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Abstract: Reliability or survival data analysis is an important tool to estimate the life expectancy and failure behaviour 

of industrial assets such as motors or pumps. One common data source is the Computerized Maintenance 

Management System (CMMS) where all equipment failures are reported. However, the CMMS typically 

suffers from a series of data quality problems which can distort the calculation results if not properly 

addressed. In this paper, we describe the possible data quality problems in reliability data with a focus on 

CMMS data. This list of problems is based on the results of six case studies conducted at our company. The 

paper lists a set of metrics which can be used to judge the severity. We also show how the impact of data 

quality issues can be estimated. Based on this estimate, we can calibrate a series of metrics for detecting the 

problems shown. 

1 INTRODUCTION 

When it comes to the prediction of failures in 

industrial equipment, there are two major categories 

of approaches. First, one can use statistical data about 

failures to do a survival analysis (Miller, 1997). 

Second, one can use sensor data to detect changes to 

attributes such as vibration, temperature, etc. e.g. see 

(Antoni, 2006). Using sensor data to predict failures 

has the advantage that it allows predictions for 

individual units. The main disadvantage of sensors is 

their cost and the cost of installation. This might come 

as a surprise given the rise of low cost sensors, 

however the special requirements of the condition 

monitoring use case mainly the required accuracy and 

reliability often drives up the cost. For these reasons, 

using statistical data for the analysis of failure 

behaviour is still appealing. 

1.1 Survival Analysis of Manually 

Collected Failure Data 

A commonly used data source is a company’s 

Computerized Maintenance Management Systems 

CMMS. Organizations use a CMMS to collect all 

failures reported by the operators. The maintenance 

team uses the CMMS to identify and prioritize 

problems that require fixing. While not primarily 

intended for this purpose, the data is already collected 

and accessible and thus can also be used in survival 

analysis.  

The typical outcome of a survival analysis is a 

function called R(t), which represents the probability 

for a product to still be working at a given time t. The 

reliability function does not take into account the 

impact of concrete events such as overstress, so any 

prediction made for an individual unit is to be taken 

with scepticism. Yet, R(t) is still useful for 

maintenance planning, fleet-level failure forecasting 

(Hines, 2008), warranty planning (Wu, 2012), 

reliability optimization (Salgado, 2008), (Vadlamani, 

2007), and as support for R&D (kunttu,  2012).  

However, the analysis of this data is not as 

straightforward as it might seem. Since the data used 

was never intended for survival analysis, it suffers 

from a series of data quality problems such as, but not 

limited to, missing information or wrong values. 

These problems can be detected with tailored metrics 

and their impact on the survival analysis estimated.  

1.2 Contribution and Content of This 

Paper 

This paper describes the latest step in our ongoing 

effort to implement a comprehensive data quality 

library for data related to industrial service. In our 

previous work, we have presented a list of metrics 

both for human-collected failure data (Gitzel, 2015) 
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as well as condition monitoring sensor data (Gitzel, 

2016) as well as a visualization scheme for the 

metrics. In this paper, we use the results of six case 

studies conducted so far to present the typical data 

quality problems affecting reliability data. In this 

paper, our focus is on problems which can occur in 

CMMS data. Five of the case studies have been 

presented previously see (Gitzel 2015). The new 

study uses CMMS data from a large chemical 

production plant.  

After looking at related work Section 2 we briefly 

explain how CMMS data can be used for survival 

analysis Section 3. As our first contribution, Section 

4 provides an overview of key metrics suitable for 

CMMS data quality analysis. Our second 

contribution Section 5 is a heuristic estimation 

method to classify metric values as good, OK, or bad. 

The assessment is based on the level of impact a 

certain data quality problem has on the correctness of 

the reliability function.  

2 RELATED WORK 

There is a large body of papers related to data quality. 

However, there are only a few papers which look into 

the data quality of data used for the purpose of 

assessing the condition and residual life of industrial 

equipment. Despite the fact that survival analysis is a 

common approach in this context, there are barely any 

papers addressing this topic. 
 

Data Quality in general: Data quality is a topic that 

has been well explored. There are many different 

causes for data quality issues which can occur at 

many stages of the data’s life cycle see (Hines, 2008), 

(Salgado, 2008), (Gitzel, 2011), (Bertino, 2010). The 

most common approach to measure data quality is to 

define several dimensions of data quality, each of 

which covers a series of individual metrics, (Redman, 

1996), (Leo, 2002). In fact, there are many 

frameworks based on this basic premise e.g. (Yang, 

2006), (Bovee, 2003), see (Borek, 2014) pg. 13 for a 

survey of frameworks for an exception as well as an 

ISO standard (Peter, 2008).  In this paper, we adopt 

the commonly used dimensional structure proposed 

in (Bertino, 2010). 
 

Data Quality in reliability/survival analysis: While 

the existence of data quality problems in reliability 

data is generally acknowledged as seen in (Gitzel, 

2011), (Bertino, 2010), (Montgomery, 2014), and 

(Bendell, 1988) this is not reflected in many 

published attempts to rectify these problems. Besides 

our own prior work (Gitzel, 2015), (Gitzel, 2014) we 

have found only a collection of best practices (IEEE, 

2007) and one paper providing a series of metrics to 

understand the quality of a reliability analysis’s input 

data (Montgomery, 2014). A more common approach 

is develop reliability-related algorithms that are able 

to deal with poor data quality for a good review, see 

(Wu, 2013). Very often, these algorithms use 

estimates based on assumptions e.g. (Bendell. Such 

an approach works well if the assumptions are 

correct. In our opinion, there is not enough 

understanding about reliability data to verify that the 

assumptions reflect reality, especially since there are 

not enough algorithms to understand to what extent 

the data available is correct. 

3 THE USE OF CMMS DATA IN 

SURVIVAL ANALYSIS 

Survival data typically consists of times to failure 

TTFs calculated from field data. For example 

consider Figure 1. A fleet of 2 assets each in use since 

the time marked by the star has experienced 6 failures 

as shown by the dots in the graph. The delta between 

the failures are the TTFs in this case there are 6 TTF 

values. These values can be seen as the results of a 

random variable f. The probability distribution 

function behind f can be estimated using the TTFs. 

The reliability function as described in Section 1 is 

simply the inverse of f. 

 

Figure 1: Collecting Times to Failure TTFs. 

A plant’s CMMS is a good source of data for this 

calculation. However, the data format is a little more 

complex, which causes a series of data quality 

problems. The subset of data relevant for our analysis 

is approximated by the figure below. 

Unlike in the data in Figure 1, the asset data does 

not contain a list of relevant failure events. Instead, 

both failure events and assets are associated with 

functional locations to use the SAP term. A functional 

location describes a function in the plant’s production 

system “main feeder pump”. Assets are concrete 

instances that can be installed at the locations “pump 
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XYZ”. Over time, assets can move to different 

locations as they are replaced with other assets, 

repaired or overhauled and installed in other places. 

Thus, the connection between asset and failure is only 

an indirect one. As one can imagine, this is a key 

source of data quality issues in a CMMS. 

  

Figure 2: Key CMMS Data. 

4 DATA QUALITY METRICS FOR 

RELIABILITY DATA 

We have already discussed data quality issues 

affecting survival analysis in a previous paper (Gitzel, 

2015). Thus, we have by now analysed six cases from 

different contexts in order to identify the data quality 

problems which affect a reliability calculation. The 

latest case a customer’s CMMS system has led to the 

discovery of new data quality problems, many of 

which are unique to CMMS data. 

In this section, we present an updated list of 

metrics with a focus on those suitable for CMMS 

data. For each metric, we describe the problem it 

measures and the formula to calculate the metric. We 

also describe the impact this problem has on a 

survival analysis and propose ways how to address 

this problem. 

4.1 Sampling 

4.1.1 Sampling Size 

Problem: In order for a statistical analysis to be 

relevant, we need a sample of an appropriate size. The 

sample size needed depends on the standard deviation 

of the population. The higher the standard deviation, 

the more samples we need. 
 

Metric: 
 

𝑀𝑆𝑆 = 1 −
𝑆𝐸𝑀

𝑀𝑇𝐵𝐹
,  

where SEM is the Standard error of the mean and 

MTBF is the mean. See (Gitzel, 2015) for more 

details on this metric. 

Impact: If sample size is too small, the sample does 

not represent the full population properly. The 

standard error of the mean estimates the possible 

effect on the MTBF, other effects depend a lot on the 

distribution function underlying the failure behaviour 

if any. 
 

Suggested Remedy: The obvious way to get reliable 

survival statistics is to increase the sample size. 

However, in many cases this would mean waiting for 

more failures to occur which is not practical. 

4.1.2 Observed Time Window 

Problem. Observed time to failure TTF is the key 

information needed to define a Reliability function. 

In most cases TTF is the time between two failures, 

except for the first failure, where it is the time since 

start-up of the asset. This can lead to an interesting 

problem in cases where the CMMS was installed after 

plant start-up, because a lot of failure events will not 

be recorded in the system. 
 

Metric. The following metric calculates how much of 

the plant lifetime is covered by the observed time 

window recorded in the CMMS. 
 

𝑀𝑂𝑇𝑊 =
𝑡𝐶𝑀𝑀𝑆

𝑡𝑆
,  

 

where 𝑡𝐶𝑀𝑀𝑆 is the total time of CMMS operation 

and 𝑡𝑆 is the total time of plant operation. So, if the 

plant is 40 years old and the CMMS was only 

installed 20 years ago, the observed time window 

would be 0.5. 
 

Impact: The main problem of a small observed time 

window is that we do not have access to the majority 

of failure information. Moreover, if the difference 

between plant lifetime and observed time window is 

not taken into account, wrong TTFs will be included 

in the list. In the figure below, stars represent the time 

when an asset was started up, circles represent 

failures. To the naïve observer it might seem that 

there were no failures initially with failures showing 

up only recently. However, this is an artefact of the 

fact that failure recording started only with the 

installation of the CMMS system the dotted line 

parallel to the y axis. Thus, the long initial TTF is not 

correct and the problem leads to an overestimation of 

reliability. 
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Figure 3: Effect of Observed Time Window. 

Suggested Remedy: The first TTF should be 

removed and a left-censored time computed from the 

difference between first failure and start-up be added. 

This is a partial correction which works best if there 

are enough “real” TTFs to compensate. 

4.2 Consistency 

Data is inconsistent if different names are used for the 

same element. It is also inconsistent if quantitative 

information uses different units inch vs. cm or scales 

hours vs. days. Inconsistency often results from 

merging different data sources. There are other 

inconsistencies which are typically closely related to 

a particular problem instance one of which is 

described below.  

4.2.1 Inconsistent Names 

Problem: Important elements such as assets, 

functional locations or related attributes use an 

inconsistent notation. For example, an asset might be 

correctly identified via the serial number but when a 

particular failure report uses the inventory number of 

the asset to refer to it. 
 

Metric: A metric which can heuristically identify 

values which do not adhere to the agreed naming 

convention can use regular expressions to see which 

values do not match the pattern suggested by the 

convention e.g. serial number structures, see Fig 4.  

𝑀𝐼𝑁 =
𝑛𝑐

𝑛
,  

where n is the number of all fields using a name 

and 𝑛𝑐 is the number of name fields which match the 

proscribed pattern. 
 

 

Figure 4: Implementation of the Serial Number Consistency 

Check. 

Impact: Since we need to establish a link between 

failure information and failures that were reported, 

there needs to be a unique “key”. Otherwise, there 

will be failures which cannot be assigned properly, 

which a tremendous negative effect on the analysis 

quality as has discussed in Section 5.2. In the case of 

attribute names, we will not be able to properly build 

subfleets for detailed analysis. A subfleet of all 

“highly critical 3” assets will miss out all assets 

labeled as “3” instead. 
 

Suggested Remedy: Go through all identified non-

consistent values and try to change them to the correct 

value. Inconsistencies can very often be resolved 

through replacement rules. 

4.2.2 Inconsistent Use of Functional 

Locations 

Problem. In a CMMS, functional locations might be 

the only connection between the assets and the failure 

events see Figure 2. In order for the analyst to be able 

to connect a failure with an asset, the work order 

reporting the failure must be connected to the right 

asset. However, sometimes failures are linked to 

locations higher in the hierarchy. So the best practice 

might be that failures are attached to the leaves of the 

functional location hierarchy e.g. pump AB.XYZ but 

some failure reports might be attached to non-leave 

nodes e.g. building AB instead. 
 

Metric: 𝑀𝐼𝑁 as described above see Section 4.2.1.  
 

Impact. Failures attached to the wrong functional 

locations mean that these failures are not attributed to 

the assets where they occurred. This means that there 

are assets with higher TTFs which leads to an 

overestimation of reliability. 
 

Suggested Remedy: Sometimes further investigation 

can help to find the right functional location but in 

other cases the information about the proper leaf to 

use might be lost. 

4.3 Free-of-Error 

There are two important categories of errors we can 

detect with our metrics – syntactical errors and logical 

errors. Logical errors include dangling keys e.g. 

failure events referring to equipment which does not 

exist, non-unique keys and illogical order of dates 

such as failure date before manufacturing date. 

4.3.1 Logical Errors - Dangling Keys 

Problem: Sometimes elements in the data reference 

each other. A typical problem is a failure event 

referring to an asset or functional location which does 
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not exist. Also, functional locations might refer to 

assets which do not exist or vice versa. 
 

Metric: A metric which measures the percentage of 

working keys can be used discover the problem of 

dangling keys. 
 

𝑀𝐷𝐾 = 1 −
𝑑

𝑛
, where d is the number of dangling 

keys and n is the number of all keys. 

Impact: Dangling keys mean that failure events 

cannot be assigned to assets or that assets cannot be 

assigned to functional locations. Both cases mean that 

the reliability is overestimated.  

Suggested Remedy: Very often, this problem is 

caused by improper subfleet selection, i.e. we have 

excluded elements which should still be in the list or 

we have included items which should not be in the list 

and now refer to other elements outside the scope. 

Thus, this problem can often be resolved by looking 

at the complete data set. 

4.4 Completeness 

Completeness is what most people seem to associate 

with data quality. Completeness metrics essentially 

depend on how much data is missing. In past papers, 

we have detailed different completeness metrics, 

however, we feel that these are the most important 

ones. 

4.4.1 Data Field Completeness 

Problem: For a given column/data field, the value is 

missing. A missing value can be empty or is 

represented by text like “N/A”, “unknown”, “nan” 

etc. 
 

Metric: The column completeness metric tracks the 

percentage of values in a particular data field which 

are not empty. 
 

𝑀𝐶𝐶 = 1 −
𝑒

𝑛
, where e is the number of empty 

fields and n is the number of all fields of this type. 

Impact: The impact of empty fields varies with the 

importance of a field. If the field is critical to the 

calculation, this means that one asset cannot be used, 

effectively reducing the sample size. If the field is 

used for subfleet building it has the same effect once 

sub-fleets are used. Substitution fields might not have 

an impact as long as they value they can substitute is 

of OK data quality. 
 

Suggested Remedy: Sometimes missing values can 

be filled in but there is a substantial risk that we will 

use data generated based on our assumptions to 

confirm those assumptions. We have made some 

good experiences with scenario building (Gitzel, 

2015). 

4.4.2 Asset-function Location Mapping 

Completeness 

Problem: As shown in Figure 2, the connection 

between functional locations and assets might be 

needed to map failure events to assets. However, a 

plant is not static and assets move to different 

locations. Thus, if the asset-failure mapping is not 

established at the time of the recording of the failure, 

we need a table which documents at what time an 

asset was found at what location. Sometimes, this 

mapping has gaps. 
 

Metric: The following metric tracks how many 
failure events could not be assigned due to gaps in the 
asset-location mapping. 
 

𝑀𝐴𝐿𝑀 = 1 −
𝑢

𝑒
, where e is the total number of 

failure events and u is the number of failure events 

which could not be assigned to an asset due to a gap 

in the mapping. 

Impact: The impact of unassigned events in 

discussed in detail in Section 5. 
 

Suggested Remedy: Restoring this information is 

quite often not possible. 

4.5 Plausibility 

Often, data is not obviously wrong and thus marked 

by the metrics in Section 3 but seems so improbable 

that we at least have to consider the possibility that it 

is wrong. What is plausible or not depends on the 

context but there are some example metrics that are 

useful in the context of CMMS data. All plausibility 

metrics have the same basic format. 
 

𝑀𝑥 = 1 −
𝑣

𝑛
, where x is the name of the metric, v 

is the number of elements that violate the plausibility 

assumption and n is the total number of elements. 

4.5.1 Double Tap 

Problem: If two failures of the same asset occur one 

after another in a very short time period a day or two, 

the reason could be that the asset was not repaired 

properly. However, more likely, there was a second 

complaint about the same problem when no action 

was taken the first time. In the second case, it might 

make sense to remove one of the events. Otherwise, 
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the reliability will be severely underestimated. The 

first case might stay in the data if we consider poor 

repair to be a valid cause of failures or not if we count 

this as one problem that took longer to fix. 
 

Impact: The reliability will be severely 

underestimated if there are many wrong double taps. 
 

Suggested Remedy. If you feel a double tap is not 

correct, remove the second or the first event. Given 

the short time difference, your choice has no major 

impact. 

4.5.2 Failure after Replacement 

Problem: According to the data, an asset was 

replaced by another one without having failed. 

However, the new asset fails almost immediately 

afterwards. While such a scenario is certainly 

possible, there is also the possibility that a 

replacement was booked but the failure event still 

belongs to the previous asset. In other words, the old 

asset failed and was replaced with a new unit instead 

of the old asset being replaced by a unit that failed 

right away. 
 

Impact: The reliability will be underestimated. 
 

Suggested Remedy: Clarify each event or remove 

the events. Only fix this problem automatically if you 

are sure that assets are normally not replaced while 

still working. 

5 IMPACT OF DATA QUALITY 

ISSUES 

Data quality issues can have a series of effects. The 

reliability curve can lead to systematic over- or 

underestimation a “shift” to the right or left. In more 

extreme cases, the shape is changed which means the 

impact for a particular time t will differ. Also, a 

changed shape can change the failure rate from 

increasing to decreasing or vice versa. This has a 

major impact on maintenance planning which cannot 

be discussed in the context of this paper. 

Examining all effects and understanding their 

impact in order to scale our metrics is an effort 

beyond the scope of this paper. However, there is a 

large group of metrics that implies that a certain piece 

of data cannot be used either because it is missing or 

it is wrong. In these cases, either the sample size is 

reduced or failure events need to be discarded. For 

both cases, we can make a good estimate on whether 

the extent of the data quality problem is still 

acceptable or not. 

5.1 The Effect of Problems Reducing 
Sample Size 

Both missing and wrong data can lead to a reduction 
in the number of TTFs. For example, missing subfleet 
information means that certain assets cannot be 
included in the calculation. Syntactically wrong start 
dates mean that we cannot calculate the TTFs for that 
asset. 

Typically, these problems are fixed by removing 

the offending elements. This removed the problem as 

such but reduces the sample size and thus the sample 

size metric. For this reason, we need a good measure 

as to what constitutes a good sample size. 

The sample size metric as proposed in this paper, 

estimates the typical percentage deviation introduced 

by the small sample. Thus, a metric of 75% indicates 

that the actual values might be ±25% of the 

calculated value. The percentage of deviation 

acceptable depends on the use case. The analyst 

should decide which relative deviation is still 

acceptable for a particular type of analysis. If 𝑛𝑔 is 

the deviation that is considered to be entirely 

unproblematic and  𝑛𝑜 is a deviation that is still 

acceptable, the following thresholds can be defined 

for the metric𝑀𝑆𝑆. These thresholds can be used for a 

traffic-light design with states red (unacceptable), 

green (acceptable), and yellow (insignificant). 

Acceptable 𝑀𝑆𝑆 > 𝑛𝑔 Unacceptable 𝑀𝑆𝑆 < 𝑛𝑜 

5.2 The Effect of Problems Leading to 
Missing Failure Events 

A number of data quality problems can lead to a 
failure event not being assigned to an asset – either 
because it cannot be assigned at all or because there 
is reason to doubt the correctness of the assignment. 
For example, due to the arrangement described in 
Section 3, wrong or missing asset keys and wrong or 
missing functional location keys mean that a given 
event cannot be assigned to an asset see Section 4.4 
for details.  

 

Figure 5: Missing Failure Event. 
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Furthermore, some events are lost due to a short 

observation window see Section 4.1.3. Finally, failure 

events which occur before the installation date and 

other implausible events are most likely not correct 

and should be evaluated Section 4.5. 

The effect of a missing failure event is illustrated 

in Figure 5. In the example, one of the events of asset 

2 is missing (represented by the white circle). Thus, 

instead of the correct times of failure TTF4 and TTF5, 

the wrong TTFw is added to the list. This means that 

two correct TTFs are missing and one TTF that is far 

too high is added by accident. Obviously, this leads 

to an overestimation of reliability. 

While this effect seems to suggest that unusually 

high TTFs are suspicious, we cannot know which 

ones are real and which ones are artefacts of missing 

events. Based on our philosophy of identifying 

problems and refraining from corrective actions 

based on assumptions, we propose an impact 

estimation heuristic. In order to identify thresholds 

similar to the section above, we use a series of 

simulations to determine possible data quality effects. 

Due to the underlying assumptions see below, these 

values should be taken as a rule of thumb and could 

be refined in the future. 

Our estimation is based on a series of simulations. 

In each simulation we use a randomly generated 

reliability curve and test the effect of missing events. 

We use multiple percentages of randomly missing 

events 10%, 25%, 50% and 75% and calculate an 

alternative curve based on the reduced event set. 

 

Figure 6: Typical Simulation Result. 

Figure 6 shows a typical simulation result. The 

black curve represents the correct reliability. The 

coloured curves show the consecutive effect of 

missing failure events. As expected, missing failure 

events lead to an increasing overestimation of 

reliability. For all our tested curves, the 

overestimation is most pronounced in the middle of 

the curve. 

The simulation is based on a series of 

assumptions. First, we need some random distribution 

as a basis for our simulated curves. We follow 

common practice and assume that all failure curves 

follow a Weibull distribution. In order to cover a wide 

range of possible scenarios, we use a series of 

different shape and scale parameters selected to 

represent different failure behaviours random, 

increasing, decreasing, almost normally distributed 

etc. Second, we assume that there is no wrong data 

included in the calculation. Unrecognized wrong data 

is a different issue which beyond the scope of the 

metrics addressed here. Finally, for the sake of 

simplicity, we assume that there will be no two 

consecutive events missing. We argue that the effect 

of will be more pronounced but not of a different 

quality than what we see in our examples. 

The overall results of the simulations are shown 

in Table 1. For example, if 10% of the data is missing, 

there will be a reliability overestimation anywhere 

between 2.9 and 23.2 percentage points, depending 

on curve shape. So, if we find a 25 percentage point 

overestimation to be acceptable, we need a minimum 

metric value of 75% taken from the 25% column, 

since the metric is the inverse of the number of 

missing events. 

In this paper, we briefly outline our design 

philosophy for a data quality dashboard. For a more 

in-depth discussion see (Gitzel, 2015). 

Table 1: Effect of missing events. 

 10% 25% 50% 75% 

Max 23.2 23.5 47.3 71.5 

Min 2.9 8.2 20 38.7 

Average 7.9 15.0 30.9 53.0 

6 CONCLUSIONS 

Maintenance data collected in a production plant’s 

information systems typically the CMMS is useful for 

the analysis of asset reliability. However, various data 

quality problems can impede this analysis. In this 

paper we have presented a hierarchy of metrics 

suitable for an assessment of the quality of CMMS 

data. Based on several use cases, we have identified 

relevant metrics and proposed criteria to structure 

them. Finally, we have proposed heuristics needed to 

decide whether a metric result is good or bad. 

In our opinion, the sensitivity of survival analysis 

to data quality issues is quite severe – a finding we 

did not expect. To us this implies that in order for 
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survival analysis to work, we need to either come up 

with good measures to ensure data quality or to find 

algorithms which can correct the problems. 

However, in the light of recent developments such as 

Industrie 4.0 and Industrial Internet, maybe the 

alternative is to primarily rely on condition 

monitoring data. Of course, this means that there will 

be other data quality issues to be addressed and future 

research is required. 
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