Biological Network Modelling and Pathway Analysis

Ansam Al-Sabti, Mohamed Zaibi, Sabah Jassim


ABSTRACT The search for disease-specific biomarkers for di- agnosis, illness monitoring, therapy evaluation, and, prognosis prediction is one of the major challenges in biomedical research. It has long been that diseases are rarely caused by abnormality in a single protein, gene or cell. But by disorder of different processes man- ifested by intracellular network of interactions be- tween the molecular components in such biological systems. Despite the popularity of biological network anal- ysis methods and increasing use for identifying genes or pathways (groups of genes) that contribute to diseases and other biological processes, impor- tant topological and network information are hardly used in ranking/assessing the relevance of the path- ways. Often, gene expression values and confidence score/strength of interactions are not considered when scoring/ranking the resulting pathways. The research presented in this paper focuses on two different, but closely related areas in Bioinfor- matics: developing new approaches for biological network analysis, and improving the identification of disease biomarkers. The inclusion of topological weight and expression level in the calculation of path- ways score is expected to facilitate the identification of the pathways that most relevant to pathophysiolog- ical processes.


  1. Baraba´ si, A.-L., Gulbahce, N., Loscalzo, J., 2011. Network medicine: a network-based approach to human disease. Nature Reviews Genetics 12 (1), 56- 68.
  2. Chuang, H.-Y., Lee, E., Liu, Y.-T., Lee, D., Ideker, T., 2007. Network-based classification of breast cancer metastasis. Molecular systems biology 3 (1), 140.
  3. Cui, Y., Chen, W., Chi, J., Wang, L., 2016. Differential expression network analysis for diabetes mellitus type 2 based on expressed level of islet cells. In: Annales d'endocrinologie. Vol. 77. Elsevier, pp. 22-29.
  4. Gao, S., Wang, X., 2007. Tappa: topological analysis of pathway phenotype association. Bioinformatics 23 (22), 3100-3102.
  5. Garmhausen, M., Hofmann, F., Senderov, V., Thomas, M., Kandel, B. A., Habermann, B. H., 2015. Virtual pathway explorer (viper) and pathway enrichment analysis tool (peanut): creating and analysing focus networks to identify cross talk between molecules and pathways. BMC genomics 16 (1), 790.
  6. Ibrahim, M. A.-H., Jassim, S., Cawthorne, M. A., Langlands, K., 2012. A topology-based score for pathway enrichment. Journal of Computational Biology 19 (5), 563- 573.
  7. Konganti, K., Wang, G., Yang, E., Cai, J. J., 2013. Sbetoolbox: a matlab toolbox for biological network analysis. Evolutionary Bioinformatics 9, 355.
  8. Lind, M., Hirsch, I. B., Tuomilehto, J., Dahlqvist, S., Ahre´ n, B., Torffvit, O., Attvall, S., Ekelund, M., Filipsson, K., Tengmark, B.-O., et al., 2015. Liraglutide in people treated for type 2 diabetes with multiple daily insulin injections: randomised clinical trial (mdi liraglutide trial).
  9. Newman, M., 2010. Networks: an introduction. Oxford university press.
  10. Ozougwu, J., Obimba, K., Belonwu, C., Unakal-amba, C., 2013. The pathogenesis and pathophysiology of type 1 and type 2 diabetes mellitus. Journal of Physiology and Pathophysiolo-gy 4 (4), 46-57.
  11. Pollack, J. R., 2007. A perspective on dna microarrays in pathology research and practice. The American journal of pathology 171 (2), 375-385.
  12. Singh, A., Kumar, N., 2013. A review on dna microarray technology. International Journal of Current Research and Review 5 (22), 1.
  13. Taneera, J., Lang, S., Sharma, A., Fadista, J., Zhou, Y., Ahlqvist, E., Jonsson, A., Lyssenko, V., Vikman, P., Hansson, O., et al., 2012. A systems genetics approach identifies genes and pathways for type 2 diabetes in human islets. Cell metabolism 16 (1), 122-134.
  14. Tarca, A. L., Draghici, S., Khatri, P., Hassan, S. S., Mittal, P., Kim, J.-s., Kim, C. J., Kusanovic, J. P., Romero, R., 2009. A novel signaling pathway impact analysis. Bioinformatics 25 (1), 75-82.
  15. Taylor, A., Steinberg, J., Andrews, T. S., Webber, C., 2015. Genenet toolbox for matlab: a flexible platform for the analysis of gene connectivity in biological networks. Bioinformatics 31 (3), 442-444.
  16. Van't Veer, L. J., Dai, H., Van De Vijver, M. J., He, Y. D., Hart, A. A., Mao, M., Peterse, H. L., van der Kooy,K., Marton, M. J., Witteveen, A. T., et al., 2002. Gene expression profiling predicts clinical outcome of breast cancer. nature 415 (6871), 530-536.
  17. Vert, J. P., Kanehisa, M., 2003. Extracting active pathways from gene expression data. Bioinfor-matics 19 (suppl 2), ii238-ii244.
  18. Wang, Y., Klijn, J. G., Zhang, Y., Sieuwerts, A. M., Look, M. P., Yang, F., Talantov, D., Timmermans, M., Meijervan Gelder, M. E., Yu, J., et al., 2005. Geneexpression profiles to predict distant metastasis of lymph-nodenegative primary breast cancer. The Lancet 365 (9460), 671-679.
  19. Wu, Y., Ding, Y., Tanaka, Y., Zhang, W., 2014. Risk factors contributing to type 2 diabetes and recent advances in the treatment and prevention. International journal of medical sciences 11 (11), 1185.
  20. Zhang, W., Zeng, T., Chen, L., 2014. Edgemarker: identifying differentially correlated molecule pairs as

Paper Citation

in Harvard Style

Al-Sabti A., Zaibi M. and Jassim S. (2017). Biological Network Modelling and Pathway Analysis . In Doctoral Consortium - DCBIOSTEC, (BIOSTEC 2017) ISBN , pages 16-25

in Bibtex Style

author={Ansam Al-Sabti and Mohamed Zaibi and Sabah Jassim},
title={Biological Network Modelling and Pathway Analysis},
booktitle={Doctoral Consortium - DCBIOSTEC, (BIOSTEC 2017)},

in EndNote Style

JO - Doctoral Consortium - DCBIOSTEC, (BIOSTEC 2017)
TI - Biological Network Modelling and Pathway Analysis
SN -
AU - Al-Sabti A.
AU - Zaibi M.
AU - Jassim S.
PY - 2017
SP - 16
EP - 25
DO -