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Abstract: PDE-based methods like level-set methods are a valuable and well-established approach in visualization to
extract surfaces from volume data. We propose a novel method for the efficient computation of a signed-
distance function to a surface in point-cloud representation and embed this method into a framework for PDE-
based surface extraction from point-based volume data. This enables us to develop a fast level-set approach
for extracting smooth isosurfaces from data with highly varying point density. The level-set method operates
just locally in a narrow band around the zero-level set. It relies on the explicit representation of the zero-level
set and the fast generation of a signed-distance function to it. A level-set step is executed in the narrow band
utilizing the properties and derivatives of the signed-distance function. The zero-level set is extracted after
each level-set step using direct isosurface extraction from point-based volume data. In contrast to existing
methods for unstructured data which operate on implicit representations, our approach can use any starting
surface for the level-set approach. Since for most applications a rough estimate of the desired surface can
be obtained quickly, the overall level-set process can be shortened significantly. Additionally, we avoid the
computational overhead and numerical difficulties of PDE-based reinitialization. Still, our approach achieves
equivalent quality, flexibility, and robustness as existing methods for point-based volume data.

1 INTRODUCTION

Many modern simulation methods generate unstruc-
tured point-based volume data, i. e., scalar fields
where the data points may have an arbitrary distribu-
tion in a 3D space and do not exhibit any connectivity.
A major group of such data stems from Lagrangian
numerical simulations of natural phenomena such as
fluid dynamics. They allow for the reproduction of
complex natural phenomena by not only simulating
the evolution of data at the sample points but also sim-
ulating the flow of the sample points under respective
forces. Hence, data points move over time, change
their neighborhoods, and are distributed with a highly
varying density. Such simulations are typically car-
ried out with millions of particles.

Level-set methods have a large variety of applica-
tions. In scientific visualization, they are used to ex-
tract boundary surfaces of features from volume data.
Typically, the algorithms operate on rectilinear cells
and a given initial level-set function is modified to ex-
plicitly or implicitly minimize a given energy func-
tional.

An approach generalizing the basic idea of level
sets to work directly on unstructured point-based vol-
ume data was presented in (Rosenthal and Linsen,

2008b). They do not resample the data over a struc-
tured grid using scattered data interpolation, which
inevitably introduces resampling errors, which can
grow enormously for data sets with highly varying
point density, unless the sampling points are chosen
very densely which lets the data size explode. un-
structured points avoids this source of error.

The level-set approach models the evolution of a
surface by applying forces in normal direction. To
allow for easy change of the topology of the sur-
face, it is implicitly represented as the zero-level set
of a level-set function. The evolution is carried out
by transforming the level-set function using an itera-
tive numerical integration scheme, which implicitly
transforms the surface. The approach typically in-
duces complex calculations and the evaluation of par-
tial differential equations at each sample location and
each iteration step. When dealing with large data
sets and small time-integration steps, this can lead to
enormous computation times until convergence of the
level-set process. The calculations for unstructured
point-based data are even more complex than those in
the gridded case which was the major drawback of the
method by Rosenthal and Linsen. Later, the approach
was modified to utilize a narrow-band technique and
significantly speed up the computations (Rosenthal
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Figure 1: Illustration of our proposed level-set method forextracting smooth isosurfaces from an artificial 2D data set. a) As
input data we assume a volumetric scalar data set with unstructured sample positions and no connectivity. Colors indicate
function values at the data points. b) Directly extracting isosurfaces from the data may produce bumpy surfaces in regions with
highly varying point density. Black dots indicate the isosurface in point-cloud representation. Nevertheless, the isosurface
can be used by our method as a good initial guess for the PDE-based extraction of a smooth isosurface. In fact, every closed
surface (in point-cloud representation) can be used as initial zero-level set. c) In each step of the level-set iteration a narrow
band around the current zero-level set is generated and all data points within the narrow band are reinitialized with an efficient
approximation of the signed-distance function to the zero-level set. Colors indicate the signed distance to the zero-level set.
d) After reaching a steady state, the zero-level set represents the smooth isosurface.

et al., 2010). However, due to the restriction to start
with a predefined signed-distance function as level-
set function and the need for a time-consuming nu-
merical reinitialization, the approach is still not able
to process data sets with several million data points in
a reasonable amount of time.

We propose a level-set method which makes the
extraction of smooth isosurfaces from unstructured
point-based data sets with several million sample
points much faster:

• Similar to previous work, we achieve high accu-
racy and flexibility by operating only on the un-
structured data points. We do not require any
scalar field at positions other than the sample
points.

• We replace the time-consuming numerical reini-
tialization of previous work by a level-set func-
tion computation on basis of the approximation of
a signed-distance function to the respective zero-
level set. This procedure increases the accuracy
of the whole process, since every level-set step
is carried out with a level-set function very close
to a signed-distance function. Furthermore, the
computation of the approximation is so fast, that
the overall computation time of the level-set pro-
cess drops even if this computation is done in each
level-set step.

• We maintain the efficiency of restricting compu-
tations to a narrow band around the current zero-
level set. In each level-set step, only a small por-
tion of the data points around the current zero-
level set is marked to be active.

• We update the narrow band efficiently. The
bottleneck of narrow-band methods is often the
update of the narrow band, which includes the
computation of the level-set function values at

those points that are newly inserted into the nar-
row band. These points typically have no de-
fined level-set function value. Using our efficient
signed-distance function computation for estab-
lishing the level-set function, we can quickly de-
termine the required function values.

• We permit any point cloud as initial surface for the
level-set process. To initialize the whole level-set
process, only a point cloud with surface normals,
acting as initial zero-level set, has to be given.
The level-set function is computed as approxima-
tive signed-distance function to the zero-level set
allowing for the computation of the first level-set
step. In particular, the initial surface can be an iso-
surface in point-cloud representation as computed
in (Rosenthal and Linsen, 2006). The normals at
the points are computed as gradients of the given
scalar field.

The main approach of our local level-set method
and the structure of the visualization pipeline are ex-
plained in Section 3 and depicted in Figure 1: Given
a scalar field in the form of point-based volume data
(a), one can extract an isosurface in point-cloud rep-
resentation. When dealing with highly varying point
densities, the isosurface may exhibit noise (b). We
want to remove the noise using a level set approach
that adds a smoothing term to the isosurface extrac-
tion functional. One main contribution of this paper is
to present a novel and efficient signed distance func-
tion computation, which enables us to use the noisy
isosurface (b) as an initial surface for the level-set pro-
cess. All computations are only carried out within a
narrow band surrounding the zero-level set (c). Con-
sequently, the level-set process converges after a few
fast steps and produces a smooth isosurface (d).

To efficiently store the sample points and allow for
fast neighbor queries, we use a spatial decomposition

IVAPP 2018 - International Conference on Information Visualization Theory and Applications

18



based on a three-dimensionalkd-tree as described in
Section 4. In Section 5, the fast extraction of the zero-
level set and the determination of the narrow-band
points are described. The calculation of the level-set
function as approximated signed-distance function to
the zero-level set including the calculation of deriva-
tives is explained in Section 6. The actual level-set
process applied to the points of the narrow band and
considerations about time step restrictions are pre-
sented in Section 7. Finally, results and their discus-
sion, including the analysis of computation times and
detailed comparisons, are provided in Section 8.

2 RELATED WORK

Visualizing large unstructured point-based volume
data sets is challenging, especially when dealing with
highly varying sample point densities. The gener-
ation of a polyhedrization (Edelsbrunner and Shah,
1992) of the unstructured data points can be very slow
and is generally seen as impractical. The most com-
mon and well-established way of dealing with un-
structured point-based volume data is to resample to a
structured grid using scattered data interpolation tech-
niques (Franke and Nielson, 1991; Park et al., 2006;
Vuçini et al., 2009). After this preprocessing step, a
variety of well-known visualization methods like iso-
surface extraction or level-set segmentation can be ap-
plied to the gridded data to generate the desired visu-
alizations.

In the majority of cases, level-set methods are ex-
ecuted on regular hexahedral grids that allow for fast
discrete derivative computations. Unfortunately, the
resampling to a regular grid always introduces inac-
curacies, which heavily depend on the resolution of
the grid and the point density of the data set. This
can lead to enormous interpolation errors when deal-
ing with data sets of highly varying point density and
assuming regular grids that fit today’s hardware mem-
ory constraints. Using adaptive grids can reduce the
error, but the more adaptive it gets, the more compli-
cated the processing becomes. This observation raises
the desire to directly operate on unstructured point-
based volume data.

The original idea of level sets goes back to Sethian
and Osher (Osher and Sethian, 1988; Osher and Fed-
kiw, 2003), who first describe the evolution of a sur-
face by representing the surface implicitly as the so-
lution of an equation with respect to an underlying
scalar field. The solution is found by iteratively apply-
ing partial differential equations (PDEs) to the scalar
field. Many different approaches exist and the range
of application areas is wide. A general framework

for level-set segmentation of a large variety of regular
data sets is presented in (Breen et al., 2005). Enright
et al. apply a level-set approach to an octree-based
adaptive mesh (Enright et al., 2004).

Level-set methods on gridded data nowadays typ-
ically operate locally. The introduction of local
level-set methods goes back to (Adalsteinsson and
Sethian, 1995). Local level-set methods, also call-
ed narrow-band methods, have developed rapidly in
recent years (van der Laan et al., 2011; Nielsen
and Museth, 2006), and have also been remodeled
to work on today’s fast and parallel graphics hard-
ware (Lefohn et al., 2004). However, the latter meth-
ods highly utilize the structure of regular grids and are
not usable for unstructured data.

The only narrow-band approach, directly process-
ing level sets on unstructured point-based volume
data without any grid calculation or reconstruction
of the scalar field was presented in (Rosenthal et al.,
2010). The level-set function is initialized as a signed-
distance function at the sample positions in a narrow
band around a simple starting surface. The whole
level-set evolution including the reinitialization of
the narrow-band and level-set function is only based
on these locations. Needed derivatives of the level-
set function are approximated by a least-squares ap-
proach. The required update of the narrow band is
done using an approximate signed-distance function
and a numerical reinitialization step keeps the level-
set function close to a signed-distance function. The
approach represents the zero-level set implicitly and
the level-set function must be initialized with a rather
simple and inflexible signed-distance function.

In contrast to common local level-set methods,
we further expand the idea of localization. After
each level-set step and subsequent extraction of the
zero-level set, the level-set function has to be set to
a signed-distance function to ensure good numerical
behavior (Peng et al., 1999). The common way of
achieving this would be the numerical reinitialization
of the level-set function to a signed-distance func-
tion (Schwartz and Colella, 2008), which is known
to be rather time consuming. The direct construc-
tion of a signed-distance function can be achieved
by the well-known fast-marching methods (Sethian,
1999; Tsai, 2002) which, however, always need an
underlying grid or tessellation. Several papers pro-
pose the construction of a signed-distance function
based on a moving least-squares fitting (Adamson and
Alexa, 2003; Kolluri, 2008; Molchanov et al., 2010).
These approaches can also be applied to unstructured
point-based data. However, it is stated that they re-
quire a certain regular sampling density, which is also
demonstrated in Section 8, where we compare our
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signed-distance function approximation to those ap-
proaches.

To our knowledge, there exists no approach for
smooth isosurface extraction which combines the ac-
curacy of directly applying a narrow-band level-set
method to unstructured data and explicit construction
of the signed-distance function to the zero-level set.
We propose such an approach that directly operates
on unstructured point-based data. It does not need to
reconstruct any scalar field at positions other than the
sample points. Furthermore, the proposed method for
approximating the signed-distance function is fast and
robust against highly varying point densities.

3 GENERAL APPROACH

Let D ⊂ R3 be a bounded domain andM ⊂ D a set of
unstructured sample pointsxi ∈ M. Furthermore, let
fi ∈ R be the data values at the positionsxi resulting
in an unstructured point-based data set representing
a scalar fieldf : D → R. Our goal is to extract an
isosurface from this volumetric scalar data set with
respect to a given isovaluefiso ∈ R. Moreover, the
smoothness of the extracted isosurface, i. e. the mean
curvature, should be controllable.

We use a level-set approach to manage the trade-
off between both goals with the level-set equation

∂ϕ
∂t

=
(
(1−λ)( f − fiso−ϕ)+λκϕ

)
‖∇ϕ‖ . (1)

Hereϕ : R3×R+ →R denotes the level-set function,
κϕ the mean curvature of the respective level set, and
λ ∈ [0,1] the smoothness parameter. This level-set
equation models smooth isosurface extraction from
the given scalar fieldf with respect to isovaluefiso
and smoothnessλ.

For extracting the smooth isosurface, we dynami-
cally modify a given initial surfaceΓ ⊂ R3, the zero-
level set, with respect to the level-set problem until
it reaches a steady state. To facilitate as much flex-
ibility as possible, we assume the initial surfaceΓ
to be a closed surface represented as a point cloud
P ⊂ R3 ×S2, whereS2 denotes the two-dimensional
sphere inR3. Here, the pairs(pi ,ni) ∈ P consist
of points pi ∈ R3 with associated surface normals
ni ∈ S2. This surface representation is used, as it is
the output of the direct isosurface extraction process
from point-based volume data (Rosenthal and Linsen,
2006). This is how we typically generate the initial
surface. Any other surface representation (e. g., an
implicit surface representation or triangular meshes)
can be easily converted to the described point-cloud
representation.

Figure 2: Illustration of the proposed level-set pipeline.

The zero-level set is implicitly represented asϕ =
0 with respect to the level-set functionϕ which is
modified following the level-set equation (1). This
task is carried out utilizing a narrow-band level-set
approach which only operates on the set of sample
pointsM. The pipeline of this level-set method con-
sists of three main phases: the initialization, the level-
set evolution, and the rendering. Its flow chart is de-
picted in Figure 2.

In the initialization phase, the initial zero-level set
is generated by a direct isosurface extraction tech-
nique. When applying this approach to other tasks
(apart from smooth isosurface extraction), one can
start with other appropriate surfaces. Alternatively,
one can always start with a sphere lying in the bound-
ing box of the data set. Note, that, when not start-
ing with an initial surface close to the isosurface the
final zero-level set can lack surface components of
the global solution, similar to most narrow-band ap-
proaches. However, such misses can only occur in
cases where the narrow band does not catch any part
of the respective surface component during the whole
level-set process. Moreover, this behavior can be used
to extract specific components of a surface.

Furthermore, we build data structures to store
and handle neighborhood information for the sample
points. The data structures are used to extract points
on the zero-level set efficiently, to generate the nar-
row band around the points of the zero-level set, and
to compute the signed-distance function. The data
structures we used are efficient implementations of a
three-dimensionalkd-tree.

In the iterative processing phase, first a narrow
band of sample points is generated around the zero-
level set. The narrow band consists of all sample
points, which have a distance to the isosurface that
is smaller than a given width of the narrow band. For
all the sample points in the narrow band, the level-set

IVAPP 2018 - International Conference on Information Visualization Theory and Applications

20



function ϕ is computed as signed-distance function
to the zero-level set using an approximating scheme.
The approximation results in an analytic representa-
tion of the signed-distance function, which allows for
the direct computation of derivatives using analytic
methods.

Subsequently, the actual level-set step following
the level-set equation (1) is performed at all sam-
ple points in the narrow band. Since an explicit Eu-
ler time discretization is used for updating the level-
set function at the sample points, the time steps are
bounded by the Courant-Friedrichs-Lewy (CFL) con-
dition (Courant et al., 1967) to permit numerical sta-
bility. In particular, this condition also guarantees that
the zero-level set cannot leave the narrow band in a
single iteration. In fact, we restrict the level-set step
so that the zero-level set does not move more than half
of the width of the narrow band.

The zero-level set to the processed level-set
function is extracted using direct isosurface extrac-
tion (Rosenthal and Linsen, 2006) and the surface
normals required are obtained by normalizing the
level-set function gradients. The approach compu-
tes points on the zero-level set (leading to a point-
based surface representation) by linear interpolation
between suitable neighbors of data points. This com-
pletes one iteration step.

The iterative process is executed until the level-set
function reaches a steady state. Note, that apart from
the local nature of the approach the resulting smooth
isosurface is independent of the starting surface and
does only depend on the convergence threshold and
the smoothness parameterλ. After convergence, the
zero-level set is rendered using point-based rendering
techniques (Gross and Pfister, 2007; Rosenthal and
Linsen, 2008a).

4 DATA MANAGEMENT

For efficient calculations of neighborhood informa-
tion and access to the sample and zero-level set points,
auxiliary data structures are needed. First, a structure
that allows for the efficient extraction of the points of
the zero-level set from the sample points and the fast
generation of the narrow band is desired. Since the
positions of the sample points do not change during
the iterative phase, this can be static and, thus, created
in a preprocessing step. The unstructured data points
are stored using an efficient three-dimensionalkd-tree
implementation. From thiskd-tree the neighborhood
information for extracting the zero-level set is derived
in the same way as it was proposed in (Rosenthal
and Linsen, 2008b). The determination of all sample

points lying in the narrow band is achieved by utiliz-
ing maximum distance queries from the zero-level set
points on thekd-tree of the sample points.

A second data structure is needed for speeding up
the approximation of the signed-distance function to
the zero-level set. Note that the firstkd-tree (contain-
ing the sample points) could also have been used for
this purpose. However, since distribution and quantity
of sample points and points of the zero-level set can
differ substantially, it is more efficient to generate in
each iteration a newkd-tree for the points of the new
zero-level set.

5 ZERO-LEVEL SET
EXTRACTION AND CREATION
OF NARROW BAND

After each level-set step, the zero-level set is ex-
tracted in an explicit form, more precisely as a point-
cloud surface. This step is equivalent to extracting
the isosurface with isovalue 0 from the updated level-
set function. For extracting smooth isosurfaces from
scalar fields, a good initial guess of the smooth iso-
surface can be obtained by extracting the respective
isosurface from the given scalar field.

Both tasks are done using the direct isosurface
extraction approach for unstructured point-based vol-
ume data presented in (Rosenthal and Linsen, 2006).
This approach utilizes the firstkd-tree that stores the
data samples. An appropriate neighborhood approxi-
mating the natural neighborhood is generated for each
sample point utilizing an efficient indexing scheme.
Points of the zero-level set are directly extracted by
linearly interpolating between neighboring samples
with different signs of the level-set function. This re-
sults in a zero-level set in point-cloud representation
with local point density proportional to the local point
density of the data set. Surface normals at the zero-
level set points are obtained as the normalized approx-
imated gradient of the underlying scalar field using
a four-dimensional least-squares approach (Rosenthal
and Linsen, 2008b).

Each level-set step is bounded by the CFL-
condition, allowing for stability of the whole level-
set process. Thus, the movement of the zero-level set
is also bounded for each level-set iteration and it is
possible to restrict the level-set process to a narrow
band around the zero-level set without losing flexi-
bility or distorting the result. For generating the nar-
row band, all sample points having a smaller distance
to the zero-level set than the width of the band are
marked as belonging to the band. As the zero-level set
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is extracted in a point cloud representation, we define
the distance of a sample point to the zero-level set as
the distance to the nearest point of the zero-level set.
For each zero-level set point all sample points with
distance smaller than the band’s width are efficiently
obtained by a nearest-neighbor query to thekd-tree
storing the sample points.

The width of this narrow band depends on the
distribution of the sample points, i. e., it is data-
dependent. To capture the entire area surrounding the
zero-level set, the width of the narrow band has to
be greater than the maximum distance of neighboring
zero-level set points. In fact, we use twice that dis-
tance to ensure that the zero-level set is kept in the
narrow band. In all our experiments, it was sufficient
to choose one global value for the band’s width for the
whole local level-set process, even for data sets with
highly varying point densities. Nevertheless, the per-
formance of the approach can be tuned further by dy-
namically adjusting the band’s width with respect to
the CFL-condition. This condition restricts the time
step of each level-set step and thus the movement of
the zero-level set. Choosing the width of the narrow
band to the double of the maximum distance zero-
level set points move is more than sufficient. In par-
ticular, when the level-set process is close to conver-
gence, the zero-level set moves only slowly and a very
small narrow band can be chosen.

6 SIGNED-DISTANCE FUNCTION
COMPUTATION

Let P ⊂ R3 × S2 be a set of pairs(pi ,ni), where
pi ∈ R3 is a point on a two-dimensional surface in
space andni ∈ S2 is the associated surface normal.
Our goal is to approximate the signed-distance func-
tion to the surface represented byP. More precisely,
we want to construct a smooth scalar fieldϕ : R3 →R
with ϕ(pi) = 0 for all pointspi on the surface and
‖∇ϕ(x)‖ ≈ 1 for all pointsx ∈ R3.

Following the lines of the whole level-set method,
the approximation should not depend on an underly-
ing scalar field and should be robust against highly
varying point density of the point cloud. The main
idea comes from the observation that the signed-
distance function can be approximated accurately on
the lineγi(t) = pi + t · ni near each surface point by
settingϕ(γi(t)) = t. In a small neighborhood around
a line this measurement is still accurate and we can
approximate

ϕ(x)≈ fi(x) := 〈x−pi,ni〉 , (2)

i. e., we use the signed distance between the projec-

tion of x to γi and the pointpi . Here〈., .〉 denotes the
scalar product.

Figure 3: For the points of the surface the hypothetical two-
dimensional Voronoi diagram, depicted by the solid lines,
induces truncated cones in space, depicted by the dashed
lines. The blue line indicates the curve on the surface where
the third-nearest point and the fourth-nearest point, i. e., the
red and the green point, respectively, are equally distant.

This approximation should be done for all pointsx
for whichpi is the nearest neighbor, i. e., for all points
lying in the truncated cones induced by a hypotheti-
cal two-dimensional Voronoi diagram on the surface,
as illustrated by Figure 3. Just applying this approxi-
mation in the respective cones would result in discon-
tinuities in the resulting scalar field at the borders of
the truncated cones. Hence, the respective functions
fi should be blended to produce a smooth scalar field.

Although theoretically a large number of Voronoi
cells can meet at a vertex, in practice - when using
floating point representations of finite precision - one
can assume that at most three cells meet exactly at the
vertices of a 2D Voronoi diagram. These vertices re-
sult in edges between the associated truncated cones,
as illustrated in Figure 3. Consequently, the blending
between different cells has to handle the transition be-
tween the three nearest neighbors to a particular point
x, i. e., the signed-distance approximation has to be
symmetric in the three nearest neighbors ofx.

Additional care to avoid discontinuities has to be
taken at the positions where the third-nearest neigh-
bor tox changes to a point which was not considered
before, as depicted by the blue line in Figure 3. More
precisely, the contribution of the third-nearest point to
ϕ should vanish when the distances ofx to the third-
and fourth-nearest points are equal.

We implement these considerations by defining an
approximation to the signed-distance function as fol-
lows: Letx ∈ R3 andpi be theith-nearest point ofP
to x. We define the signed-distance function atx to P
by

ϕ =
λ1d2d3 · f1+λ2d1d3 · f2+λ3d1d2 · f3

λ1d2d3+λ2d1d3+λ3d1d2
, (3)

i. e.,ϕ is the convex combination of the local signed-
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distance functions

fi = fi(x) := 〈x−pi,ni〉 (4)

with weight functions defined by

di = di(x) := ‖x− (pi + fi(x) ·ni)‖ (5)

λi = λi(x) := l4(x)− l i(x) (6)

l i = l i(x) := ‖x−pi‖ . (7)

The continuous change of the signed-distance
function between the three nearest surface points is
accomplished by the functionsdi(x), which calculate
the orthogonal distance of the pointx to the line in-
duced by theith-nearest surface point and its surface
normal. The functionsλi(x) represent the differences
of the distances from the pointx to the fourth-nearest
surface point and from the pointx to the ith-nearest
surface point. These functionsλi(x) assure a con-
tinuous behavior of the signed-distance function if
the third- and fourth-nearest neighbor ofx are hav-
ing similar distances tox. In this region, indicated by
the blue line in Figure 3, the order of the third- and
fourth-nearest neighbor might switch. An illustration
of the functions is given in Figure 4.

Figure 4: Illustration of the functions used to approximate
the signed-distance function. For a pointx and each point
pi , fi(x) denotes the distance betweenpi and the base point
of x on γi , di(x) denotes the distance of the same base point
to x, andl i(x) is the distance betweenx andpi .

If the unlikely case appears that more than three of
the nearest neighbors have very similar distances tox,
theλi nearly vanish and the signed-distance function
would get very unstable. In our implementation, we
detect such cases with a threshold. For(λ1 > 0.0001)
the standard procedure for computingϕ is used. For
(λ1 < 0.00001) we computeϕ by settingλi = 1. In
between we use a linear interpolation between the two
approaches.

To achieve a signed-distance function which is
differentiable everywhere, the weight functionsdi and
λi can be smoothed with any standard kernel function.
In our implementation, we applied

p : [0,1]→ [0,1] , p(t) := 6t5−15t4+10t3 (8)

which is the lowest-order polynomial with vanish-
ing first- and second-order derivatives at 0 and 1.

The blending with this polynomial producesC2-
continuous transitions. The approximated signed-
distance function has the following properties:

1. ϕ(x) = f1(x) for all points x ∈ γ1 with nearest
neighborp1.

2. The change between cells of the Voronoi diagram
leads to a continuous change inϕ, sinceϕ is sym-
metric.

3. Changing third- and fourth-nearest neighbor leads
to a continuous change inϕ, sinceλ3 = 0.

In contrast to several related approaches, the pro-
posed signed-distance approximation is very robust
against non-uniformly sampled point clouds. This re-
sults in the minimization of artifacts even when deal-
ing with data sets of highly varying point density. We
demonstrate this property with the help of artificial
and real-world data sets in Section 8.

Derivatives Calculation

During the level-set process, not only the constructed
signed-distance function but typically also derivatives
of the function are used. Since the signed-distance
function is described analytically, all desired deriva-
tives can be computed. We list the first derivatives of
the functions used:

∇λi(x) =
(x−pi)

l i(x)
− (x−p4)

l4(x)
(9)

∇di(x) =
x−pi − fi(x) ·ni

di(x)
(10)

∇ fi(x) = ni (11)

Also higher-order derivatives can be easily derived.
In particular the curvature of a level set is given by

κϕ = ∇ · ∇ϕ
‖∇ϕ‖ =

1
‖∇ϕ‖ (∇ ·∇ϕ−1) , (12)

which can be explicitly computed from the level-set
function, i. e., from the signed-distance function ap-
proximation.

To compute the signed-distance function values
and derivatives efficiently, a three-dimensionalkd-
tree is built for the zero-level set points of each time
step. Utilizing this spatial space partitioning, the four
nearest zero-level set points are computed for each
sample point in the current narrow band.

7 LEVEL-SET PROPAGATION

The propagation of the level-set function is performed
following the level-set equation (1), which models the
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smooth isosurface extraction as combination of hy-
perbolic advection to the data scalar field and mean
curvature flow. This is done using an explicit time
discretization scheme of order one. For this level-set
process only the level-set function values and deriva-
tives obtained at the sample points are used. Further-
more, no information about the scalar field other than
at the sample points in the narrow band is needed.

Since the level-set function is explicitly reset to
a signed-distance function in each level-set step, the
level-set propagation does not have to maintain this
property to produce high-quality results. However,
the used time step∆t has to be chosen carefully to
keep the zero-level set always in the narrow band
and fulfill the CFL-condition. In fact, meeting the
CFL-condition described in (Rosenthal and Linsen,
2008b), i. e.

∆t

(
(1−λ) | f − fiso−ϕ|

dmin‖∇ϕ‖ ‖divϕ‖+ 6λ
d2

min

)
< 1 (13)

with

‖divϕ‖ :=

(∥∥∥∥
∂ϕ
∂x1

∥∥∥∥+
∥∥∥∥

∂ϕ
∂x2

∥∥∥∥+
∥∥∥∥

∂ϕ
∂x3

∥∥∥∥
)

(14)

anddmin denoting the distance to the nearest neighbor,
is also sufficient to keep the zero-level set within the
narrow band during computations. This was already
observed in (Peng et al., 1999).

8 RESULTS AND DISCUSSION

The presented approach was applied to a variety of
data sets to verify our method and evaluate it in terms
of accuracy and speed. All computation times were
measured on a single 2.66GHz XEON processor.

First we have tested our proposed signed-distance
function approximation approach in terms of accu-
racy, since this is a crucial part of our level-set
pipeline. We compared our approach with two very
related and recently presented methods (Adamson
and Alexa, 2003; Molchanov et al., 2010). For this
purpose, we have applied all three methods to an arti-
ficial two-dimensional point cloud, which represents
the curve of a limaçon of Pascal (Lawrence, 1972)
sampled at 1,000 random positions. Visualizations
of the respective isolines of the signed-distance func-
tion approximations are shown in Figure 5. Following
suggestions of the respective papers, both competing
methods are applied with 15 neighbors for interpola-
tion. They require a relatively uniform sampled point
cloud and result in enormous errors in the approxima-
tion causing deformed isolines. Our method is robust
against highly varying point densities and does not ex-
hibit such artifacts. Still, computations of our method

are faster since only a fixed number of four neigh-
bors is used. For a surface with 100,000 points and
240,000 distance computations the method of Adam-
son and Alexa and the method of Molchanov et al.
both need 112 seconds, in comparison to 103 seconds
with our method.

In addition, we compared the approximated and
exact signed-distance function values for our method
numerically. For this purpose, we sampled the curve
with different numbers of points and approximated
the signed-distance function at one million randomly
distributed sample points in a band around the curve.
At the same sample points of the band, we computed
the exact signed-distance function values using the
analytic expression of a limaçon. The obtained nu-
merical differences are shown in Table 1. The relative
error of our approach is reciprocal to the number of
sample points on the curve. For the number of sur-
face points we encountered in our real-world exam-
ples (about 104), we have a maximum error of 0.23%
and a relative error of 0.053%. All our experiments
showed, that this is sufficiently low to allow for accu-
rate level-set computations.

Table 1: Error analysis for signed-distance function approx-
imation to the limaçon of Pascal. For different number of
random sample points on the curve, the relative average er-
ror and the relative maximum error is given when compar-
ing the approximated with the exact signed-distance func-
tion values at one million points in a band around the curve.

# points rel. average error rel. maximum error
103 5.30·10−3 2.21·10−2

104 5.34·10−4 2.30·10−3

105 5.47·10−5 3.18·10−4

106 5.56·10−6 3.54·10−5

107 5.48·10−7 4.66·10−6

For the analysis of performance of our level-set
pipeline, we applied it to an unstructured point-based
volume data set with 16 million randomly distributed
sample points. The data set was generated by re-
sampling the regular Hydrogen data set (courtesy of
SFB 382 University Tübingen) of size 128× 128×
128 to the random positions. (For all data sets that are
resampled from regular data to a random distribution,
we never make use of the original regular structure.)
An illustration of the evolution process for this data
set and a sphere as initial surface is shown in Fig-
ure 6. The whole level-set process for extracting a
smooth isosurface was performed in 18 minutes, in-
cluding preprocessing. In comparison, we achieved
a computation time of 36 minutes with the method
from (Rosenthal et al., 2010). When starting with
the (non-smooth) isosurface as a first guess our com-
putation time drops to 22 seconds and we obtain a

IVAPP 2018 - International Conference on Information Visualization Theory and Applications

24



Method of Adamson and Alexa Method of Molchanov et al. Our method

Figure 5: Qualitative comparison of our method with two competing methods for computing the signed-distance field of a
limaçon of Pascal, non-uniformly sampled at 1,000 positions. In the upper row, the points on the limaçon are colored black.
Additionally, isolines to the respective signed-distanceapproximation are drawn, color-coded with respect to the isovalue.
The close-up views in the lower row show errors for the competing methods at the region of highly varying point density.

speed-up of two orders of magnitude. Starting with
the isosurface is not possible when using the approach
from (Rosenthal et al., 2010).

Table 2: Computation times for the iterative level-set phase
of a data set with 16 million sample points and 50,000 zero-
level set points. For different sizes of the narrow band (nb),
we list the number of sample points in the narrow band, the
computation time for determining the points in the narrow
band, and the computation time for the level-set (ls) step.

# points in nb nb comp. ls step
200k 0.4 s 3.0 s
400k 2.0 s 5.1 s
800k 16.3 s 17.1 s

1,600k 67.5 s 70.6 s

We analyzed the computation time for the itera-
tive phase with respect to different widths of the nar-
row band, i. e., for different numbers of narrow-band
points. For the Hydrogen data with 16 million sample
points the times are given in Table 2. Here, the com-
putation time for the narrow-band creation includes
creation of akd-tree for the zero-level set points, the
marking of all data points closer to the zero-level set
points than the width of the band, and the calculation
of the signed-distance function values and derivatives
at data points in the narrow band. The times for the
level-set step include the update of the level-set func-
tion values following the level-set equation, the ex-
traction of the new zero-level set, as well as the calcu-
lation of surface normals for the zero-level set points.
It is favorable to choose the width of the band with
respect to the CFL-condition to achieve an optimal

balance between large time step and small number of
processed sample points.

Finally, we applied our local level-set method to
real-world unstructured point-based volume data sets
with point densities varying in two orders of mag-
nitude. These highly varying point densities would
lead to enormous interpolation errors, when not oper-
ating directly on the sample point locations. The first
data set stems from an astrophysical particle simula-
tion using smoothed particle hydrodynamics. In the
simulation, two stars orbiting each other are repre-
sented by a set of particles. During the simulation,
the stars exchange gas through a jet between them
and get distorted by the jet and gravity forces. In
Figure 7(a), we visualize a snapshot of the simula-
tion at a late point in time, when one star (the one
in the upper left) is already distorted, while the other
star (the one in the lower right) was not yet affected
significantly. We compare our approach with direct
isosurface extraction on this data set with 2,600,000
sample points and extract surfaces with respect to gas
density. The whole computation time for 10 level-set
steps was 42 seconds. In contrast to direct isosurface
extraction, the smooth surface generated by our level-
set approach does not exhibit any outliers.

The direct isosurface extraction suffers from se-
vere incorrect outliers, caused by the very different
gradient magnitudes in the data set. This is also the
reason why we did not choose the isosurface as initial
zero-level set for our local level-set method. The er-
rors in the position of the isopoints can cause severe
errors in the surface normal approximation and lead to
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Step 1

Step 4

Step 5

Step 7

Step 11

Figure 6: Evolution of the zero-level set for normal advec-
tion to the Hydrogen data set with 16 million sample points.
For each time step, a splat-based ray tracing of the zero-
level set is shown on the right-hand side. On the left-hand
side, a point rendering of a slab of the data set is shown il-
lustrating the narrow band. The surface points extracted are
colored black, points with negative level-set function value
are colored red, and points with positive level-set function
value are colored green. Points which newly entered the
narrow band are colored blue. All data points not belonging
to the narrow band are not rendered. Note the easy change
of topology of the zero-level set and dynamic adjustment of
the narrow band. If the iterative process is close to steady
state, a much smaller width of the narrow band can be used.

an unusable signed-distance function approximation.
Instead, there are two different options for initializ-
ing such tricky cases. If the approximate shape of the
final surface is known the zero-level set can be initial-
ized as an approximation to the final surface, as in the
presented case, where the zero-level set was initial-
ized as two spheres centered at the stars’ barycenters.
Alternatively, one can extract the zero-level set as iso-
surface from a smoothed version of the original data
set. In most cases, the band around this initial surface
will still catch all parts of the final smooth isosurface
and ensure a correct level-set propagation, which is
then carried out again with the original data.

The second data set is the White Dwarf data set
with 500,000 sample points already used by Rosen-
thal et al. It models a small star that is torn apart by
the strong gravity forces of a black hole. We used
the same parameters and initial surface as for their
method and achieved an overall computation time of
182 seconds, which still is two times faster compared
to 366 seconds of the competing method (Rosenthal
et al., 2010). In terms of quality, the results are com-
parable. A rendering of the extracted zero-level set
and a slab of the narrow band is shown in Figure 7(b).
The maximum distance between the points of the two
resulting surfaces was of the same order as the stop-
ping criterion used for both level-set processes.

All experiments have shown, that the proposed
method for approximating the signed-distance func-
tion produces results of high quality. The local level-
set method using explicit zero-level set representation
is significantly faster than competing methods. Com-
pared to the previous local level-set approach (Rosen-
thal et al., 2010) the proposed method speeds up
each level-set step by reducing the number of needed
neighbors per point and omitting the numerical reini-
tialization. Additionally, it facilitates the usage of any
initial zero-level set, significantly reducing compu-
tation times further. A comprehensive performance
overview of our approach for the various data sets in-
cluding comparisons to the prior narrow-band tech-
nique is given in Table 3. Note the remarkable speed
up when using the proposed method with a good ini-
tial guess as starting surface, compared to initializa-
tion with a sphere required by competing methods
with implicit zero-level set representation.

Still, experiments have shown that the proposed
method is, in terms of quality, equivalent to the previ-
ous global and local methods by Rosenthal et al. and
it has successfully been applied to real-world data.
Moreover and in contrast to the prior local level-set
approach (Rosenthal et al., 2010), it is able to extract
objects with complex topology very fast by using an
initial surface close to the expected final result, such
as the (non-smooth) isosurface.

9 CONCLUSION

We have presented a local level-set method that com-
bines the accuracy of directly applying level sets to
unstructured data with the fast level-set computation
using narrow bands and an explicitly extracted zero-
level set. This option enables us to use any surface
as initial zero-level set and gives an additional speed-
up when using good initial guesses for the final sur-
face. We directly operate on the unstructured data
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Direct Isosurface Extraction Smooth Isosurface Extraction
(a) (b)

Figure 7: (a) Comparison between direct isosurface extraction on the left-hand side and smooth isosurface extraction on the
right-hand side for a stars simulation data set with 2.6 million sample points. Our level-set method effectively eliminates the
noise in the surface. (b) Illustration of the zero-level setfor normal advection to the White Dwarf data set with 500,000sample
points. On the left-hand side, a point rendering of a slab of the data set is shown illustrating the narrow band. A splat-based
ray tracing of the zero-level set after convergence of the level-set process is shown on the right-hand side.

Table 3: Performance comparison for the presented data sets. For each data set the number of points, the used isovalue, and
the used smoothness parameter is given. Additionally, the initial surface, the needed number of level-set steps, and the overall
computation time, including the generation of the initial zero-level set, is given for our approach and for the method proposed
by Rosenthal et al., followed by our achieved speed-up.

our method (Rosenthal et al., 2010)
data set # points fiso λ init. s. #steps time init. s. #steps time speed-up
Hydrogen 16.0M 30 0.05 isosurface 3 22 sec sphere 19 36 min 98.1
Engine 16.0M 70 0.10 isosurface 10 59 sec sphere 27 47 min 47.7
2 stars 2.6M 0.01 0.10 2 spheres 10 42 sec sphere – – –
Wh. Dwarf 0.5M 0.00006 0.10 sphere 37 182 sec sphere 39 366 sec 2.0

and do not need to process data at any position other
than the sample points. For each iteration, we build
a narrow band of sample points around the zero-level
set, compute the level-set function at these points as a
signed-distance function to the zero-level set, process
the level-set function in the narrow band with respect
to a given level-set equation, and extract the new zero-
level set. As we use a signed-distance function for the
level-set function, we avoid numerical reinitialization
steps, which further reduces computation times. Af-
ter convergence, the final zero-level set is visualized
using point-based rendering techniques.

Similar to most narrow-band, thus local, tech-
niques our method is only able to extract surfaces
which are captured by the computation area during
the level-set process. However, this covering can be
guaranteed when using the directly extracted isosur-
face as starting surface for the level-set processing.
We have compared our results with the ones obtained
by Rosenthal et al. and achieved significant speed-
ups. Still, the proposed method achieves the same
results in terms of quality. Our method is capable
of robustly processing data sets with several million
sample points and highly varying point density.
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