
Segmentation of 3D Point Clouds using a New Spectral Clustering
Algorithm Without a-priori Knowledge

Hannes Kisner and Ulrike Thomas
Department of Robotics and Human-Machine Interaction, Chemnitz University of Technology, Germany

Keywords: Spectral Clustering, Segmentation, Graph Laplacian, Point Clouds.

Abstract: For many applications like pose estimation it is important to obtain good segmentation results as a pre-
processing step. Spectral clustering is an efficient method to achieve high quality results without a priori
knowledge about the scene. Among other methods, it is either the k-means based spectral clustering approach
or the bi-spectral clustering approach, which are suitable for 3D point clouds. In this paper, a new method
is introduced and the results are compared to these well-known spectral clustering algorithms. When im-
plementing the spectral clustering methods key issues are: how to define similarity, how to build the graph
Laplacian and how to choose the number of clusters without any or less a-priori knowledge. The suggested
spectral clustering approach is described and evaluated with 3D point clouds. The advantage of this approach
is that no a-priori knowledge about the number of clusters is necessary and not even the number of clusters or
the number of objects need to be known. With this approach high quality segmentation results are achieved.

1 INTRODUCTION

In the last years many sensors were developed, which
are able to acquire 3D point clouds, e.g. Kinect
(Wasenmüller and Stricker, 2016) or Stereo Systems
(Hirschmüller, 2008). Since these sensors provide
point cloud data, scene analysis based on point clouds
became of high interest. Segmenting the scene into
various parts reduces the complexity and computati-
onal costs e.g. for object detection or pose estima-
tion. Due to the importance of acceptable segmen-
tation results, this paper investigates spectral cluste-
ring methods, also because they seem to represent a
good and robust alternative for scene segmentation.
A point cloud consists of an unsorted set of points
P = {p1, ...,pn} with pi ∈ R3 which are either gained
by a single image or by acquisition of a sequence of
images, which then are registered to one point cloud.
In addition to point sets, curvature information can be
extracted by the principal component analysis (Rusu,
2009). Thus a set of estimated normal vectors is
available and is denoted as N = {n1, ...,nn} throug-
hout this paper. Furthermore, colour information can
be used for each point HSV = {hsv1, ...,hsvn}. For
many applications the quality of segmentation influ-
ences the convergence speed for the used methods.
Spectral clustering approaches show acceptable re-
sults for segmentation processes. The bisection of

graphs based on similarities became very popular,
but requires a-priori information about the number of
clusters, or a suitable stopping-criterion. Instead, the
self-tuning algorithm is applied in order to reduce the
a priori knowledge (Zelnik-Manor and Perona, 2004).
This method outperforms other approaches regarding
the quality of segments. However, an efficient imple-
mentation is important for the usability in applicati-
ons such as robotics. For this approach there are two
key challenges. Firstly, in order to build the Laplacian
graph, the similarity must be defined. Secondly, an ef-
ficient solution for estimating the number of clusters
must be found. Most spectral clustering algorithms
use a priori information about the number of clusters
and ignore the higher eigenvectors (see section 3.1),
but the usage of them can be exploited to obtain better
knowledge about the scene. The main advantage of
the new applied clustering method is that no a priori
knowledge about the scene is required, not even the
number of segments needs to be known in advance.
The results are compared to different spectral cluste-
ring methods. Section two presents related work and
section three describes the spectral clustering appro-
ach in detail. We describe different approaches and
compare them to our method, where higher ordered
eigenvectors are used to build a tree related to a de-
cision tree. The fourth section obtains the results and
the final section concludes with an outlook.

Kisner, H. and Thomas, U.
Segmentation of 3D Point Clouds using a New Spectral Clustering Algorithm Without a-priori Knowledge.
DOI: 10.5220/0006549303150322
In Proceedings of the 13th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2018) - Volume 4: VISAPP, pages
315-322
ISBN: 978-989-758-290-5
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

315

2 RELATED WORK

We define segmentation algorithms into region gro-
wing, kernel and graph cut based methods. Region
growing algorithms are one of the basic segmenta-
tion approaches (Preetha et al., 2012). Other seg-
mentation algorithms, that are similar to region gro-
wing algorithms, are watershed based methods for
3D mesh segmentation, where surface parameters like
curvatures and normals are used (Moumoun et al.,
2010). Another clustering algorithm fits object pri-
mitives like planes and cylinders into the scene and is
available within the Point Cloud Library (PCL) (Rusu
and Cousins, 2011). For simple objects like cups,
boxes and convex parts this technique might work,
but often the basic shapes are unknown. Usually al-
gorithms that do not require a priori knowledge of
the scene are of high interest. Other techniques ex-
ist where only few parameters like the kernel band-
width and kernel profile have to be adjusted in ad-
vance. A very widely used kernel based clustering
algorithm is the mean-shift algorithm (Comaniciu and
Meer, 2002). Spectral clustering is a method based on
spectral graph theory (von Luxburg, 2007). Another
similar approach is the normalized cut method (Shi
and Malik, 2000). This algorithm tries to find a glo-
bal optimum by investigating the best possible cut on
the similarity graph. Spectral clustering is based on
the analysis of the eigenvectors of the graph Lapla-
cian (Fiedler, 1975). (Liu and Zhang, 2004) presented
results which achieve good segmentation of meshes.
Spectral clustering does not require strong assumpti-
ons on the input data, which is a great advantage, and
as another benefit, it is superior in its performance,
at least in terms of the segmentation quality. Only
a few implementations of spectral clustering for 3D
point clouds are known, e.g. (Ma et al., 2010) and
(Funk et al., 2011). The first implementation uses
the k-means algorithm to obtain the number of ex-
pected clusters, while the latter applies only recur-
sive bi-partitioning and uses the number of clusters
as stopping-criterion. One of the first application of
spectral clustering applying surface normals is des-
cribed in (Cheng et al., 2011), but just like the other
methods, it needs the number of segments as input.
The work presented in this paper is based on spectral
clustering and extends the existing method to find the
number of clusters automatically.

3 SPECTRAL CLUSTERING

Spectral clustering is based on the analysis of the
spectrum, i.e. the set of eigenvalues and eigenvec-

tors of the graph Laplacian. First of all, the point
cloud needs to be converted into a similarity graph
G = (V,E). Then the graph G is supposed to be
cut into two disjoint subgraphs (A,B ⊂ V) such that
A∪B =V and A∩B = /0 by clustering. Each edge ei j
is assigned a weight wi j describing the similarity be-
tween node i and node j. Then the costs of a cut are
described as the sum of the cutting edges

cut(A,B) = ∑
i∈A, j∈B

wi j. (1)

This implies that the best cut is given where the costs
of the cut (A,B) are minimized. Describing the graph
cut algorithm as minimization problem is not robust
regarding to outliers. Thus, a more sophisticated
cut criterion is the normalized cut suggested in (Shi
and Malik, 2000). The normalized cut takes both
the intra-cluster and the inter-cluster weights into ac-
count. Thus, isolated vertices are no longer able to
form independent groups. The next subsection shows
how the graph is constructed and introduces the met-
hods for calculating the weights.

3.1 Graph Construction and Weight
Calculation

The base for spectral clustering algorithm is the con-
struction of a graph that represents the whole point
cloud. First, for a reduction of the information, all
points were sorted into groups called supervoxels.
The PCL includes an implementation of the Voxel
Cloud Connectivity Segmentation Algorithm (VCCS)
(Papon et al., 2013). Points with the same geome-
tric and visual information were combined to small
regions. The relevant parameters are the colour (0.3),
spatial (0.7) and normal importance (1), in which the
values in the brackets represent their influence of each
feature. The described algorithm targets on a seg-
mentation by normals, whereby the value for normal
importance is much superior to the color importance.
Furthermore, the voxel and seed resolution depend on
the point cloud, but can be predefined for each ca-
mera. In our case we set those parameters to values
resulting in around 500 supervoxels for a cloud with
300.000 points. An advantage of this algorithm is the
creation of a graph of the supervoxels. Every super-
voxel represents a vertex and if two supervoxels are
adjacent, an edge exists. Each supervoxel carries in-
formation about the average orientation and the cen-
troid. The following step is to calculate the weights of
the edges. Therefore we can make two assumptions.
The first is to test whether two adjacent supervoxels i
and j are located on a plane, if so we assume that they
belong to the same object. Hence we declare them to

VISAPP 2018 - International Conference on Computer Vision Theory and Applications

316

be fully connected, which means the weight wi j = 1.
Therefore we assume two normals ni and n j to be ap-
proximately parallel if ∠(ni,n j) ≤ 10◦. If this test
is true, we estimate a plane with the centroid ci and
ni. Afterwards we check if the distance between c j
and the plane is less than three times the cloud reso-
lution, defined by the mean value of each point and
its nearest neighbor. If so, we assume both super-
voxels as a plane. Another assumption is that convex
regions can be combined. This idea is used in (Lai
et al., 2009) and (Karpathy et al., 2013). They present
different criterions for convexity, that differ in some
special cases. Thus we combine these criterions to
get better results. This leads to consider two adjacent
supervoxel as convex cv(vi,v j) = 1, if the following
equation helds

cv(vi,v j) =

1 : (n j−ni)(di, j)> 0 ∧
(di, j− (di, j ·ni)) ·n j > 0,

0 : otherwise,
(2)

where di, j = c j− ci. Another possibility to calculate
the weight is to use the Gaussian function (von Lux-
burg, 2007):

Φ(r) = exp
(−r2

2σ2

)
. (3)

Here, σ represents the Gaussian parameter and r re-
presents the Euclidean distance between the features
or properties of two vertices. To calculate r we use
the normal and color information. So for normals rn
is calculated by rn = |n j−ni|. The color information
of the points arises from the camera sensor, they are in
the standard RGB format. It is difficult to distinguish
between the brightness of each point, for that reason
we convert the RGB information to the HSV format.
Afterwards we get three color histograms (for each
color channel and) for each supervoxel. The next step
is to calculate the cross correlation between each of
the color channels for two combined vertices. After-
wards we build the average of all correlations corrHSV
between two supervoxels. The next step is to convert
the range of corrHSV to the range of rn. Then we cal-
culate rHSV = |1−2 · corrHSV |. It leads to the weight
for each edge:

wi j =

{
1 , if plane or convex
pnΦ(rn)+pHSV Φ(rHSV)

pn+pHSV
,otherwise

(4)

where pn and pHSV represent the weight for each fe-
ature (normally pn + pHSV

!
= 1). In our algorithm we

use a higher fraction for the normals (pn = 0.8). The
next subsection describes the normalized graph cut
method and its relation to spectral clustering.

3.2 Normalized Graph Cuts

According to the assigned weights of each edge, let
the degree of a vertex vi ∈V be di =∑n

j=1 wi j with n=
|V | and let the volume of a subset A ⊂ V be defined
as vol(A) = ∑n

i=1 di. The volume can be seen as the
density of a subset A. The normalized cut criterion
minimizes the similarity between the groups while it
maximizes the similarity within the groups. This two-
way normalized cut criterion can be expressed by

Norm cut(A,B) =
cut(A,B)
Vol(A)

cut(A,B)
Vol(B)

. (5)

There is no known algorithm to solve the minimiza-
tion problem for balanced criteria like the normalized
cut in polynomial time. In the following section it will
be shown that the minimization problem can be sol-
ved numerically by using eigensolvers and techniques
of the spectral graph theory.

3.3 Graph Laplacians

The unnormalized Laplacian matrix is defined as L =
D−W where D is a diagonal n× n matrix which
contains the degree of each vertex on its diagonal
Di,i = di and W is the adjacency matrix that contains
information about the weights between the vertices
W = (wi, j)i, j=1,...,n. Hence, the matrix L with the ele-
ments li, j is expressed by

li, j =

di , if i = j and ei j ∈ E,
−wi j , if i 6= j,
0 , if i 6= j and ei j /∈ E,

(6)

where L is indexed by the vertices vi and v j. From
(von Luxburg, 2007) we know that L has many pro-
perties:

• L is symmetric and positive semi-definite which
follows from the matrices D and W. Thus, all ei-
genvalues satisfy λ≥ 0.

• A trivial solution of the minimization of the qua-
dratic form is given by the constant one vector.

• L provides n eigenvalues 0 = λ1 ≤ λ2 ≤ ...≤ λn.

According to this property, the first non-trivial solu-
tion is the second smallest eigenvalue λ2. The cor-
responding eigenvector is called the Fiedler vector
(Fiedler, 1975). Fiedler recognized the dependency
between eigenvalues and the connectivity graph:

• λ2 > 0 if the graph is connected, i.e. the terms of
fT Lf do not vanish.

• The multiplicity of λi, 0= λi < λi+1 is equal to the
number of connected components (Fiedler, 1975).

Segmentation of 3D Point Clouds using a New Spectral Clustering Algorithm Without a-priori Knowledge

317

The Fiedler vector provides the optimal bisection of a
graph, by separating those with smaller values from
those with larger values. Therefrom the recursive
clustering method can be drawn. The relation be-
tween normalized cuts and spectral analysis can be
found in the quadratic form of L by using the indica-
tor vector f = (f1, ..., fn)

T ∈ Rn thereby the cut(A,B)
(von Luxburg, 2007) can be concluded as

fT Lf =
1
2

n

∑
i, j=1

wi j(fi− f j)
2. (7)

Hence, the solution of the real valued minimization
problem for the normalized cut can be obtained by
solving the generalized eigenvalue system Lf = λDf.
The generalized eigenvalue problem might also be
transformed into D−1Lf = λf and Lnormf = λf. To
solve this eigenvalue problem, we can choose an ei-
gensolver for the real symmetrical eigenvalue pro-
blem.

3.4 Clustering

After the graph construction we attempt to subdivide
our graph into different groups. Therefore we try to
find groups with high weights and cut edges with low
weights. This leads to spectral analysis. Following
two different approaches are most common – a recur-
sive and an iterative solution. The following chapters
describe both approaches in detail.

3.4.1 Recursive Partitioning

Following the first approach, the connectivity graph
is consequently bisected recursively by applying the
Fiedler vector on each subgraph. In consequence of
the real numbered Laplacian matrix, splitting by the
sign on the Fiedler-Vector, as described in (Hagen
and Kahng, 1992), might take on a smooth progres-
sion and they do not differ that much from each other.
Another heuristic is to choose the median of the va-
lues as splitting point. Then the recursion stops as
the variance is below a threshold or the number of ex-
pected clusters has been reached. For example, the
algorithm by (Hagen and Kahng, 1992) uses the nor-
malized cut and compares the results with a predefi-
ned threshold. The recursive spectral clustering has
two major disadvantages. One is that the eigensol-
ver needs to be executed according to the recursion
depth and the second disadvantage is, that for some
algorithms the number of clusters has to be predefi-
ned. This means a-priori information about the scene
is required.

Instead of subdividing the graph G recursively by
the Fiedler vector to avoid unstable results and expen-

sive computation, it is possible to obtain all partitions
by solving the eigenvalue problem at once.

3.4.2 Structure of the Graph Laplacian

There are various algorithms for the iterative proce-
dure depending on the used graph Laplacian. Before
explaining the iterative clustering method, it is neces-
sary to know details about the block diagonal matri-
ces. In the case of Cluster C being connected, well
separated components with a distance going to infi-
nity, the matrix L can be rearranged in a matter that
all vertices which belong to a specific connected com-
ponent reside within a block on the diagonal of L.
Entries of an eigenvector which do not belong to the
cluster (i.e. block) are padded with zeros. Each sub-
matrix LC on the diagonal holds exactly one eigen-
vector corresponding to the eigenvalue 0, because it
is connected. The spectrum of L is the union of the
spectrum of each block LC. A common approach is
to form a matrix U ∈ Rn×C which columns are the
first C eigenvectors corresponding to the smallest ei-
genvalues of L and treating each row of U as a point
yi ∈UC in a C-dimensional subspace. In the ideal case
of a block diagonal matrix L, the points yi are loca-
ted on different orthogonal axes in the C-dimensional
subspace, if they belong to different subgraphs. Or
they are coincide at a certain point along an axis, if
they belong to the same subgraph LC. Thus, each
dimension of the subspace represents the affiliation
of a certain point to one possible cluster (von Lux-
burg, 2007). From this observation a simple method
to find the number of clusters is to count the occur-
rence of the eigenvalue 0, corresponding to the num-
ber of connected components. Since this works only
if the clusters are well separated, a common appro-
ach is to look for a salient gap in the magnitude of the
eigenvalues. If the distance of the magnitude of two
eigenvalues is high compared to the other eigenvalues
of the first C eigenvectors, then this indicates that the
higher of both eigenvectors attempts to cut connected
components, where it is wrong because of a strong co-
herence. While it is easy to find a unique (eigen)gap
that maximizes4λ = |λC−λC−1| for separated clus-
ters, it is hard or even impossible if the clusters are
not clearly separated.

3.4.3 Self-Tuning Algorithm

With the Self-tuning method it is possible to find
the clusters automatically (Zelnik-Manor and Perona,
2004). This approach aims to recover the block diago-
nal structure of U. The eigenvector matrix Û ∈ Rn×C

is treated as the perturbed matrix U = Û+H (Davis-
Kahan theorem), with Hn×C (von Luxburg, 2007).

VISAPP 2018 - International Conference on Computer Vision Theory and Applications

318

The Davis-Kahan theorem states that the difference of
the perturbed (canonical) and not perturbed subspaces
is bounded, and the differences of the subspaces can
be expressed by the canonical angles. Thus, the eigen-
vector matrix U is treated as the (nearly) diagonal ma-
trix Û rotated by an orthogonal matrix R∈RC×C such
that U = ÛR. So, it is guaranteed that there exists a
rotation R̂ which recovers (nearly) Û. The remaining
problem is the selection of the unknown number of
clusters respectively the choice of the first C smallest
eigenvectors. It now appears that taking too few ei-
genvectors will not span a full basis for the subspace.
Consequently, taking more eigenvectors might deliver
a better grade of diagonally. Taking too many eigen-
vectors results in more than one entry per row (Zelnik-
Manor and Perona, 2004). This observation results
in an incremental approach which takes the first two
eigenvectors and tries to align them with the canoni-
cal coordinate system. After this has been done, the
next eigenvector is added to the already rotated ma-
trix and the previous step is repeated. This procedure
continues until a predefined number of C has been re-
ached. C, i.e. the number of clusters, which provides
the best grade of diagonally is then selected (Zelnik-
Manor and Perona, 2004). The negative aspect for
this approach is the following: the higher the maxi-
mum number of C the more iteration will be execu-
ted. This leads to a rise in computational costs. If the
number is too low it is possible to find a false num-
ber of clusters, which could be a result of too many
objects or the existence of a lot of outliers.

3.4.4 New Aproach

To overcome the issues mentioned above we combine
the concepts of both approaches. Firstly we use, as
mentioned by (Hagen and Kahng, 1992), one eigen-
vector to subdivide one graph into subgraphs. But as
mentioned in (Zelnik-Manor and Perona, 2004) we
also take a look at the higher eigenvectors. We know
that each row of U belongs to one voxel in the point
cloud. Like it is shown in Figure 1 There are diffe-
rent voxels in the point cloud labelled with different
colors that belong to the sorted rows of U. With a
look at Figure 2, we can see that for a higher eigen-
vector the corresponding points and rows have been
changed. This leads to the fact, that with different
eigenvectors we can build different subgraphs. As al-
ready described the higher the eigenvector the more
difficult is the partitioning of the graphs. To overcome
this problem we are going to erase inessential points
of the graph. This leads to the following procedure,
as shown in Algorithm 1.
Firstly, we solve the unnormalised eigenvalue pro-
blem and use the Fiedler vector to divide the graph

Figure 1: Fiedler vector and the corresponding points of an
example point cloud.

Figure 2: 4th eigenvector and the corresponding points of
an example point cloud.

G into two subgraphs Gs1 and Gs2 with Gs1∩Gs2 = /0.
This is done by the calculation or the search of the
highest eigengap. Afterwards we take a look at the
third eigenvector. For the partitioning of Gs1 we have
to delete the rows of U that belong to Gs2. Thus,
we consider only the necessary points. Then we get
further subgraphs. This calculation is done, until a
specific stopping-criterion is reached. Therefore we
can use an objective function like Equation 5 or, as
we did, a calculation of the average cut-size: Mean
cut(Gs1,Gs2) = cut(Gs1,Gs2)/n, where n represents
the number of cuts. If a set threshold τ is reached
the calculation or partitioning of the subgraph will be
stopped and we get the list of subgraphs. This corre-
sponds to the clusters of the points as shown in Figure
4 and can be represented as a segmentation tree for
the scene as visualized in Figure 3. For this scene the
whole graph G1 was separated into subgraphs using
up to six eigenvectors. The advantage of this method
is, that the eigenvalue problem needs to solved only
once, reducing the computation time.

Segmentation of 3D Point Clouds using a New Spectral Clustering Algorithm Without a-priori Knowledge

319

Algorithm 1: Clustering with higher eigenvectors.

Data: Graph G. Threshold τ
Result: List of subgraphs that reached the

threshold
1 Set up the degree matrix D ∈ Rn×n with the

column sums of W ;
2 Calculate the Laplace matrix L and compute

eigenvalue problem for graph G;
3 Search Fiedler vector for4λmax;
4 Calculate the objective function of the cut

with respect to4λmax;
5 if objective function < τ then
6 Cut G into subgraphs;
7 Take the third eigenvector of G and

search the first subgraph for4λmax;
8 Calculate the objective function of the

new cut with respect to4λmax;
9 if objective function < τ then

10 Cut subgraphs into further subgraphs;
11 Repeat seperatly for each subgraph

with the calculation of the objective
function of the next cut and the next
eigenvector;

12 end

Figure 3: The corresponding segmentation tree of an exam-
ple scene.

4 EVALUATION

For the evaluation the approach is tested with 3D
point clouds. Therefore we used the Modified Ob-
ject Segmentation Database (OSD-v0.2) proposed by
Alexandrov1. This dataset consists of different sce-
nes with box-like or cylindrical shaped objects. The
evaluation of such an algorithm is often difficult and

1https://github.com/PointCloudLibrary/data/tree/master/
segmentation/mOSD, originally proposed by (Richtsfeld
et al., 2012)

Figure 4: The resulting segmentation with the segmentation
tree from Figure 3 of an example scene.

depends on the needs for following algorithms. The-
refore we check different evaluation values. Firstly,
there is the calculation of correct labelled points. Fol-
lowing the above we check the ratio per ground truth
segment and count how many points are labelled cor-
rectly. Secondly, the number of different segments
per ground truth label are counted, which represents
the oversegmentation (OverSeg). In addition, we me-
asure the so called weighted overlap (WOv) and un-
weighted overlap (UWOv) for this evaluation; we im-
plemented the algorithms from (Arbelaez et al., 2011)
and (Hoiem et al., 2011). Here an overlap between the
ground truth data and each segment is calculated:

WOv(G,S) =
1
N ∑

Gi∈G
|Gi| ·max

S j∈S

(
Gi∩S j

Gi∪S j

)
, (8)

UWOv(G,S) =
1
|G| ∑

Gi∈G
max
S j∈S

(
Gi∩S j

Gi∪S j

)
, (9)

where a better segmentation results in values near to
one. Such criteria are used in recent work, e.g. by
(Stein et al., 2014) and evaluate the relative overseg-
mentation over the whole scene. Afterwards we build
histograms of the results and calculate the mean per
each evaluation criterion. The overall results for all
algorithms are listed in Table 1. Additionally we used
different values of τ for our algorithm to show its in-
fluence. The results in table 1 and Figure 5 show
that in some situations the results of our segmenta-
tion have improved compared to the other algorithms,
which explains higher values respectively values near
to one in table 1. The explanation of the values for
oversegmentation is difficult because the equation do
not consider outliers or the quantity of points per seg-
ment. A more detailed look shows that our algorithm
and the Self-tuning algorithm are challenged by con-
cave regions, like the inner part of a bowl or cup. This
is a result of the weight calculation, where we prio-
ritize convex regions. However, in this situation the
algorithm by Hagen demonstrates advantages which
could be a result of the threshold for the objective

VISAPP 2018 - International Conference on Computer Vision Theory and Applications

320

Table 1: Results for the whole dataset using different algorithms.

τ = 0.50 τ = 0.70 τ = 0.8 Self-Tuning Hagen
Fraction of correct
labeled points 0.9344 0.927 0.927 0.914 0.9342

Oversegmentation 2.66 2.8229 2.927 3.01 2.11
Weighted Covering 0.96 0.962 0.9613 0.9576 0.8653

Unweighted Covering 0.95 0.9522 0.9469 0.941 0.9336

Figure 5: Results of the segmentation algorithm. The first column represents the original point cloud, the second the related
ground truth data, column three the results from the algorithm by Hagen and column four the results from the Self-Tuning
algorithm. The last column shows the results from our algorithm.

function. This threshold leads to more unstable re-
sults which means that sometimes there is a higher
over- or undersegmentation. Overall the algorithm,

that we developed, demonstrates more stable results
than the algorithm by Hagen and underlines advanta-
ges compared to the Self-Tuning algorithm.

Segmentation of 3D Point Clouds using a New Spectral Clustering Algorithm Without a-priori Knowledge

321

5 CONCLUSION

In this paper a new unsupervised learning approach
for 3D point cloud segmentation is suggested which
uses a spectral clustering with higher eigenvectors in
combination with a decision tree. We described how
the new spectral clustering approach can be imple-
mented to obtain high quality results. When applying
this solution no a priori knowledge about the scene,
not even the number of clusters, is necessary and it is
shown that only a threshold for an objective function
has to be adapted in a few cases. Thus, the spectral
clustering method outperforms many other clustering
algorithms. This approach is very robust with respect
to various input data. Moreover in comparison to ot-
her methods the eigenvalues and eigenvectors are only
calculated once and then inserted into the segmenta-
tion tree. In the future we will use this clustering met-
hod as a pre-processing step for object detection and
pose estimation. Further adaption can be considered
regarding the similarity weight.

ACKNOWLEDGEMENTS

This work is supported by the European Social Fund
(ESF) and the Free State of Saxony.

REFERENCES

Arbelaez, P., Maire, M., Fowlkes, C., and Malik, J. (2011).
Contour detection and hierarchical image segmenta-
tion. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, pages 898–916.

Cheng, J., Qiao, M., Bian, W., and Tao, D. (2011). 3D
human posture segmentation by spectral clustering
with surface normal constraint. Signal Processing,
91(9):2204–2212.

Comaniciu, D. and Meer, P. (2002). Mean shift: a ro-
bust approach toward feature space analysis. IEEE
Transactions on Pattern Analysis and Machine Intel-
ligence, 24(5):603–619.

Fiedler, M. (1975). A property of eigenvectors of non-
negative symmetric matrices and its application to
graph theory. Czechoslovak Mathematical Journal,
25(4):619–633.

Funk, E., Grießbach, D., Baumbach, D., Ernst, I., Boer-
ner, A., and Zuev, S. (2011). Segmentation of large
point-clouds using recursive local pca. International
Conference on Indoor Positioning and Navigation.

Hagen, L. and Kahng, A. B. (1992). New spectral methods
for ratio cut partitioning and clustering. IEEE Tran-
sactions on Computer-Aided Design of Integrated Ci-
rcuits and Systems, 11(9):1074–1085.

Hirschmüller, H. (2008). Stereo processing by semiglobal
matching and mutual information. IEEE Transacti-
ons on Pattern Analysis and Machine Intelligence,
30(2):328–341.

Hoiem, D., Efros, A. A., and Hebert, M. (2011). Recovering
occlusion boundaries from an image. International
Journal of Computer Vision, 91(3):328.

Karpathy, A., Miller, S., and Fei-Fei, L. (2013). Object
discovery in 3d scenes via shape analysis. In Interna-
tional Conference on Robotics and Automation.

Lai, Y.-K., Hu, S.-M., Martin, R. R., and Rosin, P. L. (2009).
Rapid and effective segmentation of 3D models using
random walks. Computer Aided Geometric Design,
26(6):665–679.

Liu, R. and Zhang, H. (2004). Segmentation of 3d mes-
hes through spectral clustering. In Proceedings of
the Computer Graphics and Applications, pages 298–
305. IEEE Computer Society.

Ma, T., Wu, Z., Feng, L., Luo, P., and Long, X. (2010).
Point cloud segmentation through spectral clustering.
In The 2nd International Conference on Information
Science and Engineering, pages 1–4.

Moumoun, L., Chahhou, M., Gadi, T., and Benslimane,
R. (2010). 3d hierarchical segmentation using the
markers for the watershed transformation. Internati-
onal Journal of Engineering Science and Technology,
2(7):3165–3171.

Papon, J., Abramov, A., Schoeler, M., and Wörgötter, F.
(2013). Voxel cloud connectivity segmentation - su-
pervoxels for point clouds. In Computer Vision and
Pattern Recognition (CVPR), 2013 IEEE Conference
on, pages 2027–2034.

Preetha, M. M. S. J., Suresh, L. P., and Bosco, M. J. (2012).
Image segmentation using seeded region growing. In
2012 International Conference on Computing, Elec-
tronics and Electrical Technologies, pages 576–583.

Richtsfeld, A., Morwald, T., Prankl, J., Zillich, M., and Vin-
cze, M. (2012). Segmentation of unknown objects in
indoor environments. In International Conference on
Intelligent Robots and Systems.

Rusu, R. B. (2009). Semantic 3D Object Maps for Everyday
Manipulation in Human Living Environments. PhD
thesis, Technische Universität München.

Rusu, R. B. and Cousins, S. (2011). 3D is here: Point Cloud
Library (PCL). In International Conference on Robo-
tics and Automation (ICRA), Shanghai, China.

Shi, J. and Malik, J. (2000). Normalized cuts and image
segmentation. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 22(8):888–905.

Stein, S. C., Wrgtter, F., Schoeler, M., Papon, J., and Kul-
vicius, T. (2014). Convexity based object partitioning
for robot applications. IEEE International Conference
on Robotics and Automation, pages 3213–3220.

von Luxburg, U. (2007). A tutorial on spectral clustering.
Statistics and Computing, 17(4):395–416.

Wasenmüller, O. and Stricker, D. (2016). Comparison of
kinect v1 and v2 depth images in terms of accuracy
and precision. In ACCV Workshops.

Zelnik-Manor, L. and Perona, P. (2004). Self-tuning
spectral clustering. In Advances in Neural Informa-
tion Processing Systems 17, pages 1601–1608. MIT
Press.

VISAPP 2018 - International Conference on Computer Vision Theory and Applications

322

