
Towards an Implementation of Data and Resource Patterns in
Constraint-based Process Models

Stefan Schönig, Lars Ackermann and Stefan Jablonski
Institute for Computer Science, University of Bayreuth, Bayreuth, Germany

Keywords: Constraint-based Processes, Flexible Processes, Workflow Patterns, Process Execution.

Abstract: A Process-Aware Information System (PAIS) is a system that executes processes involving people, appli-
cations, and data on the basis of process models. Two representations for processes can be distinguished:
procedural models prescribe exactly the execution order of process steps. Declarative process models allow
flexible process executions that are restricted by constraints. Especially in application areas of knowledge
driven processes, this flexibility is required. Foundations of declarative approaches have been extensively dis-
cussed in research. From a practitioner’s point of view, however, an open question still remains: is it possible
to implement established functionality in contemporary declarative PAIS, especially data and resource han-
dling? In this paper, we tackle this open research question by introducing the declarative process modelling
and execution framework DPIL that covers resource and data modelling. Expressiveness and functionality of
the framework are evaluated by means of the well-known Workflow Data and Resource Patterns.

1 INTRODUCTION

A Process-Aware Information System (PAIS) is a
software system that manages and executes business
processes involving people, applications, and data on
the basis of process models (Reichert and Weber,
2012). Processes can be modelled using a variety
of languages and different concepts. State of the art
technology distinguishes between two principle ap-
proaches: procedural concepts prescribe exactly the
execution order of process steps. Declarative, i.e.,
constraint-based processes on the other hand allow
flexible process executions that are restricted by con-
straints (Fahland et al., 2009). Especially in applica-
tion areas of knowledge driven processes this flexibil-
ity is required since the exact flow of activities can-
not be fully determined at design time (Reichert and
Weber, 2012). Here, the execution sequence heavily
depends on human participants, their decisions and
expert knowledge (Fahland et al., 2009). Recent re-
search has shown that declarative approaches are best
suited for supporting flexible, knowledge driven pro-
cesses (Fahland et al., 2009; Vaculı́n et al., 2011).

Independent from the modelling paradigm
processes can be seen from different perspec-
tives (Jablonski and Bussler, 1996). The behavioural
perspective describes activities and their execution
ordering, e.g., task sequences or parallelism. The data

perspective deals with process data and documents.
Business documents and other objects which are
used within activities as well as local variables of
the process, may reflect pre- and post-conditions of
activity execution. Typically, process data is passed
into and out of applications through interfaces,
allowing manipulation of the data. The resource
perspective manages the involvement of resources in
processes, e.g., it provides an anchor to the process in
the form of human roles responsible for activities.

Theoretical foundations of declarative approaches
have been extensively discussed in research with
a strong focus on behavioural aspects (Montali,
2010; Pesic, 2008) and conceptually extensions for
data (Westergaard and Maggi, 2012; Montali et al.,
2013; Burattin et al., 2015). From a practitioner’s
point of view, however, an open question still re-
mains (Reijers et al., 2013): is it possible to im-
plement established functionality in contemporary
declarative PAIS, in particular data and resource han-
dling? Answering this question is essential for using
declarative approaches in practice.

In this paper, we tackle this open research ques-
tion by introducing the declarative process modelling
and execution framework DPIL that covers in par-
ticular resource and data modelling. Expressiveness
and functionality of the framework are evaluated by
means of the well-known Workflow Data and Re-

Schönig, S., Ackermann, L. and Jablonski, S.
Towards an Implementation of Data and Resource Patterns in Constraint-based Process Models.
DOI: 10.5220/0006533502710278
In Proceedings of the 6th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2018), pages 271-278
ISBN: 978-989-758-283-7
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

271

source Patterns1, a systematically specified catalogue
of desired functionality of PAIS. The set of work-
flow patterns covers recurring requirements focusing
on data interaction (Russell et al., 2005a) and re-
source involvement (Russell et al., 2005b). We give
concrete model excerpts that implement frequently
needed functionality. Examplary real-life processes
that include these patterns can be executed with the
DPIL Navigator at http://navigator.kppq.de. The con-
tribution of this work is to show that existing declar-
ative PAIS are ready to use for practical applications.
The remainder of this paper is structured as follows:
in Section 2 we introduce the syntax and grammar of
the DPIL modelling and execution framework. Sec-
tion 3 describes the implementation of Data and Re-
source Patterns in DPIL. In Section 4 we discuss re-
lated work and the paper is concluded in Section 5.

2 MODELLING WITH DPIL

In this section, we introduce the framework we use
to implement the workflow patterns. The Declara-
tive Process Intermediate Language (DPIL) is a multi
perspective and multi modal process modelling lan-
guage on a textual basis. Unlike other declarative
languages it allows for representing several perspec-
tives, namely, behaviour, data and resources and their
crosscutting relations. It is multi modal, meaning
that both mandatory and recommended actions are
specified. The DPIL framework offers a rich toolset
for modelling and executing declarative process mod-
els: (i) DPIL models can be defined using a textual
editor the DPIL Modeller. The modeling tool sup-
ports users through syntactic, semantic and qualitative
model analysis based on the Xtext framework2. DPIL
models can be (ii) executed by the declarative exe-
cution engine, the DPIL Navigator. Both tools have
been published in demo papers (Schönig and Zeising,
2015; Schönig et al., 2017). DPIL allows for defining
reusable templates (macros) in order to keep the re-
sulting model concise. Macros can be defined to the
modellers’ needs using all concepts of DPIL.

2.1 The DPIL Language

Hereafter a concrete syntax is described that is used
to represent a DPIL model textually. The concrete
syntax is described using the Antlr conform extended
Backus-Naur form (EBNF).

1Information at http://www.workflowpatterns.com
2http://www.eclipse.org/Xtext/

2.1.1 Models

In the model head the used identities, groups and re-
lation types from the organizational model are enu-
merated to make them available and referable by their
names. Additionally connection properties to CMIS
compatible ECM systems3 can be specified to de-
scribe source and target of data objects. To avoid
redundancy one can additionally define macros or
global rules in this section of the model. Conse-
quently, a model might lack any process informa-
tion but instead can be used to form a library model
by just enumerating elements of the organizational
model, defines macros or connections to ECM sys-
tems. Models can reference other models and, thus,
can make use of, for instance, this library model.

Model: Identity* Group* RelationType* Repository* Macro*

GlobalRule* Process?

Identity: ’identity’ ID

Group: ’group’ ID

RelationType: ’relationtype’ ID

Repository: ’repository’ ID ’{’

’url’ STRING

’user’ STRING

’password’ STRING

’id’ STRING ’}’

2.1.2 Structural Elements

A process can consist of activities, data objects and
process rules. Activities and data objects must have
an identifier (ID) and can be named. An activity is,
in turn, a process, a human task or an operation. An
operation omits the name and only consists of an iden-
tifier and a body. Additionally it is possible to assign
actual arguments to the operation’s dummy arguments
as well as a data object to store the return value (to).
Data objects can either be variables or documents.
Both can be multi-valued (collection) and documents
must be further specified by a query for the default
value and a repository connection identifier (at).

Process: ’process’ ID STRING? ’{’

Activity*

DataObject*

ProcessRule* ’}’

Activity: Process | Task | Operation

Task: ’task’ ID STRING?

Operation: ’operation’ ID STRING

(’{’ Parameter (’,’ Parameter)* ’}’)?

(’to’ ID)

Parameter: ID ID

DataObject: Variable | Document

Variable: ’variable’ ’collection’? ID STRING?

Document: ’document’ ’collection’? ID STRING?

3CMIS = Content Management Interoperability Ser-
vices, ECM = Enterprise Content Management

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

272

(’default’ STRING)?

’at’ ID

2.1.3 Rules

Below the concrete syntax for structural elements is
complemented by the rule syntax. To focus on a de-
scription that makes the rule part of the language us-
able we omit a detailed discussion of the abstract syn-
tax. Global rules can be either mandatory (ensure) or
just recommendations (advise). A process rule can be
supplementary a milestone. Rules can have an identi-
fier and a description which have to be separated from
the body using a colon. Macros must have an iden-
tifier and can make use of dummy parameters. The
macro’s body is separated from the head using the iff
keyword.
GlobalRule: GlobalRuleType (ID? STRING? ’:’)? Expression

GlobalRuleType: ’ensure’ | ’advise’

ProcessRule: ProcessRuleType (ID? STRING? ’:’)? Expression

ProcessRuleType: ’ensure’ | ’advise’ | ’milestone’

Macro: ID (’(’ ID (’,’ ID)* ’)’)? ’iff’ Expression

According to the metamodel a rule expression is
a tree structure whereby its nodes are either unary or
binary expressions. This nesting has to be considered
in the grammar draft. For all operators the grammar
realises an infix notation, i.e., the operator is always
located between its operands. Furthermore, the gram-
mars stipulates an operator priority ranking which, for
instance, assigns the highest priority to parentheses,
negations etc. and the lowest to the implication. The
universal quantifier (forall) stipulates, based on the
objects matched by the first pattern, all further pat-
terns. A predicate reference consists of the ID of the
referenced predicate (macro or rule) and a list of its
actual parameters. Object selectors can select objects
either using their identifier (ObjectReference) or using
any other arbitrary property (ObjectConstraint). The
selection result can be assigned to a variable using the
colon operator and the variable identifier.
Expression: Implies

Implies: Or (’implies’ Or)*

Or: And (’or’ And)*

And: Unary (’and’ Unary)*

Unary: ’(’ Expression ’)’

| ’not’ Unary

| ’exists’ Unary

| Forall

| PredicateReference

| ObjectSelector

Forall: ’forall’ ’(’ ObjectSelector ObjectSelector+ ’)’

PredicateReference: ID (’(’ LiteralOrReference

(’,’ LiteralOrReference)* ’)’)?

ObjectSelector: ObjectConstraint | ObjectReference

ObjectReference: Type ID (’:’ ID)?

ObjectConstraint: Type (’(’ ConstraintExpression ’)’)?

(’:’ ID)?

Type: ’task’ | ’operation’ | ’process’ | ’start’ |

To select objects by properties not by their identi-
fier but instead by other properties one has to provide
an ObjectConstraint with a corresponding Constraint-
Expression. This again is formed by a tree structure of
unary and binary subexpressions. Operators are again
realised using the infix notation with the same oper-
ator prioritization like the operators of rule expres-
sions. The properties may either be bound to variables
(PropertyBinding). or be compared to other variables
or constants (PropertyRestriction).
ConstraintExpression: ConstraintOr

ConstraintOr: ConstraintAnd (’or’ ConstraintAnd)*

ConstraintAnd: ConstraintUnary (’and’ ConstraintUnary)*

ConstraintUnary: PropertyBinding

| PropertyRestriction

| ’(’ ConstraintExpression ’)’

PropertyBinding: PropertyReference ’:’ ID

PropertyReference: PropertyKey RQID?

PropertyKey: ’this’ | ’of’ | ’by’ |

PropertyRestriction: PropertyReference Operator?

LiteralOrReference

Operator: ’=’ | ’!=’ |

LiteralOrReference: STRING | NUMBER | ID

2.2 Execution

Some of the elements of a DPIL process model un-
dergo a life cycle composed of events that is managed
by the engine. A human task, e.g., can be started and
completed while a data object can be read or writ-
ten. The current state of a process is then the series
of past events. Besides the static elements like human
tasks and data objects, a process model may specify
rules constraining that series of events. It may, e.g.,
claim that some data object may only be written after
some task has been started. These rules may be hard
to reflect, e.g., the legal framework or soft to reflect,
e.g., good practice. When the model is executed, the
engine simulates one event ahead for every model el-
ement and evaluates the resulting series of events on
the basis of the rules. Each simulated event that does
not violate any hard rule is related to an action that
engine interprets immediately. A simulated start of a
task by a certain participant, e.g., is interpreted as the
assignment of this task to the participant. If the start
event violates a soft rule, the action is marked as not
recommended.

After generating the events the engine has all
events for one process instance that might occur in
this instance available. The generation of these events
does not consider the modelled process rules. Thus
the innovative core of the execution is first to eval-
uate these events based on the process rules and to
narrow them afterwards. For this purpose each pos-
sible event is combined with the former course of

Towards an Implementation of Data and Resource Patterns in Constraint-based Process Models

273

events of the current instance and for each of these
combined courses the engine decides to what extent
it conforms to the process rules. Hence, it must be
decided whether a simulated event and, consequently,
an enabled action in the process is forbidden, non-
recommended, neutral or recommended. The engine
itself imposes only few requirements on a rule-based
model. From the perspective of the engine a pro-
cess model M consists of model elements E and rules
R, i.e., M = (E,R). Model elements are entities for
which events might happen like, for instance, activ-
ities and data objects. A rule r is a logic propo-
sition that can be fulfilled or violated. The set of
rules R of a process model can be separated into
hard rules RH , soft rules RS and milestones RM , i.e.,
R= RH ∪RS∪RM . A process instance I is a set of ma-
terialized events within one process. For the engine
these events do not have to be ordered. An instance
is considered to be completed as soon as all defined
milestones are fulfilled. If no milestones are defined
it cannot be determined when the corresponding pro-
cess is completed. In this case, for the engine, a pro-
cess instance can never be completed and is aborted
with the termination of the DPIL Navigator platform.
In order to simplify the subsequent definitions the
change δ of a set L to a different set R is defined. A
change is a tuple consisting of the set of removed and
the set of added elements, i.e., δ(L,R) = (L\R,R\L).
For the change of the set {a,b} to the set {b,c} one
has: δ({a,b},{b,c}) = ({a},{c}).

2.2.1 Event Evaluation

An evaluation ρ is, in general, a set of violated rules of
R. Hence, it always pertains: ρ∈R. The event evalua-
tion ρ(I∪e) is the evaluation of an instance I after the
occurrence of an event e. The event is considered to
be forbidden if an evaluation after its occurrence over-
laps with the set of hard rules RH . It is considered to
be permitted if the intersection is empty.

f orbidden(e)← ρ(I∪ e)∩RH 6= /0
allowed(e)← ρ(I∪ e)∩RH = /0

(1)

An event is treated as final if milestones are de-
fined and the evaluation of the event does not overlap
with them. Thus, with the occurrence of the event all
milestones are fulfilled.

f inal(e)← RM 6= /0∧ρ(I∪ e)∩RM = /0 (2)

2.2.2 Change of Instance Evaluation

The instance evaluation change ∆ρI is the change of
the evaluation of an instance I with the occurrence of

an event e. Hence, it describes the repercussions of
the event on the instance.

∆ρI(e) = δ(ρ(I),ρ(I∪ e)) (3)

An event is considered to be neutral if the instance
evaluation change is empty, i.e. the event does not
have any repercussion on the instance.

neutral(e)← ∆ρI(e) = (/0, /0) (4)

An event e is treated as recommended, if it is permit-
ted and if it leads to an abolition of previous violations
P of soft rules or milestones and no other rules are vi-
olated in consequence of this event.

recommended(e)← ∆ρI(e) =
(P, /0)∧P∩ (RS∪RM) 6= /0

(5)

Conversely it is non-recommended if it is permitted
but leads to new violations Q of soft rules or mile-
stones.

notRecommended(e)← ∆ρI(e) =
(P,Q)∧Q∩ (RS∪RM) 6= /0

(6)

2.2.3 Change of Event Evaluation

The event evaluation change ∆Ve is the change of
the event evaluation regarding the previous execution
step:

∆ρe(e) = δ(ρ(I∪ e)t−1,ρ(I∪ e)t) with
ρ(I∪ e)t = /0 f or t < 0

(7)

Thus an event is considered to be changed if its event
evaluation change set is not empty or if the event de-
notes the first time step.

changed(e)← ∆ρe(e) 6= (/0, /0)∨ t = 0 (8)

An event is considered to be newly permitted if it was
forbidden in the previous time step and if it is permit-
ted in the current time step. Additionally it is treated
as newly permitted if it is permitted in the current time
step and if it denotes the first time step and, by asso-
ciation, the first event after the start of the process
instance. In this case no previous events exist.

newlyAllowed(e)← ∆ρe(e) =
(P,Q)∧Q∩RH = /0∧ (P∩RH 6= /0)∨ t = 0

(9)

An event is considered to be newly forbidden if it was
permitted in the previous time step but is forbidden in
the current one. Like in the previous paragraph it is
also treated as newly forbidden if it is forbidden in the
current time step and if it is the first time step.

newlyForbidden(e)← ∆ρe(e) =
(P,Q)∧Q∩RH 6= /0∧ (P∩RH = /0)∨ t = 0

(10)

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

274

3 WORKFLOW PATTERNS

In this section, we evaluate the expressiveness of the
framework by describing how Data and Resource Pat-
terns can be implemented in DPIL. Therefore, we pro-
vide a brief description of the patterns as well as DPIL
model excerpts that reflect the desired behaviour. The
set of control flow patterns (van Der Aalst et al., 2003)
mainly describes functionality stemming from classi-
cal procedural PAIS, i.e., traditional elements of pro-
cedural languages like BPMN. Therefore, they are
only conditionally applicable for declarative process
modelling and are not considered in this paper.

3.1 Workflow Data Patterns

The way in which process data is structured and in-
cluded in the process is described in the workflow data
patterns (Russell et al., 2005a). The patterns are struc-
tured in visibility of data, interaction with data, data
transfer and data-based routing.

3.1.1 Visibility

A data variable is visible within the selected process
instance (WDP5) and within the corresponding sub-
processes (WDP2). In order to limit the visibility of
a data object to certain activities (WDP1), read and
write events can be constrained in the following way.
local(task, object) iff

read(of object at :tr) implies start(of task at < tr at :ts)

and not complete(of task at > ts at < tr)

task CalculateFlightPath

variable WorkingTrajectory

ensure local (CalculateFlightPath, WorkingTrajectory)

This way the data object WorkingTrajectory is
only visible within the activity CalculateFlightPath.
The lifespan of variables and its values, however, is
equal to the duration of the process instance. Access
to data objects can be dependent on the correspond-
ing process instance (WDP6). The following code
shows how it is possible to access different collections
of documents in activity AccessFolder, depending on
which folder has been selected in SelectFolder:
task SelectFolder

task AccessFolder

document collection FolA default "/A" at Local

document collection FolB default "/B" at Local

variable FolderName

ensure produces (SelectFolder, FolderName)

ensure sequence(SelectFolder, AccessFolder)

ensure read(of FolA) implies write(of FolderName value "A")

ensure read(of FolB) implies write(of FolderName value "B")

In order to make environment data accessible by
the system, it has to be read by means of an operation
method and written in a variable. This is explained
by the following model that loads the current temper-
ature to a variable Temperature.
operation GetTemperature "http://service.org/temperature"

to Temperature

task CheckTemperature

variable Temperature

ensure start(of CheckTemperature) implies

return(of GetTemperature)

3.1.2 Interaction

Data objects are visible for all activities of the case.
Their values can be communicated between these ac-
tivities as well (WDP9). Since data objects are also
visible for all subprocesses of a process case, val-
ues can also be passed to them implicitely (WDP10)
and reused (WDP11) by them. Since multi instance
activities are not supported in DPIL, it is also not
possible to pass data values between them (WDP12,
13). Data interaction between several parallel process
cases (WDP14) can be implemented by means of ex-
ternally managed documents, i.e., a CMIS compatible
document management system. As shown above, en-
vironment data can be passed (WDP15) and queried
(WDP16) by means of operations, i.e., script calls.
Data objects can be implicitely received during activ-
ity execution (WDP17) by means of externally man-
aged and changed documents. This way data objects
can also be returned (WDP18). Since data objects are
visible for all tasks of a process this also holds for a
complete instance (WDP21, 22).

In case that only externally managed documents
are used within the process, data values of corre-
sponding process cases are synchronized with the
connected document management system. The states
of process cases is therefore visible to the environ-
ment. Furthermore, data values can be pushed from
cases to the environment by means of a correspond-
ing operation call at the end of a case (WDP19). In
any case data can be passed from the environment to
running cases by means of externally managed docu-
ments (WDP20). The DPIL Navigator supports pro-
cess oriented indicators like the number of completed
cases of a process. These numbers can be transfered
to the environment regularly (WDP23) or offer them
upon request (WDP26).

Towards an Implementation of Data and Resource Patterns in Constraint-based Process Models

275

3.1.3 Transfer

Access to data objects generally happens by reference
(WDP30). Locking mechanisms can be implemented
by means of constraints on write and read events
(WDP31). The transformation of values (WDP32, 33)
can be handled by means of service operations:

operation FromKmhToMph "http://service.org/kmhToMph"

with SpeedKmh to SpeedMph

task ReviewSpeed

variable SpeedKmh

variable SpeedMph

ensure start(of ReviewSpeed) implies return(of FromKmhToMph)

ensure invoke(of FromKmhToMph) implies write(of SpeedKmh)

3.1.4 Data-based Routing

Pre- and postconditions for activities can be imple-
mented by constraining start and compete events of
activities. Events can depend on the existence of a
value or on a concrete value (WDP34-37). Both pat-
terns are highlighted in the following example:

consumes(t, d) iff start(of t) implies write(of d)

produces(t, d) iff complete(of t) implies write(of d)

task RocketInitiation

variable Countdown

variable IgnitionData

ensure consumes(RocketInitiation, Countdown)

ensure start(of RocketInitiation) implies

write(of Countdown value 2)

ensure produces(RocketInitiation, IgnitionData)

Activities can be triggered by the environment
(WDP38):

task Shutdown

operation MonitorAlarm "org.example.Alarm.monitor()" to Alarm

variable Alarm

ensure start(of Shutdown) implies return(of MonitorAlarm)

Activities can also be triggered by certain data val-
ues (WDP39):

task RebalancePortfolio

variable LoanMargin

ensure start(of RebalancePortfolio) implies

write(of LoanMargin value > 0.85)

Data-based routing (WDP40) in declarative mod-
els corresponds to an exclusive split (WCP4) or a
multi choice branch (WCP6), respectively.

3.2 Workflow Resource Patterns

Patterns concerning the organizational aspects of a
process are summarized in (Russell et al., 2005b)
where participants are referred to as resources. They

are divided into patterns that refer to the design phase
of the process (creation), to the systems perspective
(push), to the participants perspective (pull), to excep-
tional situations (detour), to event- or context-based
execution (auto-start), to visibility and to multiple
participants working on the same task. DPIL assumes
a simple organizational metamodel where identities
and groups can be interconnected by relations of a
certain relation type. The information is taken from
a central organizational model like, e.g., an LDAP
service and is only referenced within the DPIL pro-
cess model. Human participation in a DPIL pro-
cess is implemented using the task type of activity.
From the engines viewpoint, a task may be started
and completed. The task management service of the
DPIL platform extends the life cycle of a task by re-
serve/release and suspend/resume states.

The simplest method of distribution is the direct
allocation of a participant to a task at design time
(WRP1). Besides this, tasks may be distributed on
the basis of roles (WRP2), capabilities (WRP8) or or-
ganizational relationships (WRP10). The following
example process contains each of these patterns:

use identity Fred

use group Manager

use group Engineer

use relationtype hasRole

use relationtype hasJob

use relationtype isManagerOf

direct(t, i) iff start(of t) implies start(of t by i)

role(t, r) iff start(of t by :i)

implies relation(subject i predicate hasRole object r)

process Organisation {

task FixBentley

task ApproveTravelRequisition

task AirframeExamination

task ClaimExpenditure

task AuthoriseExpenditure

advise direct(FixBentley, Fred)

advise role(ApproveTravelRequisition, Manager)

advise start(of AirframeExamination) implies

start(of AirframeExamination

by :i by.servicingExperienceInYears >= 10)

and relation(subject i predicate hasJob object Engineer)

advise start(of ClaimExpenditure by :claimer)

and start(of AuthoriseExpenditure by :authoriser)

implies relation(subject authoriser

predicate isManagerOf

object claimer)

}

The above model references the identity Fred, two
groups and three relation types. The task FixBentley
should only be performed by Fred (WRP1). The rule

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

276

is soft (type advise) so that the assignment to Fred
is recommended but not mandatory, i.e., other partic-
ipants are allowed to perform the task but they are
advised not to do so. The task ApproveTravelRequisi-
tion should be performed by a participant having the
role of a Manager (WRP2). The AirframeExamina-
tion should be performed by an Engineer having at
least ten years of servicing experience (WRP8). Fi-
nally, AuthoriseExpenditure should be performed by
the manager of the participant who has performed
ClaimExpenditure (WRP10). DPIL supports the sep-
aration (WRP5) and the binding (WRP7) of duties for
activities. The following model shows how different
tasks are performed by the same and by different re-
sources:
separate(a, b) iff

start(of b by :ib) implies start(of a by != ib)

retain(a, b) iff

start(of b by :ib) implies start(of a by ib)

process Organisation {

task UmpireMatch

task PrepareMatchReport

task PrepareCheque

task CountersignCheque

advise retain(UmpireMatch, PrepareMatchReport)

advise separate(PrepareCheque, CountersignCheque)

}

An assignment can be deferred (WRP3) by assign-
ing the concrete identity that should perform a task at
runtime through the value of a certain data object:
task AssessDamage

variable Performer

advise start(of AssessDamage) implies

variablewrite(of Performer value :p)

and start(of AssessDamage by.id p)

DPIL does not offer any means of referencing ear-
lier process instances (WRP9) and is not able to per-
form any scheduling (WRP15-17). Activities can be
offered without obligation of a single (WRP12) or of
several resources (WRP13) by modelling assignment
constraints as soft rules (advise). A mandatory as-
signment to a certain resource (WRP14) can be speci-
fied by means of hard rules (ensure). Participants can
reserve activities, i.e., tasks are then marked for other
resources (WRP21). Concrete work on tasks can be
started afterwards (WRP22). Activities can, however,
also be started directly as soon as they have been en-
abled (WRP23). Work list items can’t be sorted by the
process model (WRP24), however, by process partici-
pants (WRP25). A resource can perform several tasks
at the same time (WRP42) and decide herself which
task to perform next (WRP26). Tasks can be released
after reservation (WRP29) and marked as interrupted

(WRP32). Activities can be completed directly after
the start, i.e., skipped, if this doesn’t violate a con-
straint (WRP33). Without constraining rules an ac-
tivity can be repeated arbitrary often (WRP34). Rep-
etitions can be constrained if a certain event, e.g., a
milestone, has been reached. Resources can perform
prework (WRP35) by defining certain temporal se-
quences only as recommended instead of obligatory.
Activities are created and assigned at the same time
(WRP36), however, can’t be started directly after an
assignment (WRP37). Further activities can be en-
abled directly after the completion of an activity. As-
signed activities together with their current agent can
be visualized to all resources (WRP41). An activity
is only assigned to a single resource at the same time
(WRP43). Summing up, the DPIL framework sup-
ports 62% of the organizational and 75% of the data
oriented workflow patterns. Therefore, the conducted
work shows that the biggest part of workflow data and
resource patterns can be implemented by means of
DPIL and the DPIL Navigator platform. Note that to
the best of our knowledge there is currently no com-
parative analysis of other declarative language frame-
works w.r.t. the Workflow Patterns.

4 RELATED WORK

The work at hand relates to declarative process man-
agement with a strong focus on practical applicabil-
ity of developed concepts. The Declare framework
was designed for modelling and executing declara-
tive business processes. In its most publicized vari-
ant, a Declare process model is built from a set of rule
templates each of which is mapped to an expression
in Linear Temporal Logic (LTL). The resulting LTL
formula is then converted to an automaton for execu-
tion (Pesic, 2008). Declare only constrains the starts
of activities and interrelates them temporally. Data
oriented aspects and the organizational perspective
are completely missing in Declare. The approach pro-
posed in (Lamma et al., 2007) allow for the specifica-
tion of constraints that go beyond the traditional De-
clare templates. In (Westergaard and Maggi, 2012),
the authors define Timed Declare, an extension of De-
clare that relies on timed automata. In (Montali et al.,
2013), the authors introduce for the first time a data
aware semantics for Declare. In (Burattin et al., 2015)
a general multi perspective LTL semantics for Declare
(MP-Declare) has been presented. Here, Declare is
extented with elements of first order logic to refer to
data values in constraints. Data aware as well as gen-
eralized MP-Declare models are currently only sup-
ported in the context of conformance checking (Bu-

Towards an Implementation of Data and Resource Patterns in Constraint-based Process Models

277

rattin et al., 2015) and process discovery (Schönig
et al., 2016). A system supported modelling and ex-
ecution is currently not possible. CLIMB (Montali,
2010) is a first-order logic declarative language for
the specification of interaction models. Here, the De-
clare is also extented with further process perspectives
like data and resources. As for MP-Declare, there
is no system support for modelling and execution of
CLIMB models. The DCR Graph framework (Slaats
et al., 2013) and graphical representation is similar
to the Declare. The DCR Graph model directly sup-
ports execution of the process model based on the
notion of markings of the graph. The framework
lacks system support for data and resource oriented
aspects. The Case Management Model and Nota-
tion (CMMN)4 represents recent efforts to standardize
declarative business process modelling. CMMN ne-
glects the organizational perspective. The performer
can only be selected on the basis of a role and the per-
spective is completely missing in the graphical repre-
sentation of CMMN models. System support for data
in CMMN is currently is still not available.

5 CONCLUSIONS

In this paper, we introduced the declarative process
modelling and execution framework DPIL that cov-
ers resource and data modelling. Expressiveness and
functionality of the framework have been evaluated
by means of the Workflow Data and Resource Pat-
terns. We described concrete model excerpts that im-
plement frequently needed patterns. Summing up,
the work at hand can serve as an instruction man-
ual for implementing a declarative process manage-
ment solution in practical applications. Based on the
lessons learned the DPIL framework is currently used
in several industry projects to digitally support oper-
ative processes. Future research in this context will
focus on further improving modelling and execution
support for DPIL models, e.g., by a web-based mod-
elling tool. DPIL is currently a textual language that
might be difficult to read and understand by end users.
Therefore, a graphical language and editor is desired.

REFERENCES

Burattin, A., Maggi, F. M., and Sperduti, A. (2015). Con-
formance checking based on multi-perspective declar-
ative process models. preprint arXiv:1503.04957.

Fahland, D., Lübke, D., Mendling, J., Reijers, H., Weber,
B., Weidlich, M., and Zugal, S. (2009). Declarative

4http://www.omg.org/spec/CMMN/

versus imperative process modeling languages: The
issue of understandability. In Enterprise, Business-
Process and Information Systems Modeling, pages
353–366.

Jablonski, S. and Bussler, C. (1996). Workflow manage-
ment: modeling concepts, architecture and implemen-
tation.

Lamma, E., Mello, P., Riguzzi, F., and Storari, S. (2007).
Applying inductive logic programming to process
mining. In Inductive Logic Programming, pages 132–
146.

Montali, M. (2010). Specification and verification of
declarative open interaction models: a logic-based
approach, volume 56. Springer Science & Business
Media.

Montali, M., Chesani, F., Mello, P., and Maggi, F. M.
(2013). Towards data-aware constraints in declare. In
SAC, pages 1391–1396. ACM.

Pesic, M. (2008). Constraint-based workflow management
systems: shifting control to users.

Reichert, M. and Weber, B. (2012). Enabling flexibil-
ity in process-aware information systems: challenges,
methods, technologies. Springer Science & Business
Media.

Reijers, H. A., Slaats, T., and Stahl, C. (2013). Declarative
modeling–an academic dream or the future for bpm?
In BPM, pages 307–322. Springer.

Russell, N., Ter Hofstede, A. H., Edmond, D., and van der
Aalst, W. M. (2005a). Workflow data patterns: Iden-
tification, representation and tool support. In Inter-
national Conference on Conceptual Modeling, pages
353–368. Springer.

Russell, N., van der Aalst, W. M., Ter Hofstede, A. H.,
and Edmond, D. (2005b). Workflow resource pat-
terns: Identification, representation and tool support.
In CAISE, pages 216–232.

Schönig, S., Ackermann, L., and Jablonski, S. (2017). DPIL
Navigator 2.0: Multi-Perspective Declarative Process
Executio. In BPM Demos.

Schönig, S., Di Ciccio, C., Maggi, F. M., and Mendling,
J. (2016). Discovery of multi-perspective declarative
process models. In ICSOC, pages 87–103. Springer.

Schönig, S. and Zeising, M. (2015). The DPIL Framework:
Tool Support for Agile and Resource-Aware Business
Processes. In BPM Demos.

Slaats, T., Mukkamala, R. R., Hildebrandt, T., and Mar-
quard, M. (2013). Exformatics declarative case man-
agement workflows as dcr graphs. In BPM, pages
339–354. Springer.

Vaculı́n, R., Hull, R., Heath, T., Cochran, C., Nigam, A.,
and Sukaviriya, P. (2011). Declarative business arti-
fact centric modeling of decision and knowledge in-
tensive business processes. In EDOC, pages 151–160.

van Der Aalst, W. M., Ter Hofstede, A. H., Kiepuszewski,
B., and Barros, A. P. (2003). Workflow patterns. Distr.
and parallel databases, 14(1):5–51.

Westergaard, M. and Maggi, F. M. (2012). Looking into the
future: Using timed automata to provide a priori ad-
vice about timed declarative process models. In OTM,
pages 250–267. Springer.

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

278

