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Abstract: In this article, it is studied how well inertial sensor-based human activity recognition models work when

training and testing data sets are collected in different environments. Comparison is done using publicly open

human activity data sets. This article has four objectives. Firstly, survey about publicly available data sets

is presented. Secondly, one previously not shared human activity data set used in our earlier work is opened

for public use. Thirdly, the genaralizability of the recognition models trained using publicly open data sets

are experimented by testing them with data from another publicly open data set to get knowledge to how

models work when they are used in different environment, with different study subjects and hardware. Finally,

the challenges encountered using publicly open data sets are discussed. The results show that data gathering

protocol can have a statistically significant effect to the recognition rates. In addition, it was noted that often

publicly open human activity data sets are not as easy to apply as they should be.

1 INTRODUCTION

Human activity recognition using inertial sensors, es-

pecially using accelerometers, has become one of the

most studied area of pattern recognition. One rea-

son for this is that activity recognition can be app-

lied to many different types of application, including

health and fitness monitoring; personalized adverti-

sing; smarthomes that anticipates the user’s needs;

and self-managing system that adapts to user’s acti-

vities (Lockhart et al., 2012).

Often, the models for activity recognition are user-

independent. This is challenging as people are dif-

ferent, and therefore, a user-independent recognition

model that provides accurate recognition results for

one person does not necessary provide as high results

for other person (Albert et al., 2012). In the article the

reason for this was that recognition models were trai-

ned with healthy study subjects and tested with sub-

jects with difficulties to move. Differences between

persons are not the only thing that cause variation to

the recognition results. In fact, it has been shown that

a model that works in one environment may provide

totally different results when used in other environ-

ment. In Ermes et. al. (Ermes et al., 2008) it was

studied how the recognition rate decreases when data

is collected with and without guidance. In the study,

a activity recognition model was trained to recognize

nine different sports/everyday activities and when it

was tested using data collected with guidance, the re-

cognition rate was 91%. When the same model was

tested using data collected without guidance, inclu-

ding four out of nine trained activities, the average

recognition rate was only 64%. There are many pos-

sible reasons for this phenomena as several things in

the environment can have an effect to the recognition

rates, these include changes in weather, terrain and lo-

cation that can cause problems to recognition models.

In addition, in the real-life many other unseen contin-

gencies can happen and the data set used to train the

recognition models cannot include all of these. Most

importantly, the study shows that data gathering pro-

tocol has an effect to the collected data, and therefore,

to the trained models and recognition rates. Thus, to

get better knowledge how well the trained models ac-

tually work in different situations, it is important to

validate them using data gathered by different study

subjects but also collected in different environment

and sensors.

In some of the studies, the validation of the accu-

racy of the recognition models in different environ-

ments has been done by implementing the trained mo-

dels to mobile phone application and then used real-

time real-life situations (Shoaib et al., 2014; Siirtola

and Röning, 2013). In these cases, the validation data

may include contingencies that are not included in the

training data but the environment where the data are

gathered does not change a lot as for instance it is
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normally collected in the same country as the trai-

ning data. However, open data sets can be seen as

a solution to this problem: by testing the trained mo-

dels using them, it is possible to get knowledge how

models work in different environment, with different

study subjects and hardware. This approach obvi-

ously has advantages compared to implementing the

trained models to a physical device as it saves time

because a separate validation data session is not nee-

ded.

In this study inertial sensor-based human activity

recognition is studied using publicly open data sets.

Study has following aims:

1. to survey what kind of open data sets are available

2. one previously not shared human activity data set

used in our earlier work is opened for public use

3. experiment how accurately the models trained

using a one open data set work when they are va-

lidated with other open data set

4. the challenges encountered using publicly open

data sets are discussed.

The paper is organized as follows: Section 2 gi-

ves a brief survey about publicly open data sets and

Section 3 explain which are the ones selected for this

study. Section 4 introduces the used methods and

describes the experimental protocol while Section 5

shows the results and discusses about them. Finally,

the conclusions are in Section 6.

2 OPEN HUMAN ACTIVITY

DATA SETS

There are various open human activity data sets col-

lected using inertial sensors available. In fact, we

found 15 different open data sets. In addition, we

made one of our own data set open, this data set was

used in Siirtola & Röning (Siirtola and Röning, 2012)

and can now been found from our research units we-

bpage (Biomimetics and Intelligent Systems Group,

2017). Most of the other data sets can be found at the

UCI Machine Learning Repository (Lichman, 2013).

Open data sets and some of their characteristics are

listed in Table 1. Some of these included also data

from other sensors than inertial sensors, but they are

not listed in the table.

While several open data sets are available, compa-

ring and cross-validating them is not straightforward

as data sets differ from each other in many ways as

it can be seen from Table 1. For instance, sensor

position is not the same in all data sets. The most

common sensor positions are wrist, chest and hip but

also sensor positions are used such as trouser’s poc-

ket, foot and back. The problem is that from each

of these body position the gathered data is different

meaning that if the recognition model is trained using

data from one body position, it cannot recognize acti-

vities if the sensor is positioned in some other posi-

tion (Siirtola, 2015). Moreover, one of the challenges

of the open data sets listed in Table 1 is that the used

sampling rate is not always the same. The sampling

rate varies from 20Hz to 200Hz and the most com-

monly used frequency is 50Hz. Again, this makes the

cross-validation of the data sets more challenging as

the data sets used in model training, testing and vali-

dation needs to have the same sampling rate to obtain

reliable model and results. What also limits the num-

ber of data sets that can be in cross-validation is that

almost all data sets are collected from different acti-

vities. Most of the data sets are collected from daily

activities like walking, running, sitting and standing

while some concentrate for instance on sports activi-

ties. This limits the using of data sets as in order to

use cross-validate data sets, they need to contain same

activities. Easily the most common activity is wal-

king, which is included in almost all data sets. Ho-

wever, the definition of walking differs from data set

to data set: in some of the data sets walking, walking

downstairs and walking downstairs are considered as

three different activities as in some data sets they all

have the same label. One more difference in data sets

is that the number of study subjects varies from one

person to 30 persons. Therefore, it is clear that some

data sets have more variation than others.

However, based on the information shown in the

Table 1 it is not possible to conclude which data set

is the best as for instance the numbers do not tell how

much data per activity these data sets include and how

much variability they include. This means that mo-

del trained and tested using one data set and proving

highly accurate results, does not necessarily provide

as high results when it is tested using another data

set which is collected using different sensors, in diffe-

rent environment, and by giving different instructions

given to study subjects. In fact, the purpose of this

study is to experiment how the model accuracy chan-

ges when it is tested using the data from the same data

set compared to when it is tested using different open

data set.

3 EXPERIMENTAL DATA SETS

All the open data sets listed in Table 1 were not

used in cross-validation process as in order to cross-

validate data sets they need to have the same sam-
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Table 1: List of publicly open human activity data sets collected using inertial sensors.

Author Body posi-

tion

Frequency Activities Inertial sen-

sors

Study

subjects

(Shoaib et al., 2014) trouser’s
pocket, arm,
wrist, belt

50Hz walking, running, stan-
ding, sitting, cycling
and walking upstairs
and downstairs

accelerometer,
gyroscope,
magnetometer

7

(Anguita et al., 2013) waist 50Hz walking, walking up-
stairs, walking down-
stairs, sitting, standing,
laying

accelerometer,
gyroscope

30

(Siirtola and Röning, 2012) trouser’s
pocket

40Hz walking, running, cy-
cling, idling, driving
car

accelerometer 7

(Banos et al., 2015) chest, wrist,
ankle

50Hz 12 activities, including
walking, running, cy-
cling and sitting

accelerometer,
gyroscope,
magnetometer

10

(Casale et al., 2012) chest 52Hz 7 activities including
walking, standing and
walking at stairs

accelerometer 15

(Stisen et al., 2015) waist, arm 50-200Hz biking, sitting, stan-
ding, walking, stair up
and stair down

accelerometer 9

(Koskimäki and Siirtola,
2014)

arm 100Hz 36 gym activities accelerometer 1

(Barshan and Yüksek, 2014) chest 25Hz 19 activities including
sitting, standing, wal-
king, running, cycling

accelerometer,
gyroscope,
magnetometer

8

(Bruno et al., 2013) wrist 32Hz 14 activities including
brush teeth, climb
stairs, comb hair,
descend stairs and
walking

accelerometer 16

(Reiss and Stricker, 2012) wrist, chest,
ankle

100Hz 18 activities including
lying, sitting, standing,
walking, running, cy-
cling

accelerometer,
gyroscope,
magnetometer

9

(Kwapisz et al., 2011) trouser’s
pocket

20Hz walking, jogging, up-
stairs, downstairs, sit-
ting, standing

accelerometer 29

(Zhang and Sawchuk, 2012) hip 100Hz 12 activities including
walking, running, up-
stairs, downstairs, sit-
ting and standing

accelerometer,
gyroscope,
magnetometer

14

(Chavarriaga et al., 2013) wrist, chest,
limb, shoul-
der, foot

30Hz groom room, prepare
and drink coffee, pre-
pare and drink sand-
wich, cleanup

accelerometer,
gyroscope,
magnetometer

12

(Baños et al., 2012) left and right
calf and
thigh, back,
4 on arms

50Hz 33 activities including
walking, running, jum-
ping and cycling

accelerometer,
gyroscope,
magnetometer

17

(Micucci et al., 2017) trouser’s
pocket

50Hz 9 activities including
walking, running, up-
stairs and downstairs

accelerometer 30

(Ugulino et al., 2012) waist, tight,
arm, ankle

50Hz walking, standing, sit-
ting, sitting down, stan-
ding up

accelerometer 4
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pling rate and activities and they need to be collected

from the same body position. However, the number

of study subjects does not need to be the same. It was

decided to cross-validate data sets from two body po-

sitions: trouser’s pocket and wrist. Trouser’s pocket

was chosen as one of the studied position as according

to some studies it is the most common position for a

phone (Ichikawa et al., 2005). In addition, wrist was

chosen as other position as smartwatches and wrist-

worn activity monitors are probably the most obvious

devices to implement activity recognition algorithms.

From the both chosen body position two data sets

were selected for this study. Three of the data sets in-

troduced in Table 1 contain data gathered from trou-

ser’s pocket: Kwapisz et. al. (Kwapisz et al., 2011),

Siirtola & Röning (Siirtola and Röning, 2012) and

Shoaib et. al. (Shoaib et al., 2014). The activities we

are aiming to recognize are walking, running, idling

(=sitting and standing) and cycling. As Kwapisz et.

al. does not include cycling -activity, cross-validation

is performed using two data sets: Siirtola & Röning

(Siirtola and Röning, 2012) and Shoaib et. al. (Shoaib

et al., 2014). In turn, one is used for training and ot-

her for validation. The problem with the selected data

sets is that they are collected using different sampling

rates, 40Hz and 50Hz, respectively. As the greatest

common factor of 40 and 50 is 10, the data sets are

down sampled to 10Hz. With Siirtola & Röning (Si-

irtola and Röning, 2012) this is done by taking only

every fourth observation into consideration, and in the

case of Shoaib et. al. (Shoaib et al., 2014) by taking

only every fifth observation into consideration.

Several data sets contained data gathered from

wrist, and the ones chosen for this study were Sho-

aib et. al. (Shoaib et al., 2014), Banos et. al.(Banos

et al., 2015). These were selected as they have the

same sampling rate and also several common activi-

ties: walking, running, cycling, sitting, standing, and

walking at stairs. Again, in the cross-validation pro-

cess one data sets in turn is used for training and other

for validation.

Examples from the selected data sets are shown

in Figures 1, where 10 seconds of acceleration data

from walking signal is presented. From these figures

it can be seen that the scale of acceleration signal is

approximately the same in all data sets. However, the

comparison of signals collected from trouser’s pocket

(Figures 1(a) & 1(b)) show that signals are on diffe-

rent level. This is most likely due to a fact that sensor

can lay on the pocket in a numerous different orien-

tations. Therefore, in the pre-processing stage the

effect of orientation was eliminated by square sum-

ming acceleration channels to obtain the magnitude

acceleration signal, which is orientation independent.

Wrist-position is more stable than pocket, as there is

basically only one possible way to wear the sensor,

and therefore the orientation of the sensor should be

approximately same for each study subject wearing

the sensor in the same wrist. However, visualization

(Figures 1(c) & 1(d)) of the data sets collected from

wrist and selected for this study show that sensors

used in Shoaib et. al. (Shoaib et al., 2014) and Ba-

nos et. al. (Banos et al., 2015) have been different.

Apparently the order of acceleration sensors has been

different in these sensors, and therefore, x-axis accele-

ration of Banos et. al. behaves like z-axis acceleration

of Shoaib et. al.. This was simply fixed by changing

the same order for both data sets but this difference

shows that it is not always that straightforward to use

publicly open data sets.

4 ACTIVITY RECOGNITION

PROCESS

Activity recognition process is divided into three main

phases (data collection, training and activity recogni-

tion), and each of these can be divided into subphases

(Incel et al., 2013), see Figure 2. In this section, it

is explained what methods this study uses in different

stages.

Activity recognition was done using a sliding win-

dow technique. The signals from the sensors were di-

vided into equal-sized smaller sequences, also called

windows. Window size of 2.0 seconds was used with

every data set.From these windows, features were ex-

tracted and finally the classification of the sequences

was done using models trained based on these featu-

res. The features used in this study included for in-

stance standard deviation, minimum, maximum, me-

dian, and different percentiles (10, 25, 75, and 90).

Moreover, the sum of values above or below percen-

tile (10, 25, 75, and 90), square sum of values above

of below percentile (10, 25, 75, and 90), and number

of crossings above or below percentile (10, 25, 75,

and 90) were extracted and used as features. Altoget-

her 61 features were extracted. These same features

are used for instance in Siirtola et. al. (Siirtola et al.,

2016).

In order to achieve the highest possible recogni-

tion rates, the most descriptive features for each mo-

del were selected using a sequential forward selection

(SFS) method (Devijver and Kittler, 1982). Moreo-

ver, to reduce the number of misclassified windows,

the final classification was done based on the majo-

rity voting of the classification results of three adja-

cent windows. Therefore, when an activity changes, a

new activity can be detected when two adjacent win-
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(a) Example from data set Siirtola & Röning (Siirtola and
Röning, 2012) where the position of the sensor is trouser’s
pocket.
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(b) Example from data set Shoaib et. al. (Shoaib et al., 2014)
where the position of the sensor is trouser’s pocket.
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(c) Example from data set Banos et. al. (Banos et al., 2015)
where the position of the sensor is wrist.
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(d) Example from data set Shoaib et. al. (Shoaib et al., 2014)
where the position of the sensor is wrist.

Figure 1: 3D acceleration data (blue = x-axis, red = y-axis, and yellow = z-axis) from the each selected data set describing 20
seconds of walking signal.

dows are classified as a new activity.

It was decided to do the experiments using LDA

(linear discriminant analysis) and QDA (quadratic

discriminant analysis (Hand et al., 2001)) classifier as

in our previous studies (Siirtola and Röning, 2012; Si-

irtola and Röning, 2013) we have noticed that they are

not only accurate but also computationally light, and

therefore, sufficient to be implemented to smartpho-

nes and used 24/7. In addition, they are fast to train.

LDA is used to find a linear combination of features

that separate the classes best. The resulting combi-

nation may be employed as a linear classifier. QDA

is a similar method, but it uses quadratic surfaces to

separate classes (Hand et al., 2001).

In the last stage of activity recognition process,

using the trained recognition model, an unknown stre-

aming signal can be classified. Before its class label

can be defined, new signal must be processed in the

same way as training data was processed when re-

cognition models were trained, see Figure 2. The-

refore, at first, streaming data is pre-processed and

windowed. Then, the featured used to train the mo-

del are extracted from the window and these are given

as input to the trained recognition model to obtain the

predicted activity class. Note that when new data is

classified, in each stage, the same parameters must

be used that were used to train the models (Bishop,

2006).

5 EXPERIMENTS AND

DISCUSSION

For the experiments model training is performed

using protocols presented in Figure 3 using separate

training, validation and testing data sets. Figure 3(a)

shows the protocol used and how the data is divided

when the same publicly open data set is used for trai-

ning and testing, one person’s data in turn is used for
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Figure 2: Activity recognition process is divided into three main phases, and each of these can be divided into subphases
(Incel et al., 2013).

testing and other for training. Therefore, the same

data is never used for training and testing. Figure 3(b)

shows the protocol used when the one publicly open

data set is used for model training and other for tes-

ting.

The results of the experiments using trouser’s poc-

ket and wrist as a sensor position are shown separately

for each study subject in Table 2 and 3, respectively.

The accuracies were obtained by calculating true po-

sitive rate of each class and by calculating average of

these. The results show that in general QDA produces

better results than LDA. Therefore, it was concentra-

ted on analyzing QDA results.

When the results of data from trouser’s pocket

(Table 2) are studied, it can be seen that the recog-

nition accuracy is a bit higher when the recognition

model is trained and tested using a data from the same

data set compared to training model with one data

set and testing it with other. While this result came

as no surprise, the difference was smaller than ex-

pected. The reason for this can be the small number

of activities (4) studied in this sensor position. There-

fore, the samples from different activities can locate

in the very different parts of the feature space making

task quite easy and differences between data gather-

ing protocols, sensors, study subjects and other fac-

tors do not have that big of an effect to the recogni-

tion rates. Though the difference does not seem big,

still according to the paired t-test the difference is sta-

tistically significant in three cases out of four, only

when Siirtola data is used for testing and classifica-

tion is based on QDA classifier the difference is not

statistically significant.

The data from a wrist-worn sensor included more

activities (6) than data from trouser’s pocket, making

it more difficult to classify. Therefore, also the results

had more variance. This scenario was experimented

using data sets from Banos et. al. (Banos et al.,

2015) and Shoaib et. al. (Shoaib et al., 2014). When

Shoaib data set was classified using a model trained

using Banos data, the accuracy using QDA was 5 per-

centage units lower (86.6% vs. 81.2%) compared to

training and testing model using data from one data

set. However, when the experiment was performed

other way around, meaning that Banos data set was

classified using models trained with Shoaib data, the

difference was over 13 percentage units (95.4% vs.

82.3%). Therefore, while using Banos data is cross-

validated using leave-one-out method the recognition

accuracy is almost perfect (95.4%), and the rate is no-

ticeable lower when a recognition model trained using

Banos data is tested with Shoaib data (81.2%). This is

not the case with Shoaib data (86.6% vs. 82.3%), and

therefore, the recognition rates and models obtained

using Shoaib data for training are more predictable

and their generalizability is better than the ones trai-

ned using Banos data. Also this time, according to the

paired t-test the difference is statistically significant in

three cases out of four. Only when Banos data is used

for testing and the classification process is performed

using LDA classifier, the different is not statistically

significant.

The results of Table 3 show that the data collection

protocol has been different between the data sets and

the end result is that Banos data set has less variation

than Shoaib. On the other hand, this was not neces-

sarily the only reason for the obtained results as these

data sets had other differences as well, as shown in

Figure 1. It was noted that the order of the three acce-

leration signals was different in these data sets and

it was fixed in the pre-processing stage, as explained

in Section 3. This shows a challenge regarding using

open data sets, they are not always usable out-of-the-

box. In fact, it would be really beneficial to the re-

search area to further study publicly open data sets

to find differences like this and report them. In addi-

tion, a brief study of other data sets showed also other

differences between data sets which makes validation
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(a) The model training protocol when the same data set is
used for training and validation.

(b) The model training protocol when the different data set is
used for training and validation.

Figure 3: Protocols used in the experiments.
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Figure 4: Walking signal from Reiss & Stricker (Reiss and
Stricker, 2012) is different to signals from other studied data
sets.

of them burdensome. For instance, Anguita data set

(Anguita et al., 2013) had different scale for accele-

rometer values than the data sets used in this study.

With Anguita et. al. (Anguita et al., 2013) the unit for

accelerometer values is gravity g when for the data

sets used in this study it is meters in second m/s2. We

also had problems with Reiss data (Reiss and Stric-

ker, 2012) when we tried to use it in wrist-sensor sce-

nario. When it was cross-validated using other data

sets, the results were really poor. The models did not

work at all. In Figure 4, ten seconds of walking sig-

nal from this data set is visualized. The visualization

shows that this data is totally different to those shown

in Figure 1. Most likely Reiss data is filtered, and

therefore, it can not be used with other data sets. In

addition, there are missing values which may have an

effect to recognition rates.

Therefore, as a summary: publicly open human

activity data sets have differences which makes their

usage difficult. Some of these differences are easy

to fix, some hard or even inflexible. The worst sce-

nario is of course that there are differences that user

does not find out at all. Therefore, to make data set

usage more easy, guidelines for data gathering should

be made for the research area to obtain reusable data

sets as currently the data gathering protocols can vary

so much between data sets that they cannot be used

together.

While in this study, the focus of the study are pu-

blicly open human activity data sets, the observations

made here are also valid in other application fields as
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Table 2: The results of the experiments using trouser’s pocket as a sensor position.

Test data: Shoaib data set, Classifier QDA

Training S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 Mean

Shoaib 96.3% 97.4% 92.7% 95.5% 93.1% 97.2% 95.6% 98.0% 96.5% 92.2% 95.4%
Siirtola 91.1% 94.6% 89.6% 93.2% 91.4% 91.9% 88.3% 91.3% 93.2% 89.1% 91.4%

Test data: Shoaib data set, Classifier LDA

Shoaib 90.4% 97.7% 92.0% 95.2% 92.1% 96.2% 93.6% 96.3% 96.0% 92.5% 94.2%
Siirtola 93.5% 94.7% 87.1% 92.0% 93.5% 91.2% 88.3% 90.8% 92.6% 86.2% 91.0%

Test data: Siirtola data set, Classifier QDA

Training S1 S2 S3 S4 S5 S6 S7 S8 - - Mean

Siirtola 92.8% 91.0% 93.2% 90.3% 85.4% 94.7% 98.1% 92.6% - - 92.3%
Shoaib 89.7% 92.0% 94.8% 86.5% 85.7% 90.9% 93.7% 90.9% - - 90.5%

Test data: Siirtola data set, Classifier LDA

Siirtola 93.7% 90.9% 90.3% 95.0% 90.5% 99.1% 98.4% 96.1% - - 94.2%
Shoaib 86.8% 87.5% 87.0% 70.4% 82.7% 94.3% 90.0% 92.2% - - 86.4%

Table 3: The results of the experiments using wrist as a sensor position.

Test data: Shoaib data set, Classifier QDA

Training S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 Mean

Shoaib 79.6% 82.1% 91.3% 85.4% 82.2% 84.1% 97.2% 91.7% 88.2% 83.9% 86.6%
Banos 87.3% 81.8% 83.4% 83.3% 75.6% 79.0% 86.2% 82.4% 81.5% 71.7% 81.2%

Test data: Shoaib data set, Classifier LDA

Shoaib 85.1% 90.2% 91.8% 94.7% 92.3% 96.2% 97.3% 92.4% 91.0% 80.3% 91.1%
Banos 58.2% 73.5% 69.8% 61.7% 62.1% 70.8% 66.8% 52.4% 63.2% 56.5% 63.5%

Test data: Banos data set, Classifier QDA

Training S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 Mean

Banos 96.3% 97.4% 92.7% 95.5% 93.1% 97.2% 95.6% 98.0% 96.5% 92.2% 95.4%
Shoaib 73.8% 96.1% 75.0% 77.5% 79.6% 81.0% 83.8% 87.3% 85.9% 83.3% 82.3%

Test data: Banos data set, Classifier LDA

Banos 72.7% 68.6% 79.3% 84.2% 76.8% 80.5% 87.7% 93.4% 72.5% 85.6% 80.1%
Shoaib 66.2% 91.3% 65.8% 60.1% 75.9% 92.0% 95.2% 70.5% 82.5% 75.4% 77.4%

well: the recognition models should be tested with

data sets collected from different environments and

publicly open data sets should be easily reusable.

6 CONCLUSION

The original aim of this article was to survey and

cross-validate publicly open inertial sensor-based hu-

man activity data sets, and release one new for public

use, to see how accurately a model which is trained

using a data gathered in one environment and loca-

tion works when it is tested using a data gathered in a

totally different environment. This was experimented

in two different scenarios and the results of this article

show that data gathering environment, and protocol

has an effect to the results. The accuracies obtained

in a new environment are lower than from original en-

vironment, and according to the paired t-test this dif-

ference is statistically significant in six cases out of

eight. In addition, it seems that the difference is the

bigger the more difficult the classification task is. Ho-

wever, eventually this was not the main outcome of

this article. Instead, the main outcome of this arti-

cle is that publicly open data sets are not easy and

straightforward enough to be used for validation pur-

poses. Several open inertial-based data sets are pu-

blicly available. However, cross-validation of them

is problematic as most of the data sets have different

activities, sampling rate, and body position. While

these differences are quite straightforward to find out,

it was noticed that data sets have other differences that

are not as easy to detect. For instance it was noticed

that there were differences in sensor orientation and

scale of y-axis. To avoid this, our future work inclu-

des a guide and code to get non-burdensome access

to publicly open data sets. In addition, guidelines for

data gathering should be made for the research area to

obtain more easily reusable data sets.
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Tröster, G., Millán, J. d. R., and Roggen, D. (2013).
The opportunity challenge: A benchmark database for
on-body sensor-based activity recognition. Pattern
Recognition Letters, 34(15):2033–2042.

Devijver, P. A. and Kittler, J. (1982). Pattern recognition:
A statistical approach. Prentice Hall.
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