Efficient Projective Transformation and Lanczos Interpolation on ARM Platform using SIMD Instructions

Konstantinos Papadopoulos and Kyriakos Vlachos

Computer Engineering and Informatics Department, University of Patras, Patras, Greece

Keywords: NEON, SIMD, Image Processing, Projective Transformation.

Abstract: This paper proposes a novel way of exploiting NEON SIMD instructions for accelerating projective transformation in ARM platforms. Instead of applying data parallelism to linear algorithms, we study the effectiveness of SIMD intrinsics on this non-linear algorithm. For image resampling, Lanczos interpolation is used since it is adequately accurate, despite its rather large complexity. Multithreading is also employed for optimal use of system resources. Moreover, qualitative and quantitative results of NEON’s performance are presented and analyzed.

1 INTRODUCTION

Projective transformation is used in a wide range of computer vision applications. It provides a linear mapping between arbitrary quadrilaterals which is very useful for deforming images controlled by mesh partitioning. Some of the most well-known applications are the removal of perspective distortion, image stabilization, panoramic mosaic creation and object tracking. Moreover, Lanczos resampling is one of the most accurate algorithms for image upscaling, according to (Burger and Burge, 2009). However, it is computationally intensive, which can result in a poor performance. The demand of faster multimedia applications is high, therefore improving projective transformation’s processing time is crucial.

SIMD units’ contribution in multimedia application development has been significant over the past years. It allows parallel execution of both data type operations (arithmetic, logical, etc.) and load/store operations. Theoretically, this unit is able to accelerate operations up to 16 times, but this applies only to certain data types. Optimal use of SIMD is possible at the low assembly level. However, developers have the option to use SIMD intrinsics in high-level programming (C/C++), taking advantage of interoperability and improved control over data.

Work presented in (Welch et al., 2012) regards the implementation 2D bilinear interpolation algorithm using NEON SIMD instructions. This algorithm is exclusively used for image scaling. The speedup achieved compared to the baseline algorithm was 1.97-2.06 times. Moreover, in (Mitra et al., 2013), authors proposed SIMD vector operations to accelerate code performance on both low-powered ARM and Intel platforms. They implemented Float to Short data type conversion, binary image thresholding, Gaussian Blur filter, Sobel filter and edge detection algorithms in various ARM devices and managed to achieve speed gains from 1.05 to 13.88 compared to compiler auto-vectorization. In addition, (Mazza et al., 2014) achieved a speed gain of 3.76-3.86 in bilinear interpolation using multithreading (2 Cortex-A9 cores) and SIMD instructions. Additional work in SIMD multimedia processing field includes linear image processing using OpenCL’s SIMD capabilities in (Antao and Sousa, 2010) and acceleration of alpha blending algorithm in a Flash application using the Intel x86-64 platform’s SIMD (SSE) instructions in (Perera et al., 2011).

This paper proposes a way of accelerating projective transformation using NEON SIMD instructions. The chosen resampling method is Lanczos interpolation which is demanding and computationally heavy, but produces notably results in terms of accuracy. Multithreading is utilized too, offering efficient use of CPUs’ resources. Overall performance evaluation of the proposed implementation is based on the speed gains. Qualitative evaluation is also provided for the output frames.
2 SIMD IMPLEMENTATION

Our implementation is divided into two separate parts: projective mapping function and resampling. Each of these parts affects differently the way of data parallelization.

2.1 SIMD Projective Mapping

Inverse mapping approach is used in this context. This means that, for each discrete pixel position \((u, v)\) in output image, the corresponding continuous point \((x, y)\) is computed, using the inverse geometrical transformation \(T^{-1}\). In this method, each pixel of the target image \(I'\) is calculated and filled exactly once, so that there are no empty spots or multiple fillings. The calculation of coordinates \(x\) and \(y\) is shown in (1) and (2), respectively:

\[
x = \frac{1}{R} \cdot (d_{11}'x' + d_{12}'y' + d_{13}) = \frac{d_{11}x' + d_{12}y' + d_{13}}{d_{31}x' + d_{32}y' + 1} + 1
\]

\[
y = \frac{1}{R} \cdot (d_{21}'x' + d_{22}'y' + d_{23}) = \frac{d_{21}x' + d_{22}y' + d_{23}}{d_{31}x' + d_{32}y' + 1}
\]

where \(d_{ij}\) is the corresponding \(A_{adj}\) element.

The parallelization of data processing is performed between iterations. Thus, inner loop is changed so that four consecutive coordinate pairs are loaded into a Q NEON register (128-bit).

Apparently, floating-point data type must be preserved for easier homogenization. On one hand, in case of integers, homogenization could not be effective as it would require independent processing of each point (there is no division instruction for integers). On the other hand, there is a floating-point NEON SIMD intrinsic \((vrecpsq,f32())\) which finds the reciprocal of a NEON register’s lanes using the Newton-Raphson iteration. In our case, this operation is performed twice for more accurate results. Algorithm 1 demonstrates the projective mapping function using SIMD instructions.

2.2 SIMD Lanczos Interpolation

The interpolation method used in this context is 2nd order Lanczos because it maintains balance between computational cost (in contrast to higher order Lanczos interpolation) and accuracy. Its 1D kernel is defined in (3):

\[
w_{L_2}(x) = \begin{cases}
1, & |x| = 0 \\
\frac{\sin(\frac{\pi x}{2}) \cdot \sin(\pi x)}{\pi^2 x^2}, & 0 < |x| < 2 \\
0, & |x| \geq 2
\end{cases}
\]

(3)

Due to its high complexity, a LookUp Table (LUT) of 10000 fixed-point kernel values is used. In addition, this kernel is \(x/y\) separable, therefore the 2D Lanczos interpolation can be expressed as in equation (4):

\[
I' = \frac{1}{w} \sum_{y=-|y|}^{|y|} \sum_{x=-|x|}^{|x|} w_{L_2}(y-v) w_{L_2}(x-u) I(u,v) w_{L_2}(x-u)
\]

(4)

where \(w = \sum_{y=-|y|-1}^{|y|+2} w_{L_2}(y-v) \sum_{u=-|u|-1}^{|u|+2} w_{L_2}(x-u)\)

In ARGB colorspace, four output subpixel values will be processed in each iteration. Moreover, every output pixel will have to be normalized in order to avoid image artifacts. The proposed procedure for the SIMD implementation of Lanczos 2 interpolation fol-
low. Initially, out-of-frame image pixels are removed using logical operations instead of if-clauses. This operations’ results are used to mask both \(y \)-axis and \(x \)-axis Lanczos kernel values (\(w_y(i) = w_L(\text{\(y_0 - v_i \))}, \ w_x(i) = w_L(\text{\(x_0 - u_i \))}, i = 0 \ldots 3 \)) loaded from LUT. Then, \(y \)-axis kernel values are loaded into two NEON registers of 8 lanes each, where every \(w_y(i) \) is put into four consecutive lanes. Following, four pixels (\(I(u_i, v_j) \), \(I(u_i, v_j+1) \), \(I(u_i, v_j+2) \), \(I(u_i, v_j+3) \)) are loaded in one NEON register using 16 subpixels of 8 bits each. These values are converted into 16-bit signed integers and are stored in two NEON registers of \(8 \times 16 \) lanes. Thereafter, each subpixel is multiplied with its corresponding Lanczos kernel value and these two vectors are added together, as shown in Figure 1. After that, the upper and the lower half of register are added pairwise and multiplied with scalar \(w_x(i) \), \(i = 0 \ldots 3 \).

![Figure 1: Vectorized convolution in y axis.](image)

The above procedure is repeated four times for each \(w_x(i) \) during SIMD convolution. The implementation concludes with output pixel normalization. The reciprocal of \(w \) is computed and then multiplied with output subpixels, followed by the clamping of their values in \(0 \rightarrow 255 \) range. Finally, each produced pixel is stored as 32-bit unsigned integer in output image array. The dataflow diagram of overall SIMD Lanczos interpolation is presented in Figure 2.

![Figure 2: SIMD Lanczos interpolation dataflow diagram.](image)

3 RESULTS

In this section, qualitative and quantitative results are presented. Performance of both baseline and SIMD projective transformation is compared, for examining the effectiveness of the NEON unit. For this purpose we use two different CPUs: one Cortex-A9 Exynos 4412 Quad CPU, clocked at 1.6 GHz, which...

NEON unit uses 64-bit long registers (128-bit Q registers) and one Qualcomm MSM8992 Snapdragon 808 which consists of two CPUs (quad-core 1.44 GHz Cortex-A53 & dual-core 1.82 GHz Cortex-A57).

Input and output images are considered to have the same size, since we keep only the input image mapping coordinates which correspond to the central part of the output image. Subsequently, if output image is larger than source image, then only the central part of it (of same dimensions) will appear on display. Otherwise, output image is supposed to appear in the center of the screen.

Initially, our implementation’s qualitative results are examined. For this purpose, MATLAB is used in order to produce algorithm’s original output and our results are compared with them using its built-in imshowpair() function. Figures 3 and 4 display two of these comparisons. In particular, Figures 3(a) and 4(a) display the initial image, Figures 3(b) and 4(b) the results for transformation matrix \([-2, 0.3, 0, -2, 0, 0, 0, 1]\) and \([-2, 0.3, 0, 0, -2, 0, 0, 0, 1]\) respectively and Figures 3(c) and 4(c) the results for transformation...
Figure 3: Input image in subfigure (a) and two of our proposed system’s results compared to MATLAB’s corresponding results in subfigures (b) and (c), where gray area is common for compared systems’ results.

In order to produce the performance results, three different image sizes are used for each platform. Furthermore, three different cases are examined, based on the parallelization technique. The first case is the baseline algorithm without any parallelization at all. The second case is NEON algorithm and the third case is NEON+multithreading (NEON+mt) algorithm in which all CPU cores are utilized. For each case, three different examples of transformation matrices are examined: a simple scale matrix, an affine matrix and a projective matrix. The performance of baseline and NEON cases is presented in Tables 1 and 2.

Using the projective matrices, the processing times for Small, Medium and Large images are 247.188 ms, 495.519 ms and 1878.818 ms respectively for baseline implementation and 111.603 ms, 223.969 ms and 801.489 ms respectively for NEON implementation. There is a small deviation in processing times for affine and scale matrices.
Table 1: Execution times for baseline, NEON and NEON+multithreading cases for each image size and transformation matrix (Cortex-A9).

<table>
<thead>
<tr>
<th>Image size</th>
<th>Projective</th>
<th>Affine</th>
<th>Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>427x640</td>
<td>247.19 ms</td>
<td>111.6 ms</td>
<td>30.03 ms</td>
</tr>
<tr>
<td>640x853</td>
<td>495.52 ms</td>
<td>223.97 ms</td>
<td>61.44 ms</td>
</tr>
<tr>
<td>1067x1867</td>
<td>1878.82 ms</td>
<td>801.49 ms</td>
<td>217.73 ms</td>
</tr>
</tbody>
</table>

Table 2: Execution times for baseline, NEON and NEON+multithreading cases for each image size and transformation matrix (Cortex-A53 & Cortex-A57).

<table>
<thead>
<tr>
<th>Image size</th>
<th>Projective</th>
<th>Affine</th>
<th>Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>427x640</td>
<td>246.88 ms</td>
<td>108.79 ms</td>
<td>29.97 ms</td>
</tr>
<tr>
<td>640x853</td>
<td>491.52 ms</td>
<td>222.15 ms</td>
<td>59.54 ms</td>
</tr>
<tr>
<td>1067x1867</td>
<td>1801.91 ms</td>
<td>818.83 ms</td>
<td>211.48 ms</td>
</tr>
</tbody>
</table>

Figures 5 and 6 display the speed gain of NEON implementation. The speedup factor achieved in Cortex A9 CPUs ranges from 2.2 to 2.34 and, if all four NEON units (included in CPU cores) are utilized, the speedup factor increases to 8.06-8.63. In the meantime, the speed gain achieved in Cortex A53 + Cortex A57 CPUs is significantly higher. In particular, it ranges from 3.58 to 4.41 for simple NEON implementation and increases to 8.7-10.75 for NEON+mt case.

The contribution of SIMD Lanczos interpolation in the above results is significant. On Cortex A9 CPU, it offers an average speedup factor of 2.46, while SIMD projective mapping reaches a speedup factor of 1.97.

Figure 7 shows the profiling of NEON+mt case on Cortex-A9 CPU using ARM Streamline Community Edition. According to the results, combining SIMD and multithreading programming leads to optimal utilization of system resources during the main processing.

4 CONCLUSIONS

In this paper, SIMD implementation of projective transformation is presented. Despite its non-linearity, a significant speedup is achieved, as a result of the effective use of SIMD instructions. Combining SIMD
Figure 7: NEON+mt implementation profiling.

with multithreading programming offered the best possible speed gain which, in many cases, exceeded 800%. Future work includes testing of modern ARM architectures and further acceleration in order to reach real-time performance for high definition video applications.

ACKNOWLEDGEMENTS

This work was partially supported by a graduate grant from IRIDA labs (http://www.iridalabs.gr/). The authors would like to thank Dr. Christos Theocharatos and Dr. Nikos Fragoulis for their support and their fruitful discussions.

REFERENCES