Computer,
34(11):44–51.

Lindecker, D., Simko, G., Levendovszky, T., Madari, I., and
Sztipanovits, J. (2015). Validating transformations for
semantic anchoring. Journal of Object Technology.

Mayerhofer, T., Langer, P., Wimmer, M., and Kappel, G.
(2013). xMOF: Executable DSMLs Based on fUML.
Springer International Publishing.

Microsoft (2014). Visualization and Modeling SDK
— Domain-Specific Languages. http://msdn.
microsoft.com/en-us/library/bb126259.aspx.

Montages (2007). xocl: executable ocl.
QVT (2008). Omg. mof 2.0 query/view/transformation

(qvt). OMG Document - formal/08-04-03.
Romero, J. R., Rivera, J. E., Durán, F., and Vallecillo, A.

(2007). Formal and tool support for model driven en-
gineering with maude. Journal of Object Technology.

Sadilek, D. and Wachsmuth, G. (2009). Using grammar-
ware languages to define operational semantics of mo-
delled languages. In International Conference on Ob-
jects, Components, Models and Patterns, pages 348–
356. Springer.

Scheidgen, M. and Fischer, J. (2007). Human comprehensi-
ble and machine processable specifications of opera-
tional semantics. In Proceedings of the 3rd European
Conference on Model Driven Architecture Foundati-
ons and Applications. Springer-Verlag.

Semantics, A. (2001). The action semantics consortium for
the uml. OMG Document - formal/2001-03-01.

Simko, G. (2014). Formal Semantic Specification of
Domain-Specific Modeling Languages for Cyber-
Physical Systems. PhD thesis, Vanderbilt University.

Simko, G., Levendovszky, T., Neema, S., Jackson, E.,
Bapty, T., Porter, J., and Sztipanovits, J. (2012).
Foundation for model integration: Semantic back-
plane. In ASME 2012 International Design Engineer-
ing Technical Conferences and Computers and Infor-
mation in Engineering Conference. American Society
of Mechanical Engineers.

Simko, G., Lindecker, D., Levendovszky, T., Neema,
S., and Sztipanovits, J. (2013). Specification of
cyber-physical components with formal semantics–
integration and composition. In Model-Driven Engi-
neering Languages and Systems. Springer.

Wachsmuth, G. (2008). Modelling the operational seman-
tics of domain-specific modelling languages. In Ge-
nerative and Transformational Techniques in Software
Engineering II. Springer.

Zarrin, B. (2016). Domain Specific Language for Modeling
Waste Management Systems. PhD thesis, Technical
University of Denmark.

Zarrin, B. and Baumeister, H. (2014). Design of a domain-
specific language for material flow analysis using mi-
crosoft dsl tools: An experience paper. In Proceedings
of the 14th Workshop on Domain-Specific Modeling,
DSM ’14, pages 23–28. ACM.

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

94

