
Unsupervised Learning for Mental Stress Detection
Exploration of Self-organizing Maps

Dorien Huysmans1,3, Elena Smets2,3, Walter De Raedt3, Chris Van Hoof2,3,4, Katleen Bogaerts5,6,
Ilse Van Diest6 and Denis Helic7

1KU Leuven, Department of Electrical Engineering (ESAT), STADIUS Center for Dynamical Systems,
Signal Processing and Data Analytics, Leuven, Belgium

2KU Leuven, Department of Electrical Engineering (ESAT), Leuven, Belgium
3imec, Leuven, Belgium

4imec, Holst Centre, Eindhoven, The Netherlands
5REVAL - Rehabilitation Research Center, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium

6Research Group on Health Psychology, Department of Psychology, KU Leuven, Leuven, Belgium
7Knowledge Technologies Institute, Graz University of Technology, Graz, Austria

Keywords: Mental Stress Detection, Skin Conductance, Electrocardiogram, Unsupervised Learning, SOM.

Abstract: One of the major challenges in the field of ambulant stress detection lies in the model validation. Commonly,
different types of questionnaires are used to record perceived stress levels. These only capture stress levels
at discrete moments in time and are prone to subjective inaccuracies. Although, many studies have already
reported such issues, a solution for these difficulties is still lacking. This paper explores the potential of unsu-
pervised learning with Self-Organizing Maps (SOM) for stress detection. In unsupervised learning settings,
the labels from perceived stress levels are not needed anymore. First, a controlled stress experiment was
conducted during which relax and stress phases were alternated. The skin conductance (SC) and electrocar-
diogram (ECG) of test subjects were recorded. Then, the structure of the SOM was built based on a training
set of SC and ECG features. A Gaussian Mixture Model was used to cluster regions of the SOM with similar
characteristics. Finally, by comparison of features values within each cluster, two clusters could be associated
to either relax phases or stress phases. A classification performance of 79.0% (±5.16) was reached with a
sensitivity of 75.6% (±11.2). In the future, the goal is to transfer these first initial results from a controlled
laboratory setting to an ambulant environment.

1 INTRODUCTION

The concept of stress is difficult to capture because
stress has both psychological as well as physiological
aspects. Moreover, both of these aspects are complex
and are typically caused by multiple factors. The psy-
chological part has been described by multiple mo-
dels such as the Demand-Control Model (Karasek
and Theorell, 1992) and the Effort-Reward Imbalance
Model (Siegrist, 2010). Physiologically, stress can be
described by the activity and balance of the autono-
mic nervous system.

The interest in stress detection shifted from labo-
ratory conditions to ambulatory, enabled by the gro-
wth of wearable sensor technology (Fahrenberg et al.,
2007). Recently, wearables have been slowly introdu-

ced into daily-life studies of stress. This unveiled a
major problem concerning validation. Validating am-
bulant stress detections is not a clearly defined pro-
cess as there is no precise recording of what the par-
ticipant’s activities are. The only apparent way for
validation are different types of questionnaires and di-
aries, filled in multiple times a day.

Kusserow et al. (2013) monitored the participants
by a diary of daily activities (e.g. working, transport,
conversation) and mood-state questionnaires which
had to be filled in as soon as possible after perceiving
stress arousal. However, most questionnaires were
completed randomly and could not be related to the
estimated stress-arousal phases.

Adams et al. (2014) performed an Experience
Sampling Method study, enabled by their specifically
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designed smartphone app SESAME. Participants re-
ceived approximately every half hour a notification to
fill in the self-report and were free to fill in additional
self-reports. In practice, many experience-sampling
responses were delayed due to practical reasons of the
application or occupation of the participants, or parti-
cipants did not respond at all to notifications. More-
over, periods of time associated with very high levels
of stress were under-reported.

Hovsepian et al. (2015) made an attempt to pro-
vide a gold standard for continuous stress measure-
ments from wearable sensors and presented a stress
model cstress. They prompted participants at random
15 times a day to fill in an Ecological Momentary As-
sessment (EMA). This EMA self-report served as the
ground truth for field validation. The cstress model
compensated for the arbitrary lag between the occur-
rence of a stressor and its self-report logging.

Validation of the ambulant data requires a diffe-
rent approach compared to lab studies. Labelling of
the physiological data is often nonexisting or inaccu-
rate . Although many studies have already repor-
ted these issues regarding stress level labelling in an
ambulant environment (Adams et al., 2014; Hovse-
pian et al., 2015), these problems are rarely addressed
in the analyses. This encourages the exploration of
unsupervised stress detection algorithms.

Medina (2009) identified stress states from ECG
signals using several unsupervised learning methods.
These are clustering algorithms (including K-means
and Spectral Clustering) and clustering ensemble
methods as well as dimensionality reduction techni-
ques (Principal Component Analysis and Forward Se-
quential Search) and evolutionary algorithms.

The study by Grigore and Bornoiu (2014) inves-
tigated stress detection by using electrodermal fea-
tures. Their evaluation method relied on observati-
ons of the SC signal by an expert observer, combined
with questions to the test subjects about their state, to
mark a recorded signal as stress or relax. An unsu-
pervised method was preferred and they proposed to
use a Kohonen Neural Network, also known as Self-
Organizing Map (SOM). Training the SOM was unsu-
pervised, though to point out regions of the SOM re-
lated to stress or relax phases, the authors compared
the neural activation patterns with the signal from the
expert observer. As such, quite elaborate expert infor-
mation was essential for marking of the SOM.

The application of unsupervised techniques are
relatively unexplored within the field of mental
stress detection. The SOM in particular has been
successfully applied in many other fields such as
brain computer interfaces (Han and Kim, 2016) and
geophysics (Aguado et al., 2008; de Matos et al.,

2007; Bauer et al., 2012). In the current research
an algorithmic pipeline is explored based on the
unsupervised learning algorithm SOM. The purpose
is to rule out the use of labels. The pipeline’s input
are heart rate variability (HRV) and skin conduc-
tance response features. These are derived from
lab recorded ECG and SC signals during a series
of stress-inducing tasks. The algorithmic pipeline
only relies on the recorded physiological signals
and no expert observations are required for marking
stress and relax states within the SOM. The findings
will enhance our understanding of the link between
physiological signals and stressors and may advise
further strategies for stress detection in ambulatory
settings.

2 MATERIALS AND METHODS

2.1 Experimental Setup and Data Set

The goal is to define a psychophysiological stress
profile of test persons. During laboratory experi-
ments, participants have to complete three different
stress-inducing tasks. During these tasks, the par-
ticipants were monitored with the NeXus-10KMII
(MindMedia, Herten, The Netherlands) and Health
Patch (imec, Leuven, Belgium) to measure skin con-
ductance (SC) and the electrocardiogram (ECG).

2.1.1 Test Subjects

The data set consisted of a group of 12 test subjects
(age 37.3 ±8.8). Within this group, there were five
male participants and seven female participants, re-
cruited at Tumi Therapeutics, a multidisciplinary am-
bulatory treatment center specialized in the treatment
of stress-related symptoms and syndromes. They
all reported stress-related complaints, suffering from
chronic stress, but were not diagnosed with any clini-
cal disorder (e.g. depression or burnout). This asses-
sment was performed by a therapist. One test subject
was not included for further analysis as the data re-
corded by Health Patch was too noisy.

2.1.2 Experimental Protocol

The laboratory experiment lasted for 14 minutes and
was set up as seen in Figure 1. The subjects had to
complete three stress tasks of two minutes. All three
tests are commonly used to induce stress in laboratory
settings (Liao and Carey, 2015). The tasks were each
separated by a two minutes resting phase. Before the
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Figure 1: Experimental protocol.

first task a two minutes baseline was recorded. The
first stress task was the Stroop Color Word Test (Van
der Elst et al., 2006), words of colours were written
in a different colour as the colour the word represent,
e.g. the word blue is printed in red ink. The test sub-
ject had to say the colour of the ink as correct and
as fast as possible. The challenge is to suppress the
instinctive response of saying the colour the word re-
presents. The correct answer is red in this example.
This is a commonly used stress task. Additional stress
could be added when the test supervisor urges the test
subject to be faster or to say wrong when a mistake
has been made.

The second test was a calculation test in which the
participant continuously had to subtract the number
7 from the number 1081. In the same manner as the
Stroop test, additional stress could be added by the
test supervisor.

The final stress task was a stress talk, the partici-
pant had to talk about a very stressful or emotionally
negative event in his life and to recall his feelings re-
lated to this event. The test supervisor could ask que-
stions such as How did you feel?.

2.1.3 Sensors and Signals

Two sensors were applied: the NeXus-10MKII and
the Health Patch. The NeXus-10MKII (Mind Media
BV, Herten, The Netherlands), referred to as Nexus, is
not a wearable sensor, though highly accurate. There-
fore this sensor could serve as a gold standard to com-
pare measurements of other sensors. The following
signals were measured: blood volume pulse (BVP)
and skin conductance. BVP was sampled at 128Hz
and SC at 32Hz. The Health Patch is a wearable mo-
nitoring system developed by imec. The sensor is a
patch consisting of a sensor node and an electronic
module to record the electrocardiogram (ECG). Sam-
pling frequency was 256Hz.

Based on BVP of Nexus and the extracted heart
rate from the Health Patch signal, both sensors were

visually synchronised in time. The signals of 4 test
subjects could not be synchronised, as the Health Pa-
tch data lacked quality. Therefore the data set consis-
ted of 7 test subjects.

The BVP signal of Nexus was not further proces-
sed as more detailed HRV information can be extrac-
ted from the ECG signal.

2.2 Self-organizing Map

SOMs represent higher-dimensional data as a glo-
bally ordered two-dimensional map. The SOM can
be seen as an elastic grid of nodes fitted to the input
signal space, while preserving the topological re-
lationships of the signal space (Kohonen et al., 2001) .

Here, the input signal space is an n-dimensional
feature space. Every node i is associated with a
weight vector wi = [µi1,µi2, ...,µin]

T ∈ Rn. The input
feature vector is xstim = [ξ1,ξ2, ...,ξn]

T ∈Rn (Arnrich
et al., 2010). The feature vector xstim is mapped to the
best-matching node c by comparing it with all weight
vectors wi. As a metric of similarity, the smallest Eu-
clidean distance is searched:

c = argmin
i
||xstim−wi||. (1)

During training, topological relationships of the input
feature space are projected onto the two-dimensional
SOM by adapting the weight vectors wc. Nodes that
are topographically close to the best-maching node c
are also activated to learn from the same input xstim.
This results in a smoothing effect on the weight vec-
tors of nodes in the neighbourhood and eventually le-
ads to global ordering of the map. Input vectors are
presented to the map in a random order. Given xstim at
time t, the update of the weight vector wi of node i is
as follows:

wi(t +1) = wi(t)+hci(t)[xstim(t)−wi(t)]. (2)

The initial values of the wi(0) can be arbitrary.
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Table 1: Feature set.

Physiological signal Feature Description

SC SC PH signal power in a phasic SC signal
SC SC RR SC responses rate
SC SC DIFF2 signal power in second difference from SC signal
SC SC MAG sum of the magnitudes of SC responses
SC SC DUR sum of the duration of SC responses
SC Slope slope of the regression line of the signal
SC PH %50 percentile 50 of peak height
SC PH %85 percentile 85 of peak height

ECG mean HR mean heart rate
ECG SDNN standard deviation of all normal RR intervals

(i.e. NN intervals)
ECG RMSSD root-mean-square successive difference

of all normal RR intervals
ECG LF HRV low frequency HRV (power in the 0.04-0.15 Hz band)
ECG HF HRV high frequency HRV (power in the 0.15-0.4 Hz band)
ECG LFHF HRV ratio (LF HRV) / ( HF HRV )

The neighbourhood function hci(t) can be defined
in terms of the Gaussian function:

hci(t) = α(t) · exp
(
−||rc− ri||2

2σ2(t)

)
, (3)

with 0 < α(t) < 1 the learning-rate factor and σ
the width of the kernel, both decreasing monotoni-
cally in time. rc ∈ R2 and ri ∈ R2 are the location
vectors in the SOM of nodes c and i, and with increa-
sing ||rc− ri||, hci→ 0.

After training, a test set can be mapped onto the
SOM to determine its set of best-matching nodes.

2.3 Training of SOM

The first stage was mapping the higher-dimensional
feature space onto a two-dimensional grid, while pre-
serving the topological relationships within the data.
Measurement data was mapped by the SOM algo-
rithm to different areas on this grid. Component pla-
nes visualised the relationship between variables.

The SOM was trained using SC and ECG fea-
tures. In total 14 features were derived from SC
and ECG signals (Table 1) of the laboratory data-
set. This is a set of frequently applied features for
stress analysis found in literature. The studies of Bou-
csein (2012), Kappeler-Setz et al. (2010) and Wijs-
man et al. (2011) focus on SC analysis. Other re-
search focuses on stress reactions using HRV: Vrij-
kotte et al. (2000), Hjortskov et al. (2004), Melillo
et al. (2011) and Taelman et al. (2009). Additionally,
several studies apply a combination of physiological
signals (Zhai et al., 2005; Healey and Picard, 2005).
The calculation of features was performed with a win-

dow size of 50s and a step size of 20s. These parame-
ters were found to be optimal for performance after
cross validation. Additionally, features were normali-
sed within every test subject by Z-score standardiza-
tion to account for inter-subject variation.

The topology of the SOM lattice was chosen ac-
cording to Vesanto and Alhoniemi (2000) and Aguado
et al. (2008). The number of nodes M was heuristi-
cally determined as M = 5

√
N with N the number of

samples in the data set. The aspect ratio of the lattice
is the square root of the ratio of the two largest eigen-
values of the data set. As the average training data set
during cross validation consisted of 267 feature vec-
tors, the SOM topology contained 80 nodes [10 × 8].

Training of the SOM was performed by the SOM
functions of the PyMVPA package for multivariate
pattern analysis in Python (Hanke et al., 2008). The
learning rate α in Eq. 3 was by default set to 0.05.
The maximum number of iterations was set to 400,
at which the SOM should be converged. The nodes of
the SOM are settled at a location in feature space. The
value of each feature at every node can be visualised
as component planes. The advantage is that relations-
hips between features can be interpreted graphically.

2.4 Analysis of Trained SOM

The second stage consisted of exploring the patterns
emerged in the SOM during training. These patterns
were outlined by clustering. Every node of the SOM
was assigned to a cluster by the clustering method
Gaussian Mixture Models. The implementation was
based on the scikit-learn package of Gaussian Mixture
Models (Pedregosa et al., 2011). The main interest
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was finding a stress and a relax cluster. Therefore, the
number of components was set to two.

To determine the feasibility of the algorithmic pi-
peline for stress detection, it was validated by a leave-
one-participant-out (LOO) cross validation scheme.
This means the dataset was split in n folds, with n
being the number of participants. One fold contains
the data of one test person. With each iteration, the
SOM was trained by n-1 folds, leaving out the data
of one test person. The resulting trained SOM and its
clustering will differ slightly with every iteration.

The quality of the different clusters can be expres-
sed in terms of cohesion and separation of the clus-
ters. These factors are merged in the silhouette coeffi-
cient (Pedregosa et al., 2011; Rousseeuw, 1987). The
advantage of this performance characteristic is that it
does not rely on labels. The silhouette coefficient s of
sample i is defined as:

s(i) =
b(i)−a(i)
max(a,b)

, (4)

with a the mean intra-cluster distance and b the mean
distance to all samples of the nearest cluster. As only
two clusters are considered, b is simply the other clus-
ter than to which i is assigned to. The range of the
silhouette coefficient is between -1 and 1. If s(i) ap-
proaches 1, it implies that a(i)� b(i) and the mean
intra-cluster distance is much smaller than the mean
distance to samples of the other cluster. Therefore,
sample i is well-clustered and assigned to the right
cluster. When s(i) is about zero, the sample i lies
equally far from both clusters and it is not clearly de-
fined which is the right cluster. If s(i) is close to −1,
a(i)� b(i), this means that the sample is misclassi-
fied. The final silhouette score of the LOO cross vali-
dation is the average of n testing procedures.

To further analyse the clusters, the statistics of the
clusters were derived. Feature values of all nodes
within one cluster were gathered and represented in
a boxplot.

Additionally, labels were introduced exclusively
for performance calculations. Thereby, the procedure
presented in this paper can be compared to other su-
pervised methods. During the stress experiment, two
possible phases are alternated, a relax phase and a
stress phase. We assume that the stress tasks effecti-
vely induced stress as has been shown in earlier re-
search (Smets et al., 2016). The references therefore,
do not rely on subjectively reported stress levels. In
order to classify unseen data in these two phases, the
training data is split and labelled as data recorded du-
ring relax (label 0) or stress (label 1) phase. The la-
tency of stress onset after the start of a stress-inducing
task or the fading of a stress response after ending the

task are not taken into account. The classification per-
formance is the average of sensitivity and specificity.
The final classification performance of the LOO cross
validation is the average of n testing procedures.

3 RESULTS AND DISCUSSION

3.1 SOM Structure

Component planes present graphically the value of
each feature at every node after training. For illus-
trative purpose, the SOM was trained by the whole
data set instead of partially by n−1 folds. The corre-
sponding components planes are depicted in Figure 2.
Colour bars next to every component indicate the va-
lue at the node, for which red means high and blue
low values.

Variables with similar colours in corresponding
regions are positively correlated. These correlations
are confirmed in the correlation matrix (Figure 3). It
can be seen that components SCPh, SCRR, SCmag,
SCdur, PH %50, PH %85 and mean heart rate exhi-
bit low values at the lower central region of the SOM.
The upper left and right corners are dominated by
high values. These characteristics are related to an
elevated level of sympathetic activity of the autono-
mous nervous system (McCorry, 2007; Task Force of
the European Society of Cardiology the North Ame-
rican Society of Pacing Electrophysiology, 1996).
SCdiff2 and slope show correlation as well, for which
SCdiff2 contains more extreme positive values. This
is explained by the fact that slope is based on the first
derivative of the SC signal and SCdiff2 on the second
derivative. Only the strongest variation in signal is re-
tained. Mean heart rate and RMSSD appear strongly
negatively correlated. Mathematically, these features
are calculated with a similar formula. Moreover, lite-
rature confirms that an increase in heart rate and a lo-
wer vagal tone (RMSSD) are signs of stress (Vrijkotte
et al., 2000). LFHF has a positive correlation with
mean HR as seen centrally in the component plane,
with reduced values and in the upper left corner for
increased values. Furthermore, HF exhibits large re-
gions with a value below its average, especially in the
corners where other features have increased values.
The study of Hjortskov et al. (2004) confirms these
observations as they found a reduction in the high-
frequency component of HRV and an increase in low-
to-high frequency ratio during a stress situation. Ad-
ditionally, a stable low-frequency component was re-
ported, which is not clear from the component plane
in this paper.
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Figure 2: Component planes of trained SOM. Training was performed with whole data set for illustrative purpose.

Figure 3: Correlation values between variables.

3.2 Clusters

The outcome of clustering of the SOM trained on the
whole data set can be seen in Figure 4. A clear corre-
lation can be seen between the clusters and the com-
ponent planes of the SOM. The center of the SOM is
a cluster coloured in blue, which corresponds to re-
gions with low feature values observed in the com-
ponent planes. The second cluster is the surrounding
area, coloured in red. This corresponds to the com-
ponents planes of SCPh, SCRR and mean HR. This
visual observation is a first quality check of the re-
sulting clusters.

The silhouette coefficient after ten runs of LOO
validation was 0.301 (±0.0152). The standard de-
viation indicates that all silhouette coefficients were
approximately equivalent. This outcome is accepta-
ble as it is sufficiently larger than zero, meaning most
samples were assigned to the right cluster.

Figure 4: Clustering of trained SOM.

3.3 Cluster Identification

Boxplots of both clusters over different training folds
were compared. It was seen that these clusters do
not capture random patterns every training fold, yet
exhibit repeating patterns. This indicates that clusters
have similar characteristics.

Furthermore, as the training of the SOM was
unsupervised, it was not known to which state a clus-
ter belongs, stress or relax. From literature (Boucsein,
2012; Kappeler-Setz et al., 2010; Vrijkotte et al.,
2000; Hjortskov et al., 2004) it is known that during
stress both SCph values and mean HR are high. This
prior knowledge was applied onto the first training
fold. The boxplots of leaving out test subject 1 were
taken as a reference and classified. Interestingly, the
pattern of all boxplot values corresponded to charac-
teristics that can be assigned to either stress or relax.
Cluster A was characterised by boxplots with nega-
tive feature averages, while these in cluster B were
positive or close to zero. Therefore cluster A could be
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associated to relax and cluster B to stress.
Cluster boxplots of other iterations were compa-

red to these classified boxplots. To determine cor-
responding boxplots, the Root Mean Squared Error
(RMSE) between the average of boxplots was compa-
red. Corresponding boxplots have a minimum RMSE
between them. Subsequently, corresponding boxplots
define corresponding states (stress or relax) of the
clusters. The results are depicted in Figure 5, 6, 7,
and 8, for SC features in cluster relax and stress and
for ECG features in cluster relax and stress respecti-
vely. Iteration 1 to 4 are depicted, while omitting ite-
ration 5 to 7 for improved readability of the figure.

It can be clearly observed that similar boxplot pat-
terns exist between training iterations. Boxplots of a
particular feature are within the same range over dif-
ferent training iterations. Moreover, within every trai-
ning iteration (compare Figure 5 with Figure 6 and
Figure 7 with Figure 8), it can be seen that the feature
values are low, i.e. under the zero mean, within the
relax cluster, and high, i.e. higher than the zero mean,
within the stress cluster. Exceptions are RMSSD and
HF, as expected from literature. The decrease of
HF in stress situations is less explicit compared to
RMSSD. These results were consistent with literature
and observations made for the component planes.

3.4 Performance

Test data points were mapped to the SOM to deter-
mine their best-matching nodes and predict the state
of stress or relax. The points were assigned to a state
corresponding to the cluster the node belongs too.
The clustering of the trained SOM with mapped test
data and their actual labels is depicted in Figure 9.
Label 1 corresponds to stress, label 0 to relax.

After ten runs of LOO validation, the average tes-
ting performance is 79.0% (±5.16). The testing per-
formance is the average of sensitivity and specifi-
city. The sensitivity, indicating the ability to recog-
nize stress phases, has a value 75.6% (±11.2).

Grigore and Bornoiu (2014) applied SOM as well
for stress detection, using similar SC features and re-
ported an average recognition rate of 86.25%. Diffe-
rent was the their labelling system for validation of
their outcomes. An expert observer evaluated the SC
signal in combination with participant questionnaires
to manually label the input signal. Recognition rates
will be higher as labelling of the data is based on a
priori evaluation of the physiological signals. Furt-
hermore, it is not clear how their average recognition
rate is computed. Moreover, their number of partici-
pants is not reported for comparison.

Smets et al. (2016) had a similar experimental se-

tup and reported a maximum performance rate for
non-personalized models of 82.7% using SVM. Simi-
lar features for ECG and SC were applied, with ad-
ditional temperature and respiration features. This is
comparable to the performance in this paper. As unsu-
pervised techniques are generally harder to apply, the
potential of SOM for stress detection exists.

4 FUTURE WORK

This paper only covers data derived from laboratory
experiments, however the SOM technique has been
introduced to tackle problems in modelling and vali-
dation of ambulant data. Therefore, it would be of
great interest to apply this algorithmic pipeline onto
ambulant data and to further determine its feasibility.

Several papers apply an intermediate step between
training and clustering the SOM, namely the crea-
tion of a U-matrix followed by Kmeans clustering
(Aguado et al., 2008) or a gradient function of the
SOM followed by the watershed segmentation algo-
rithm (Bauer et al., 2012). The U-matrix or gra-
dient function displays the distance between neigbou-
ring nodes and allows visual delineation of the clus-
ters. The subsequent clustering or segmentation step
would only be performed in a two-dimensional space.
The approach with building a U-matrix has been per-
formed, though no clear conclusions could be drawn
from visual inspection of the U-matrix. Most proba-
bly the border between the stress and relax cluster
cannot be clearly drawn here. One of the reasons is
that physiological responses of the stress tests slowly
vanish into periods defined as relax. Future models
would benefit from taking into account response and
recovery periods.

Advances can be made in more detailed evalua-
tion of the clustering step. Other parameters or other
cluster algorithms could be explored to better sepa-
rate stress from relax clusters. An interesting aspect
would be to add more clusters to capture stress levels
directly from the SOM or determine the confidence of
a predicted stress level. A first step would be to add
a third cluster outlining intermediate values and focus
on the extreme values of stress and relax.

A limitation of the study was the size of the data
set which was rather small. For the current research,
this was not a major problem as it focussed on the
exploration of the algorithmic pipeline. For future va-
lidation, larger data sets are required.
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Figure 5: Boxplots of SC feature values in cluster relax, with number referring to the training iteration.

Figure 6: Boxplots of SC feature values in cluster stress, with number referring to the training iteration.

Figure 7: Boxplots of ECG feature values in cluster relax, with number referring to the training iteration.

Figure 8: Boxplots of ECG feature values in cluster stress, with number referring to the training iteration.
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Figure 9: Clustered SOM with labels of projected testing
data. Red cluster indicates a region classified as stress and
blue for relax. Labels 1 indicate stress data points and labels
0 relax data points.

It is suggested to validate the developed model
of unsupervised learning with Self-Organizing Maps
against the field-data and field self-reports of ambu-
latory models such as the cStress model (Hovsepian
et al., 2015). This model aims to provide a gold
standard for continuous stress assessment of ambulant
data. Validation against this data set would contribute
to building a gold standard as more methods can be
compared in the future.

5 CONCLUSIONS

An unsupervised algorithmic pipeline based on SOM
and clustering has been introduced to explore the fe-
asibility of SOM for unsupervised stress detection. It
was tested on laboratory data. After ten runs of LOO
validation, the testing performance is 79.0% (±5.16).
As this was comparable to the performance of a su-
pervised algorithm on a very similar test setup, the
technique based on SOM is considered to be suitable
for mental stress detection. Future research should
investigate if the results obtained here in a controlled
laboratory setting can be transferred to an ambulant
environment.
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Tröster, G., and Ehlert, U. (2010). Discriminating
stress from cognitive load using a wearable eda de-
vice. IEEE Transactions on Information Technology
in Biomedicine, 14(2):410–417.

Karasek, R. and Theorell, T. (1992). Healthy Work: Stress,
Productivity, and the Reconstruction of Working Life.
Basic Books.

Kohonen, T., Schroeder, M. R., and Huang, T. S. (2001).
Self-Organizing Maps. Springer-Verlag New York,
Inc, 3rd edition.

Kusserow, M., Amft, O., and Tröster, G. (2013). Monitoring
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