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Abstract: Consider an air-cargo carrier and a freight forwarder, which may establish an allotment contract at the start
of the season. The allotment size needs to be determined, before their stochastic demands materialize. The
forwarder hopes to receive a discount rate, lower than the spot rate. The carrier hopes to increase capacity
utilization by handling not only its own direct-ship demand but also the forwarder’s demand. We formulate a
Stackelberg game, in which the carrier is the leader and offers contract parameters such as the wholesale price
and the refund rate for the unused allotment as well as the minimum allotment utilization. Given the carrier’s
offer, the forwarder decides how much to book as an allotment, in order to maximize its own expected profit.
We analyze the game and identify conditions, in which an equilibrium contract coordinates the air-cargo
chain. We show that the minimum allotment utilization is needed to construct a coordinating contract. In our
numerical examples, we illustrate how to apply our approach to the case study of one of the biggest forwarders
in Thailand. The contract can improve both parties’ profits, compared to the scenario without any contract,
where the forwarder purchases all capacity from the spot market.

1 INTRODUCTION

Air-cargo operations play a crucial role in the mod-
ern economy, since they improve efficiency in logis-
tics and increase competitive advantages. Despite the
1% world trade by volume, airfreight represents more
than 35% of global trade by value (International Air
Transport Association, 2016). Air cargo operations
generate almost 10% of the passenger airline revenue,
more than twice revenues from the first class. Air
cargo consists of various commodity types, e.g., per-
ishable cargo, pharmaceutical products, dry ice, live
animals, electronic devices, human remains, and gold
bullion. World air-cargo is forecasted to grow over
200% over the next two decades. The largest aver-
age annual growth rate is found in Asia (Boeing Com-
pany, 2012). The air-cargo growth is partly driven by
global liberalization, cross-border e-commerce, and
the implementation of supply chain/logistics manage-
ment strategies, which emphasize on short lead times,
e.g., lean management and just-in-time (JIT) produc-
tion systems. With e-commerce boom, airfreight has
become a de facto mode of cross-border transporta-
tion, for the customer centric businesses with fast de-
livery times. A shipper can receive services directly
from an air cargo carrier or delegate to a freight for-
warder. A large portion of air cargo volume is handled

through freight forwarders.
A freight forwarder acts as an intermediary party,

who connects a shipper to an airline. It handles vari-
ous aspects of the shipping process, e.g., pickup and
delivery services, customs clearance, import and ex-
port documentation, cargo tracking and tracing. Most
forwarders do not own an airplane and obtain cargo
space on ad hoc basis or through a medium- or long-
term capacity agreement, also known as the allotment.
The carrier offers a contract to the forwarder, hoping
to increase its capacity utilization. Capacity utiliza-
tion is one of the top operational problems, faced by
the majority of the cargo carriers (Accenture, 2015).
The forwarder wants to establish the contract, in order
to receive volume discounts or lower freight charges.

Air-cargo spaces are sold in two stages: In the
first stage which happens a few months before a sea-
son starts, carriers allocate space to forwarders ei-
ther as part of a binding contract or as part of good-
will (Billings et al., 2003). Each year comprises of
two seasons, Winter and Summer schedules, specified
by the International Air Transport Association (Slager
and Kapteijns, 2004). The allotment allows the for-
warder to achieve a more economical rate, compared
to the so-called spot rates for ad hoc shipments.
Based on its anticipated volume requirement on a
given route, the forwarder pre-books a certain amount
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of capacity at a pre-specified rate. The airline al-
locates cargo capacity on the season’s flights as an
allotment. The allotment contract is established be-
fore the start of each season, whose duration ranges
from a few weeks to a year. Typically, about 50-
70% of air-cargo space is sold to forwarders through
a “hard” block space agreement (BSA) at a negoti-
ated price, a “soft” block permanent booking (PB) or
other forms of capacity purchase agreements (Sales,
2013). Carriers in North America typically allocate
a small fraction of their capacity, whereas those in
Asia Pacific allocate a large fraction (Hendricks and
Elliott, 2010). After the forwarder collects and con-
solidates shipments from its customers, and the ac-
tual allotment usage becomes known, the payment is
transferred between the carrier and the forwarder. The
carrier may impose some cancellation fee for the un-
used allotment by the forwarder. However, for the
airline’s most important forwarders, the cancellation
clause is rarely enforced; these powerful forwarders
pay only for their actual allotment usages. After the
unused allotment is released by the forwarder a few
weeks before a flight departure, the carrier re-sells the
remaining capacity on a free-sale or ad hoc basis to
direct shippers.

Since air-cargo capacity can be sold at different
prices to heterogeneous customers but cannot be sold
after the flight departure, it is a prime candidate for
revenue management (RM) strategies. Overview of
RM theory and practice can be found in textbooks,
e.g., (Phillips, 2005), (Talluri and van Ryzin, 2004)
and (Yeoman and McMahon-Beattie, 2004), (Ingold
et al., 2000), and journal articles, e.g., (Netessine and
Shumsky, 2002), (Chiang et al., 2007) and (McGill
and van Ryzin, 1999). Despite an extensive litera-
ture on passenger RM, literature on air-cargo RM is
fairly limited. (Kasilingam, 1996) and (Billings et al.,
2003) are among the early descriptive papers that pro-
vide overview and complexity of the air-cargo RM.
(Bazaraa et al., 2001) describes the air-cargo system
in the Asia Pacific. (Slager and Kapteijns, 2004) de-
scribes the implementation of air-cargo RM system at
KLM and highlight key factors that critically affect
its performance. Air-cargo RM from business per-
spective is discussed in (Becker and Dill, 2007) and
(DeLain and O’Meara, 2004). The overview and the
industry outlook of the air cargo service chain can be
found in, e.g., (Boeing Company, 2009) and (Interna-
tional Air Transport Association, 2016).

Key short-term air-cargo operations include book-
ing control (e.g., (Zhang et al., 2017), (Barz and Gart-
ner, 2016), (Levin et al., 2012) and (Amaruchkul
et al., 2007)) and shipment routing (e.g., (Prior et al.,
2004) and (Yang et al., 2006)), whereas medium-

and long-term operations include fleet replacement
and capacity contract. (Yeung and He, 2012) gives
a brief survey on shipment planning and capacity
contracting in the air cargo industry. Articles on an
air cargo capacity contract are briefly reviewed be-
low. With the exception of (Barz, 2007) which con-
siders risk-adverse party, the articles below assume
that the forwarder is rational, risk-neutral and maxi-
mizes its expected profit. (Gupta, 2008) shows that
an efficient airline-forwarder service chain can be
achieved through two flexible contract schemes. In
the first scheme, the airline imposes a fixed upfront
payment for reserving an allotment, whereas in the
second scheme there is no reservation fee, but the
airline chooses the freight rate. (Amaruchkul et al.,
2011) considers the airline’s allocation problem, in
which the forwarder possesses some private informa-
tion, e.g., its customer demand and operating cost.
An optimal allotment, which maximizes the total con-
tribution of the air cargo service chain, is attainable
via a contract with an appropriate upfront and can-
cellation fees. (Hellermann, 2013) proposes an op-
tions contract, similar to supply chain contracts in,
e.g., electricity generation and semiconductor manu-
facturing, and investigates the suitability of options
contracts in the air cargo industry. Under certain
contract parameters and a suitable spot market envi-
ronment, the options contract outperforms the fixed-
commitment contract. (Feng et al., 2015) proposes
the tying capacity allocation mechanism, in which
multiple routes with different capacity utilization are
included in the contract. (Tao et al., 2017) studies an
option contract to mitigate the carrier’s capacity uti-
lization risk. These papers employ a mechanism de-
sign approach and propose a contract scheme to im-
prove the air cargo service chain. Ours contributes to
this literature: We propose a different scheme, which
includes the wholesale price and the penalty cost as-
sociated with the unused allotment usage as well as
the required allotment utilization.

Our mathematical model captures important as-
pects of the allotment problem, commonly found in
practice. In our model, the size of the allotment
depends on the forwarder’s anticipated customer de-
mand. Contract terms, e.g., a freight charge and a
cancellation fee, may also affect the forwarder’s de-
cision: A deep discount or a small cancellation fee
makes the allotment more attractive, from the for-
warder’s viewpoint. On the other hand, if the penalty
fee associated with the unused allotment is very large,
or the wholesale contract price is still very high, com-
pared to the spot rate, the forwarder may not want a
large allotment or may not want to establish a con-
tract at all. The allotment affects the profits of both
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forwarder and carrier. The carrier’s revenue depends
on both the contract payment from the forwarder and
the revenue from direct shippers. At the time that the
contract is established, the direct-ship demand and the
forwarder’s demand remain unknown. The contract
parameter and the allotment need to be determined,
before demands materialize. To this end, we formu-
late a Stackelberg game, in which the carrier is the
leader and offers a set of contract parameters to the
forwarder. Based on its demand distribution and the
contract parameter, the forwarder determines the best
allotment size, which maximizes its own expected
profit. Our article analyzes this sequential game of
the air-cargo allotment contract.

The rest of this article is organized as follows.
Section 2 presents the Stackelberg game, and it is an-
alyzed in Section 3. For a given contract parameter,
we solve for the forwarder’s allotment, which max-
imizes its own expected profit. After obtaining the
forwarder’s best response, we solve for the equilib-
rium of the game, i.e, the optimal contract parameter
offered by the carrier. Section 4 provides some nu-
merical examples to illustrate our approach, and the
benefit from the allotment contract is quantified nu-
merically. Finally, Section 5 gives a summary and a
few extensions.

2 FORMULATION

Consider an air-cargo service chain, which consists
of a freight forwarder and an air-cargo carrier en-
dowed with cargo capacity of κ. In the strategic
level, the air-cargo capacity is assumed to be a one-
dimensional quantity; in practice, the allotment agree-
ment is given in terms of weight. (In the operational
level, the forwarder is charged based on the dimen-
sional weight, which the volume is converted to a
“volume weight.” If the cargo measurements are in
centimeters, the volume weight is obtained by divid-
ing the cubic centimeters by 6000. The chargeable
weight is the higher of the gross weight (in kilograms)
and the volume weight. This article concerns with
the forwarder’s strategic decision making, not opera-
tional.) The freight forwarder wants to pre-book ca-
pacity in bulk with an airline to achieve a discount
rate, which is less than or equal to the spot rate, de-
noted by v. The carrier wants to block some space as
an allotment for the forwarder, to achieve better cargo
utilization, because its own direct-ship demand may
not be enough to fill the cargo hold.

Let x be the size of the allotment, D f the random
customer demand to the forwarder, Da the direct-ship
demand to the carrier, on the given route. The se-

quence of events is as follows: Prior to the start of the
selling season, the carrier offers a wholesale price w
to the forwarder, and the forwarder determines the
size of the allotment, x. When the allotment agree-
ment is made, the random demands to both forwarder
and carrier are still unknown. Assume that the for-
warder’s demand materializes before the carrier’s de-
mand. (This is typically observed in practice, since
the forwarder spends much more effort to attract de-
mand as early as possible.) A few weeks before de-
parture, the forwarder knows its actual requirement.
The actual allotment usage is min(D f ,x), and the un-
used allotment is (x−D f )

+. If demand is less than the
allotment, then the forwarder can return the unwanted
space, and the airline sells the remaining capacity on
free-sale basis. The carrier may impose a penalty cost
for the unused allotment if the forwarder releases the
space after the cutoff time, usually 48 hours before
departure time. On the other hand, suppose that the
actual demand is greater than the allotment. The for-
warder books the excess demand, (D f − x)+ at the
spot rate, v.

Let p f be the forwarder’s per-unit price charged
to its customer. The forwarder’s revenue from ac-
cepting its own demand D f is given as p f D f . Let
h be the unit penalty cost associated with the unused
allotment, (x−D)+. The unit cost could be the al-
lotment reservation fee minus the refund. The rate
of the refund might depend on how easily the carrier
could sell remaining space in the spot market. It can
also depend on the timing when the unused allotment
is released. The penalty cost could also include loss
of goodwill; if the allotment utilizations by the for-
warder are consistently low on most flights, the carrier
might reduce the allotment size or terminate the allot-
ment contract in the next season. By contrast, in some
cases in which the forwarder is much more powerful
than the carrier, the unused allotment could be fully
refunded, and the unit cost would be negligible. The
forwarder’s expected contribution for an allotment x
is defined as

π(x) = E[p f D f −wmin(D f ,x) (1)

− v(D f − x)+−h(x−D f )
+]

= E[(p f −w)min(D f ,x) (2)

+(p f − v)(D f − x)+−h(x−D f )
+]

where (2) follows from the identity min(D f ,x) =
D f − (D f − x)+. In (1), the first term is the for-
warder’s revenue, the second term the wholesale pay-
ment for the actual allotment usage, the third term the
forwarder’s spot purchase for the excess demand, and
the fourth term the penalty cost associated with the
unused allotment. Note that from (2), the forwarder’s
contribution margin per unit allotment is (p f −w),

Game-theoretic Analysis of Air-cargo Allotment Contract

49



and that associated with the spot capacity is (p f − v).
The forwarder’s margin is defined as the price charged
to the customer minus the incremental cost, which is
the difference between the total cost the forwarder
would experience if it makes the commitment to its
customer and the total cost it would experience if
it does not (Phillips, 2005). For instance, the for-
warder’s incremental cost might include fuel and se-
curity surcharges, terminal handling fees, and cus-
toms clearance, which would be incurred from han-
dling one unit of cargo, as well as any commissions or
fees the forwarder would incur, assuming that the for-
warder do not pass any of these costs to its customers.
(If the forwarder directly passes on, say the fuel sur-
charge to its customer, this particular cost would not
be included in the incremental cost.)

In (1), the contract parameter w is interpreted as
the per-unit price for the actual allotment usage, and
h the per-unit penalty cost for the unused portion of
the allotment. They can be interpreted differently as
follows: The transfer payment from the forwarder to
the carrier can be written as

wmin(D f ,x)+h(x−D f )
+

= wx+(h−w)(x−D f )
+ (3)

= wx− (w−h)(x−D f )
+ (4)

In (3) and (4), we can interpret w as the wholesale
price for the entire allotment x, paid upfront by the
forwarder. If h = w, then the forwarder pays for the
entire allotment x at the wholesale price w upfront,
and there are no additional monetary transfers. If
h > w, then the forwarder pays for the allotment x up-
front at the wholesale price of w, and after its demand
is realized, the penalty rate of (h−w) is charged for
the unused portion of the allotment; see (3). If h < w,
then the forwarder pays for the allotment x upfront at
the wholesale price of w as before, but after its de-
mand is realized, the refund rate of (w− h) for the
unused portion of the allotment is returned from the
carrier to the forwarder; see (4). Since the air-cargo
selling season is so short that we do not need to ac-
count for monetary discount; thus, the expected profit
is not affected by the timing in which the payment
is collected. Our formulation subsumes both refund
and penalty rates for the unused portion of the allot-
ment. After the forwarder’s demand D f materializes,
the forwarder pays the penalty cost to the carrier for
the unused portion of the allotment if h > w; on the
other hand, if h < w, the carrier returns the refund to
the forwarder.

In practice, the contract terms may include the
wholesale price and the penalty cost (or the refund
rate) as well as the required allotment utilization. De-
fine the allotment utilization as the ratio of the ex-

pected actual allotment usage to the allotment size x:

u(x) =
1
x

E[min(D f ,x)]. (5)

If the utilization is too low, in the next season, the air-
line might decrease the allotment, or increase the con-
tract rate, or impose a minimum volume requirement,
or terminate the allotment contract. Let ur ∈ (0,1) be
the required allotment utilization. In practice, the for-
warder generally needs to maintain the utilization to
be at least 60-70%.

max{π(x) : u(x)≥ ur)}. (6)

Let Ω = (w,h,ur) be the contract parameter. After
the forwarder releases its unused allotment, the carrier
re-sells this to direct shippers. Let pa be the carrier’s
price charged to the direct customers. The carrier’s
expected profit is defined as:

ψ(x,Ω) = E[pa min(Da,κ−min(D f ,x))

+wmin(x,D f )+h(x−D f )
+] (7)

In (7), the first term is the carrier’s revenue from sell-
ing the remaining cargo space, κ−min(D f ,x), to its
own direct-ship customers, the second term the for-
warder’s payment for the actual allotment usage, and
the third term the penalty paid by the forwarder to the
carrier for the unused allotment.

Note that the carrier’s expected profit depends on
both the contract parameter Ω and the forwarder’s de-
cision on the allotment x. In our Stackelberg game,
we assume that the carrier is the leader which offers
a contract parameter Ω, and the forwarder is the fol-
lower, which decides on the allotment x. Let x∗f (Ω)
denote the forwarder’s best response to the contract
parameter Ω; i.e.,

x∗f (Ω) = argmax{π(x) : 0≤ x≤ ur}.
At the equilibrium solution, the carrier anticipates
the forwarder’s best response x∗f (Ω), and the carrier
chooses the best contract parameter Ω, which maxi-
mizes its own expected profit:

max
Ω

E[pa min(Da,κ−min(x∗f (Ω),D f ))

+wmin(D f ,x∗f (w))+h(x∗f (w)−D f )
+] (8)

subject to: x∗f (Ω)≤ κ (9)

In Section 3, we will determine the equilibrium of the
game. This is sometimes referred to as the decentral-
ized chain, in which each party maximizes its own
expected profit.

Finally, we consider the entire air-cargo service
chain: Suppose that the forwarder and the carrier
are owned by the same firm, called the integrator.
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This is referred to as the centralized chain. The to-
tal chain’s expected profit is defined as the sum of the
forwarder’s expected profit and that of the carrier:

τ(x) = π(x)+ψ(x,Ω)

= E[p f D f + pa min(Da,κ−min(D f ,x))

− v(D f − x)+]. (10)
In (10), the first term is the revenue from the cus-
tomers, which need dedicated services as offered
by the forwarder, the second term the revenue from
direct-ship customers, and the third term is the cost
from purchasing spot capacity for the excess de-
mand. In practice, p f ≥ pa because the forwarder of-
fers value-added service, e.g., customs clearance and
door-to-door service. Eq. (10) assumes that the inte-
grator accepts all the forwarder’s demand, D f . The
integrator handles x units of the forwarder’s demand
using its own capacity and reserves the remaining ca-
pacity κ−min(x,D f ) for the direct-ship customers.
The forwarder’s excess demand is handled through
the spot market. Note that in the integrator’s profit,
there are no payment terms, because we assume that
the forwarder and the carrier belong to the same firm,
and their payments cancel out when we analyze the
entire service chain.

The service chain is said to be efficient if the total
expected profit of the chain (the integrator’s expected
profit) is equal to the sum of the profits of the two
parties. The contract which allows the efficiency to
occur is said to coordinate the service chain (Cachon,
2003). The coordinating contract is a desirable fea-
ture, since there would be no efficiency loss from en-
tering into the contract, and the service chain risk is
shared appropriately. In the analysis, we will find an
equilibrium coordinating contract, if exists.

3 ANALYSIS

For each i ∈ { f ,a}, assume demand Di is a nonnega-
tive continuous random variable. Let Fi be the distri-
bution function of Di, F̄i the complementary cumula-
tive distribution function, F−1

i the quantile function,
and ξi the density function.

Define υ−1 : (0,1)→ (0,∞) as the inverse function
of the utilization function; i.e., u(x) = t if and only
if υ−1(t) = x. In words, υ−1(t) corresponds to the
allotment at which the utilization is exactly equal to t.
Lemma 1.
1. The forwarder’s constrained maximization

max{π(x) : u(x)≥ ur}
is equivalent to

max{π(x) : x≤ υ−1(ur)}.

2. In the carrier’s problem (8), constraint (9)

x∗f (Ω)≤ κ

holds, if
ur ≥ u(κ).

Proof. The first derivative of the expected utilization
u(x) = E[min(D f ,x)]/x with respect to the allotment
x is

u′(x) =− 1
x2

∫ x

0
tξ f (t)dt < 0. (11)

Eq. (11) follows from

E[min(D f ,x)] =
∫ x

0
tξ f (t)dt + xF̄f (x) =

∫ x

0
F̄f (t)dt.

Since u′(x)< 0, the utilization is decreasing in x. For
all x ≤ υ−1(ur), u(x)≥ ur. In particular, u(x)≥ ur ≥
u(κ) implies that x≤ κ since u is decreasing.

It follows from Lemma 1 that the utilization constraint
imposes the upper bound υ−1(ur) on the allotment
size. The utilization constraint involving the expected
value becomes a simple linear constraint x≤ υ−1(ur).

Theorem 1 characterizes the expected profit func-
tion and derives its maximum point. The forwarder’s
best response function x∗f (Ω) is given analytically.

Theorem 1.
1. If w ≥ v, the forwarder’s expected profit is de-

creasing and maximized at x∗f (Ω) = 0.
2. If w < v and h = 0, the forwarder’s expected profit

given an allotment π(x) is increasing and maxi-
mized at x∗f (Ω) = υ−1(ur).

3. If w < v and h > 0, the forwarder’s expected profit
is concave, unimodal and maximized at

x∗f (Ω) = min{F−1
f

(
v−w

v−w+h

)
, υ−1(ur)}.

(12)

Proof. Using identity min(D f ,x) = D f − (D f − x)+,
the forwarder’s expected profit can be written as

E[(p f −w)D f − (v−w)(D f −w)+−h(x−D f )
+].

For shorthand, let r = v−w. If r ≤ 0, the second
term r(D− x)+ is increasing, and the forwarder’s ex-
pected profit function π(x) is decreasing; thus, it is
maximized at x∗f = 0.

Note that the first term E[(p f −w)D f ] does not
depend on the allotment. Maximizing the forwarder’s
expected profit is equivalent to minimizing the “ex-
pected total cost”

η(x) = E[r(D f − x)++h(x−D f )
+].
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Its first derivative with respect to x is

η′(x) =−rF̄f (x)+hFf (x)
=−r+(r+h)Ff (x).

Note that at η′(0) = −r < 0, η(x) is decreasing
when x = 0. Also, limx→∞ η′(x) = h > 0, η(x) is
increasing when x is large. Hence, η(x) and the
expected profit π(x) are unimodal. Furthermore,
η′′(x) = (r+h)ξ f (x)≥ 0, η(x) is convex, and the for-
warder’s expected profit π(x) is concave. Setting the
first derivative to zero and invoking the first part of
Lemma 1, we obtain the expression for the optimal
solution.

The first part of Theorem 1 asserts that if the whole-
sale price is greater than the spot price, the forwarder
would not pre-book any allotment at all. On the other
hand, suppose that the wholesale price does not ex-
ceed the spot price. If the carrier imposes no penalty
cost associated with the unused allotment (i.e., h= 0),
the forwarders expected profit is increasing, and the
forwarder would choose the largest allotment that the
carrier would allow, i.e., the upper bound υ−1(ur)
given by the required allotment utilization ur. The
last part of Theorem 1 asserts that if there is a pos-
itive penalty cost (i.e., h > 0), the forwarder should
pre-book the allotment, which balances the cost as-
sociated with the unused allotment and the oppor-
tunity cost from not having enough allotment. In
the newsvendor (single-period) inventory model, the
first is referred to as the overage, and the latter is
referred to as the underage; an optimal order quan-
tity that minimizes the expected total cost E[cu(D−
q)+ + co(q−D)+] is q∗ = F−1(cu/(cu + co)) where
cu (resp., co) is the unit underage (resp., overage) cost
from ordering less (resp., more) than demand, and F
is the distribution of demand D. See a standard text-
book in operations management for the newsvendor
model; e.g., chapter 5 in (Nahmias, 2009). An opti-
mal allotment in Theorem 1 bears a striking resem-
blance to the optimal order quantity in the newsven-
dor model.

In (12), the quantity (v−w)/(v−w+h) = 1/(1+
θ) is called the critical ratio, where θ = h/(v−w).
The penalty cost h is equal to the constant θ times the
margin difference r = (v−w). It plays an important
role in the forwarder’s allotment decision, x∗f : The
larger the critical ratio or the smaller the constant θ,
the larger the allotment size, since the quantile F−1

f
is an increasing function. In particular, if the critical
ratio is 0.5 or the constant θ = 1, then an optimal al-
lotment is exactly equal to the median demand. If the
critical ratio is greater (resp., less) than 0.5 or the con-
stant θ is less (resp., greater) than 1, then an optimal

allotment is greater (resp., less) than the median de-
mand. If the penalty cost associated with the unused
allotment, h, increases, the forwarder should decrease
the allotment size. On the other hand, the forwarder
should increase the allotment, if the margin difference
r =(v−w) increases. These sensitivity analyses make
economic sense.

In Theorem 2, we analyze the carrier’s problem
when the penalty cost h > 0 is given a priori. In
Theorem 3, we provide the analysis when there is
no penalty cost, h = 0. Depending on the market
power of the two parties, some of the contract pa-
rameters might be pre-determined a priori. For in-
stance, on the high-demand route, the carrier might be
more powerful than the forwarder, and all contract pa-
rameters (w,h,ur) = Ω can be determined by the car-
rier. On the low-demand route, the forwarder might
be more powerful, and the carrier is able to choose
only one parameter, says the wholesale price w; the
rest of the contract parameters, e.g., (h,ur), are pre-
specified a priori.

Theorem 2. Assume that the penalty cost is fixed and
strictly positive, h> 0 and that the required utilization
is ur = u(κ). The carrier’s problem (8) can be re-
formulated as the allotment being the decision vari-
able:

max
x≤κ

E[pa min(Da,κ−min(x,D f ))

+ω(x)min(x,D f )+h(x−D f )
+] (13)

where

ω(x) = v− Ff (x)
F̄f (x)

h. (14)

Further assume that the two demands Da and D f are
independent. Suppose that the ratio of the spot to the
carrier’s price is v/pa > Fa(κ) and that the penalty
cost is

0 < h < [(pa−ω(κ)](1/Ff (κ)−1). (15)

Then, the carrier’s expected profit is maximized at x∗a
which is the root of:

F̄f (x)[ω(x)−h− paFa(κ− x)]

+E[min(x,D f )]ω′f (x)+h. (16)

Proof. Suppose that h> 0. For w≥ v, the forwarder’s
best response is zero allotment. For w < v, ω(x) is
implicitly as

Ff (x) =
v−ω

v−ω+h
.

After re-arranging and collecting terms, we obtain the
wholesale price as in (14).
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Let ζ(x) be the objective function in (13). Note
that

ζ′(x) = (ω(x)−h)F̄f (x)+E[min(x,D f )]ω′(x)
+h− paP(Da > κ− x,D f > x)

= F̄f (x)[ω(x)−h− paF̄a(κ− x)]

+E[min(x,D f )]ω′(x)+h

where the last equation follows from the assumption
that Da and D f are independent, so P(D f > s,Da >
t) = F̄f (s)F̄a(t). Note that ω(x) is differentiable (since
the distribution is continuous), so ω′(x) is continuous,
and the first derivative ζ′(x) is continuous. Recall that
the carrier requires that the allotment 0 < x≤ κ. Note
that at the two end points,

ζ′(0) = v− paF̄a(κ)

and that

ζ′(κ)= F̄f (κ)[ω(κ)−h− pa]+E[min(x,D f )]ω′(x)+h.

If v/pa > Fa(κ), then ζ′(0) > 0. Also ζ′(κ) < 0
from (15). Finally, if follows the intermediate value
theorem that there exists x∗a which solves ζ′(x) = 0.
Note that the carrier’s constraint x ≤ κ holds, since
ur = u(κ); see Lemma 1.

Unless the cumulative distributions Fi; i = 1,2 are
very simple, a closed-form solution to (16) does not
exist, and the equilibrium of the game needs to be
found numerically; see numerical examples in Sec-
tion 4.

Theorem 3. Suppose that h = 0 and

w = v− ε

where ε > 0 is a very small positive number. Then,
the carrier’s problem can be re-formulated as the re-
quired utilization being the decision variable:

max
ur≥u(κ)

E[pa min(Da,κ−min(υ−1(ur),D f ) (17)

+(v− ε)min(υ−1(ur),D f )]

Proof. It follows from Theorem 1 that if w < v and
h = 0, then π(x) is increasing and maximized at the
upper bound on the allotment, υ−1(ur). Constraint
ur ≥ u(κ) ensures that x∗f (Ω)≤ κ; see Lemma 1.

Theorem 3 states that if the penalty cost is h = 0
and that the wholesale price is just below the spot
price, then the forwarder chooses the largest allotment
which satisfies the required utilization. In the carrier’s
problem, the required utilization becomes the only de-
cision variable.

In practice, it is uncommon to find that an air-
line provides a full refund for the unused allotment
(thus, h = 0). To ensure its high customer service

level, the forwarder may ask for a very large allot-
ment (much greater than its anticipated customer de-
mand) and release the unwanted allotment so late that
the airline does not have enough time to re-sell it in
the spot market. To prevent the forwarder to pre-book
a large allotment, Theorem 3 suggests that the carrier
needs to impose the minimum utilization requirement
[u(x) ≥ ur] where ur ≥ u(κ). This bound ur might
be tighter than u(κ) [specifically, ur > u(κ)], since
in practice the carrier might not want to allocate the
entire capacity κ as the allotment and might want to
reserve some space for the direct-ship customers.

Finally, we analyze the integrator’s problem. Let
x0 = argmax{τ(x) : 0≤ x≤ κ}
Theorem 4.
1. If v > pa, then x0 = κ.
2. If v < pa, then x0 is a root of

vF̄f (x)− paP(D f > x, Da > κ− x). (18)

In particular, if the two demands Da and D f are
independent, then

x0 =

[
κ−F−1

a

(
1− v

pa

)]+
.

Proof. Using (D f − x)+ = D f −min(x,D f ), the inte-
grator’s expected profit (10) becomes

τ(x) = (p f − v)E[D f ]+φ(x) (19)

where

φ(x) = E[vmin(D f ,x)+ pa min(Da,κ−min(D f ,x))].
(20)

In (19), the first term is constant; thus, maximizing
τ(x) is equivalent to maximizing φ(x). Note that φ(x)
is identical to the expected profit in the well-known
two-class capacity allocation in the airline passenger
revenue management context; see e.g., Chapter 2 in
(Talluri and van Ryzin, 2004) and (Amaruchkul et al.,
2011). Recall in the two-class model, we need to de-
termine the booking limit x for the discount (class-2)
customers, which arrive first, and the remaining ca-
pacity is reserved for the full-fare (class-1) customers,
which arrive last; the airline’s expected profit is

E[p2 min(x,D2)+ p1 min(D1,κ−min(x,D2))] (21)

where for i = 1,2, the parameter pi and the random
variable Di are price and demand for the class-i cus-
tomers, respectively. By comparing (20) to (21), we
clearly see that the forwarder’s demand D f is equiv-
alent to the discount-fare customer D2, and the car-
rier’s direct-ship demand Da is equivalent to the full-
fare customer D1. If v > pa, we would accept D f
as much as possible, so x0 = κ. On the other hand, if

Game-theoretic Analysis of Air-cargo Allotment Contract

53



v< pa, we need to balance between accepting D f now
or waiting for Da which arrives later. The optimality
condition is derived in e.g., Chapter 2 in (Talluri and
van Ryzin, 2004) and (Amaruchkul et al., 2011).

Recall that in the integrator’s problem (10), we accept
all of the forwarder’s demand. If the integrator’s ca-
pacity is not enough, then the spot market is used to
handle the excess demand. Thus, if the spot price is
very expensive, then the integrator would allocate all
capacity for the forwarder’s demand in order to mini-
mize the spot purchase, and no space is protected for
the direct-ship customers. On the other hand, if the
spot market is not that large, then the integrator would
protect κ− x0 for the direct-ship customer which ar-
rives after the forwarder’s demand.

It follows from the optimality equation in Theo-
rem 4 that the integrator’s optimal allotment increases
when the spot price v increases, or the direct-ship
per-unit price pa decreases, or that the direct-ship de-
mand becomes smaller in the usual stochastic order-
ing sense. These directional changes make economic
sense.

Corollary 1. Suppose that h = 0 and w = v− ε. At
the equilibrium, the carrier imposes the required uti-
lization ur = xe(ε) where

xe(ε) =
[

κ−F−1
a

(
1− v− ε

pa

)]+

is the equilibrium allotment. For ε > 0, xe(ε) < x0,
and

lim
ε→0

xe(ε) = x0. (22)

Proof. The expression for the equilibrium allotment
follows immediately by observing the similarity be-
tween the carrier’s problem (17) and the integra-
tor’s problem (20). In the integrator’s problem (20),
the unit contribution from the allotment usage is v,
whereas in the game (17), the corresponding unit con-
tribution is v− ε. Since w = v− ε where ε is a small
positive number, we have that xe(ε)< x0.

It follows from (22) that a contract with no penalty
cost can be made as close as possible to the coordi-
nating contract. The air cargo service chain becomes
efficient, in the limiting sense, when the carrier im-
poses no penalty cost.

Suppose that the carrier imposes a positive penalty
cost h> 0. When the service chain is efficient, the op-
timality conditions in Theorem 1 and Theorem 4 co-
incide. If the integrator’s optimal allotment x0 solves
the carrier’s problem (13), or it is the root of (14), then
there exists the equilibrium coordinating contract in

the decentralized chain, and the wholesale price satis-
fies

w0 = v− γh (23)

where γ = Ff (x0)/F̄f (x0). If γh < v < pa, then the
wholesale (23) is positive, and the allotment does not
exceed the carrier’s capacity κ. As in Theorem 2,
in most cases, the equilibrium coordinating contract
needs to be found numerically.

4 NUMERICAL EXAMPLES

We provide a numerical example to illustrate our ap-
proach of finding an equilibrium in the air-cargo con-
tract game. The forwarder’s demand is taken from one
of the leading logistics providers in Thailand. Dur-
ing 2014, the forwarder did not pre-book any allot-
ments on the route from BKK airport (Bangkok Inter-
national Airport, Thailand) to DUB airport (Dublin
Airport, Ireland). In the past, around 89% of the
forwarder’s customer demands were handled by one
of the largest Persian Gulf carriers, and the rest by
the other airlines in the spot market. Assume that
the per-unit price the forwarder charges its customer
is p f = 63 THB/kg, the per-unit price the carrier
charges its direct shippers pa = 60 THB/kg, and the
spot price v = 58 THB/kg. We need to estimate the
demand distribution from the historical data. Some
classical descriptive statistics are as follows: Mini-
mum is 2.72 (kg); maximum 1142.32, median 294.88;
mean 340.13; standard deviation 211.68; skewness
1.41; kurtosis 5.69. The coefficient of variation
is 0.62; in words, the standard deviation is more
than half of the mean. The mean is greater than
the median, and skewness is positive. We fit the
gamma distribution with the (shape, rate) parameter,
(α f ,β f ) = (2.6031,0.0077). The corresponding p-
value is 0.3390. There is insufficient evidence at 0.01
level of significance to reject the null hypothesis that
the forwarder’s demand follows the gamma distribu-
tion. Assume that the direct-ship demand also follows
the gamma distribution with the (shape, rate) param-
eter (αa,βa) = (5.76,0.01), so the expected direct-
ship demand is 576 kg, and the standard deviation is
240 kg. The carrier’s cargo capacity is assumed to
be κ = 1000.

In Examples 1–3, we assume that the required uti-
lization ur = u(κ):

ur = u(κ)=
E[min(D f ,κ)]

κ
= 336.48/1000= 33.65%.

In Examples 1–2, we assume that the penalty cost is
fixed at h = 56 THB/kg.
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Example 1 (Forwarder’s problem). We study the ef-
fect of the wholesale price to the forwarder’s allot-
ment decision. We consider two cases: In the first
case, the forwarder’s expected profit is concave and
unimodal and the forwarder’s decision is given in
Theorem 1, whereas in the second case, it is decreas-
ing and the forwarder’s decision is zero allotment.

Suppose that the wholesale price does not exceed
the spot price: w = 45 ≤ 58 = v. Recall the for-
warder’s expected profit (1)

E[p f D f −wmin(D f ,x)− v(D f − x)+−h(x−D f )
+].

For the first term in (1), the forwarder’s mean demand
E[D f ] is the expected value of the gamma distribu-
tion:

E[D f ] =
βα f

f

Γ(α f )
xα f−1eβ f x

where Γ(α) is the gamma function, defined by

Γ(α) =
∫ ∞

0
xα−1e−xdx.

For the second term in (1), we evaluate the expected
allotment usage E[min(D f ,x)] using the limited ex-
pected value (LEV) function. The LEV function for
gamma random variable, Y , with the shape parame-
ter α and the scale parameter θ is

E[min(Y,x)] = αθΓ(α+1;x/θ)+ x[1−Γ(α;x/θ]

where Γ(α;x) is the incomplete gamma function de-
fined by

Γ(α;x) =
1

Γ(α)

∫ x

0
tα−1e−tdt.

(For the gamma distribution, the scale parameter
is equal to the reciprocal of the rate parameter;
for instance, the scale parameter of D f is 1/β f =
1/0.0077 = 129.8701.) For the last two terms in (1),
we use the following

E[(D f − x)+] = E[D f ]−E[min(D f ,x)]

E[(x−D f )
+] = x−E[min(D f ,x)]

where the expected allotment usage is calculated pre-
viously using the LEV function. Figure 1 shows the
forwarder’s expected profit as a function of the allot-
ment, given that the carrier offers the wholesale price
of w = 45.

The case w = 45 ≤ 58 = v corresponds to the
last case in Theorem 1: The forwarder’s expected
profit function is concave, unimodal and maximized
at x∗f (45) = 156.39 ≈ 156. When the carrier offers
the per-unit price of w = 45 for the actual allotment
usage and charges the per-unit penalty of h = 56 for
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Figure 1: Forwarder’s expected profit as a function of the
allotment, given that the carrier offers the wholesale price
of w = 45≤ 58 = v.
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Figure 2: Forwarder’s expected profit as a function of the
allotment, given that the carrier offers the wholesale price
of w = 60 > 58 = v.

the unused allotment, the forwarder chooses the al-
lotment of x∗f (45) = 156, which maximizes its own
expected profit.

On the other hand, suppose that the carrier offers
the wholesale price greater than the spot price, w =
60 > 58 = v. Then, the forwarder’s expected profit is
decreasing in the allotment; see Figure 2.

When the spot price is smaller than the wholesale
price, there is no need for the forwarder to pre-book
any space; the forwarder can purchase capacity at the
spot market for the consolidated cargo. This corre-
sponds to the first case in Theorem 1.

Example 2 (Carrier’s problem). In Example 1, we
consider two cases, (w,x∗f ) = 45,156) and (w,x∗f ) =
(60,0). In this example, the wholesale prices are var-
ied from 0 to 70, and we plot the forwarder’s best re-
sponse, i.e., the allotment which maximizes the for-
warder profit function for a given wholesale price.

Figure 3 shows the forwarder’s best response as a
function of the wholesale price. The wholesale price
function ω(x) is the inverse of the forwarder’s best
response function.

After the wholesale price function ω(x) is readily
found, we are now in the position to solve for the equi-
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Figure 3: Forwarder’s best response to the carrier’s offered
wholesale price.

librium of the Stackelberg game, x∗a which maximizes
the carrier’s expected profit (8) given the forwarder’s
best response:

max
x∈(0,κ]

E[pa min(Da,κ−min(x,D f )) (24)

+ω(x)min(x,D f )+h(x−D f )
+]

To calculate the first term in (24), we again make use
of the LEV. For all x≤ κ, we have that

E[min(Da,κ−min(D f ,x)]

=
∫ ∞

0
E[min(Da,κ−min(t,x)]ξ f (t)dt

=
∫ x

0
E[min(Da,κ− t)]ξ f (t)dt

+
∫ ∞

x
E[min(Da,κ− x)]ξ f (t)dt

=
∫ x

0
E[min(Da,κ− t)]ξ f (t)dt

+E[min(Da,κ− x)]F̄f (x).

The carrier’s profit is maximized at x∗a = 181. From
the wholesale price function ω(x∗a) = ω(181) = 40.
At the equilibrium, the carrier first offers the whole-
sale price of w∗ = 40, and the forwarder responses
with the allotment of x∗f (w

∗) = 181, which maximizes
its expected profit. Recall that the penalty cost h= 56.
At an equilibrium, the contract parameter can also be
interpreted as the per-unit upfront payment w∗ = 40
for the entire allotment, x∗f (w

∗) = 181, and a penalty
rate of h−w = 16 for the unused portion of the allot-
ment.

Recall that in 2014, the forwarder did not pre-
book any allotments on the BKK-DUB route. When
it uses only the spot market, the forwarder’s expected
profit is (p f − v)E[D f ] = (63 − 58)(338.0649) =
1690 THB per flight. With the allotment contract, the
forwarder’s profit is improved by 126.39%. Table 1
summarizes the expected profits of both parties and
the total profit in the service chain.

Table 1: Benefit from allotment contract with
(w∗,x∗f (w

∗)) = (40,181).

Profit
Forwarder Carrier Total

W/O contract 1690 34025 35715
W/ contract 3826 40568 44393
% ∆ 126% 19% 24%

In this numerical example, we see that the allot-
ment contract makes both parties better off. More-
over, the carrier’s cargo load factor with the contract
is

1
κ
{E[min(D f ,x∗a)]+E[min(Da,κ−min(D f ,x∗a))]}
= 71.72%

whereas that without the contract (the allotment x= 0)
is

1
κ

E[min(Da,κ)] = 60.88%.

With the allotment contract, the carrier improves its
cargo load factor by 17.8%.

Example 3 (Coordinating contract with positive
penalty cost). In the above example, the integrator’s
optimal allotment is

x0 = F−1
a (1− v/pa) = 778.79

and the optimal integrator’s expected profit is τ(x0) =
50395.14. Note that v− γh = 58− (24.2338)(56) =
−1299.093 < 0. The coordinating contract does
not exists in this route. The chain efficiency is
44393/50395.1 = 88.09%.

Suppose that on another route, the forwarder’s
demand is gamma with the parameter (α f ,β f ) =
(6.32,0.0077); the forwarder’s shape parameter in-
creases, so the expected demand increases from 338
to 821 kg. This route is more popular, so we assume
that prices are higher; specifically, p f = 190 and pa =
180. The integrator’s optimal allotment is x0 = 343,
and the integrator’s optimal profit is 220468.2.

Suppose the penalty cost remains h = 56.
From (23), w = v− γh = 55.7968 ≈ 56 where γ =
0.03934. However, this coordinating contract (w,x) =
(56,343) is not the equilibrium solution of the game,
which is (w,x) = (56,335). At the equilibrium, the
profits of the forwarder and carrier are 108891.6 and
111569.5, respectively, and the allotment is smaller
than the optimal allotment in the integrated chain. Al-
though the equilibrium contract does not coordinate
the chain, but the service chain efficiency

π(335)+ψ(335)
τ(343)

=
108891.6+111569.5

220468.2
= 99.997%
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Table 2: Coordinating contracts with zero penalty cost.

Wholesale Profit
Price Forwarder Carrier Total

30 10977 39418 50395
40 7660 42735 50395
56 2354 48042 50395

is nearly 100%. The total chain profit under the equi-
librium contract is slightly smaller than the optimal
integrated profit.

Suppose that the penalty cost is h = 25.5.
From (23), w = v− γh = 56.99676 = 57. This con-
tract (w,x) = (57,343) is also the equilibrium of the
game. Hence, the chain is coordinated, and the ef-
ficiency is exactly 100%. From practical viewpoint,
the two contracts may be selected by the carrier, since
their profits are nearly identical. In the first con-
tract, the upfront payment of (56)(335) = 18760 is
collected upfront, and there are no additional pay-
ments. In the second contract, the upfront payment
of (57)(343) = 19551 is collected upfront, and the re-
fund rate of 57−25.5= 31.5 for the unused portion of
the allotment is paid from the carrier to the forwarder,
after it releases the unwanted space.

Example 4 (Coordinating contract with no penalty
cost). In the limiting sense, a set of coordinating
contracts can be constructed with zero penalty cost
and the minimum utilization requirement. From
Examples 1 and 3, the integrator’s optimal profit
is maximized at x0 = 778.79. The forwarder’s
expected utilization at x0 is E[min(D f ,x0)]/x0 =
331.65/778.79 = 0.4258 = 42.58%. Suppose that the
carrier requires that the forwarder to maintain the ex-
pected utilization of ur = 0.4258. For any wholesale
prices less than the spot price v = 56, the forwarder’s
best response is υ−1(ur) = x0; see Theorem 1. Table 2
shows the profits of both parties and the total profit of
the chain.

All of these contracts (with no penalty cost h = 0
and wholesale prices smaller than the spot price, w <
v = 56) coordinate the chain. This may shred some
light on why contracts, commonly found in practice,
sometimes impose no penalty for the unused portion
of the allotment but do impose the allotment utiliza-
tion. The profit division between the two parties de-
pends on the wholesale price. If the carrier is very
powerful, it can offer a wholesale price just below the
spot price and takes almost all of the chain’s profit.
On the other hand, if the forwarder is more power-
ful, then the wholesale price becomes smaller, and the
forwarder gains the larger portion of the the chain’s
profit.

5 CONCLUDING REMARK
We consider the carrier and the forwarder, which may
enter into an allotment contract before the selling sea-
son starts. The forwarder pre-books an allotment at
some reservation fees. After the forwarder’s cus-
tomer demand materializes, the forwarder returns the
unwanted space, and some cancellation fees may be
applied. We formulate the contract design problem
as the Stackelberg game, in which the carrier is the
leader and offers a set of contract parameters. The
forwarder responses by choosing the best allotment,
which maximizes its expected profit, given the con-
tract parameter the carrier proposed first. We deter-
mine the closed-form solution for the forwarder’s best
response and give a sufficient condition for the game
to possess an equilibrium. In particular, we show that
the contract, commonly found in practice, with no
penalty cost but with the utilization requirement is ef-
ficient (in the limiting sense). Our numerical example
qualifies the benefit from the allotment contract.

A few extensions are as follows: Like many con-
sumer goods, volume discounts are commonly found
in the air cargo industry; consequently, the margin
may depend on the actual usage, and the penalty cost
may depend on the amount of the returns. The dis-
count may be applied to all the units, actually used by
the forwarder, or it may be applied only to the addi-
tional units beyond the breakpoint. The all-units case
is more common in Thailand. The contract payment
may consist of the minimum payment plus the vari-
able payment depends on the volume; for instance,
for the first 500 kilograms, the forwarder charges a
fixed payment of 51000 THB, and the variable pay-
ment is 60 THB/kilogram for each additional kilo-
gram beyond the breakpoint, 500. The variable pay-
ment is sometimes discounted. The penalty cost may
depend on not only the amount of returns but also the
timing that the unused allotment usage is released to
the carrier. It would be of practical interest to find an
optimal allotment, when dynamic pricing is in placed.
Another extension is to consider multiple freight for-
warders. Our approach could be used to construct a
heuristic solution to the case of multiple forwarders;
D f would represent the sum of all forwarders’ de-
mand, and all other cost parameters would be the av-
erages of all forwarders (e.g., p f would be the average
of all forwarders’ price to their customers). More-
over, our approach could also be applied for the pas-
senger airline allotment problem. In the passenger air-
line industry, the airline usually blocks a pre-specified
number of seats to a wholesaler/agent or other airline,
which has established contracts such as interline or
codeshare agreement prior to the start of the selling
season. We hope to pursue these or related problems.
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