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Abstract: The search for disease-specific biomarkers for diagnosis, illness monitoring, therapy evaluation, and, 

prognosis prediction is one of the major challenges in biomedical research. It has long been that diseases are 

rarely caused by abnormality in a single protein, gene or cell. But by disorder of different processes 

manifested by intracellular network of interactions between the molecular components in such biological 

systems.  

Despite the popularity of biological network analysis methods and increasing use for identifying genes or of 

genes) that contribute to diseases and other biological processes, important topological and network 

information are hardly used in ranking/assessing the relevance of the pathways. Often, gene expression 

values and confidence score/strength of interactions are not considered when scoring/ranking the resulting 

pathways. The research presented in this paper focuses on  two different, but closely related areas in 

Bioinformatics: developing new approaches for biological network analysis, and improving the 

identification of biomarker discovery for disease classification. The inclusion of topological weight and 

expression level in the calculation of pathways score is expected to facilitate the identification of the 

pathways that most relevant to pathophysiological processes. 

1 RESEARCH PROBLEM 

Biological network analysis methods have been 

incorporated in a number of proprietary and open-

source analysis tools, such as GeneNet, and 

SBEToolbox, in order to link diseases to 

abnormalities in pathways of proteins and genes 

(Barabási et al., 2011). However, most adopted 

biological network analysis methods did not take 

into account the gene expression values but give 

increased relevance to the number of differentially 

expressed genes on the pathways, (see (Garmhausen 

et al., 2015)). Moreover, proteins interaction 

confidence scores that reflect the reliability/strength 

of the interaction are ignored. 

This problem is therefore concerned with 

modelling and effectively using readily available 

biological network information such as nodes fold 

change values, edges confidence score, and node 

degree (number of edges each node has) within a 

computationally viable framework that facilitates the 

efficient identification and analysis of essential 

biological processes such as disease diagnosis. 

 

2 OUTLINE OF OBJECTIVE  

Mathematically, molecular interaction networks can 

be represented as graphs with molecules as nodes 

and interactions between the molecules as the edges. 

We aim to investigate the use of graph algorithms to 

search large-scale molecular network and reveal 

some significant small sub-networks that are highly 

expressed under a specific phenotype. Eventually, 

machine learning could provide mechanisms to 

identify some disease relevant clusters in interaction 

network. The main short-term objectives of the 

research reported in this project relate to three key 

components: 

 Investigating and developing new 

mathematical tools to improve the analysis of 

high throughput Omics data with focus on 

molecular interaction networks. 

 Investigating a range of scoring schemes for 

identifying significant biologically relevant 

pathways, subnetworks, and clusters. 

 Testing the performance and effectiveness of 

our analysis approaches on more than one 

database. 
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3 BIOLOGICAL NETWORKS 

ANALYSIS MATERIALS AND 

CHALLENGES 

Over the last two decades, a great deal of effort has 

been made to archive existing biological knowledge 

in public databases, and provide tools to access, 

retrieve, visualize the corresponding biologically 

relevant knowledge. Indeed, a number of research 

studies have shown that integrating high-throughput 

Omics data with prior biological knowledge 

(Network database) tend to be more informative and 

give more meaningful analysis of the complex data. 

The details of all materials that can be used in 

biological network analysis is given in this section. 

3.1 High-throughput Omics Data 

Due to the feasibility of accessing and handling gene 

expression data generated from microarrays, we will 

use them in this analysis and to test our proposed 

approaches. However, the same principles can be 

applied on other type of transcriptional data such as 

RNA-Seq or other molecular data such as proteins. 

Gene expression datasets can be accessed and 

downloaded from public databases such as GEO or 

Array Express for microarray data. 

3.2 Network Databases 

Initially, we will focus on protein-protein interaction 

network (PPI). Later on, the project can be expanded 

to cover other types of networks. Due to the variety 

of molecular interaction resources, we are planning 

to use the PSICQUIC registry service, which enables 

us to access and integrate networks from different 

databases. This can be done programmatically using 

web services provided by some programming 

environment (e.g. perl) or via some tools such as 

Cytoscope. 

Most of the available protein protein interaction 

(PPI) databases such as IntAct, MINT, and 

BioGRID use a molecular interaction (MI) scoring 

system which presents a normalized score (SMI) 

calculating composite score for the interaction based 

on three different factors can be listed as 

experimental detection methods (m), the number of 

publications (p), and interaction types (t). This score 

is taking value between 0 and 1, and it reflects the 

reliability of the specific interaction. 

𝑆𝑀𝐼 =
𝐾𝑝 × 𝑆𝑝(𝑛) + 𝐾𝑚 × 𝑆𝑚(𝑐𝑣) + 𝐾𝑡 × 𝑆𝑡(𝑐𝑣)

𝐾𝑝 + 𝐾𝑚 + 𝐾𝑡
 (1) 

where:  𝐾𝑝 Weight factor  𝐾[𝑝,𝑚,𝑡]  ∈ [0 − 1] 

             𝑆𝑝 Publication Score  𝑆𝑝  ∈  [0 − 1] 

             𝑆𝑚 Method Score  𝑆𝑚  ∈  [0 − 1] 

             𝑆𝑡  Type Score  𝑆𝑡  ∈  [0 − 1] 

For example the database with a score of >0.6 is 

considered as high-confidence while 0.45-0.6 is 

considered as medium confidence in the IntAct 

database, but the users have the option to choice 

their own threshold to filter the data when they are 

using the search tool. 

3.3 Challenges 

Although biological networks can be represented as 

graphs, different groups of network have different 

characteristics. For example, graphs can be either 

directed (e.g. gene-regulatory network, signalling 

transduction network, and metabolic network) or 

undirected (e.g. protein-protein interaction network) 

depending on the nature of interactions between the 

molecules. Biological networks should be handled 

carefully and the main challenges can be 

summarised as follows: 

1. The complexity of molecular interaction 

networks provides a big challenge to any 

analysis approach due to different node sizes 

and to complex graphical elements.                                                                            

2. Some molecules such as proteins can be 

involved in different cellular functions. 

Therefore, traditional clustering methods 

may not be appropriate in the PPI networks 

because of overlapping clusters should be 

identified with these kinds of networks. 

3. Changes in mRNA levels may not reflect the 

corresponding changes in protein levels 

because of the protein degradation or 

changing in translation. 

4. It is very crucial to validate the outcome of 

our analysis, which can be seen as another 

source of challenge as it requires sometimes 

further experiments in follow-up studies. 

One of the major restriction in the improvement of 

biological network methods is the limitation of 

objective criteria to evaluate the quality of the 

results. Our resolution is to choose a dataset series 

that the molecular basis of pathogenesis is well-

established in that a powerful and testable outcome 

providing. 
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4 STATE OF THE ART 

The high dimensionality and heterogeneity of 

largescale Omics studies (genomics, transcriptomics, 

proteomics, and metabolomics) are the most 

researched challenging tasks in biomedical science. 

Data complexities along with other issues such as 

the high  gene-to-sample ratio in transcriptomics 

studies make biological network/data analysis a 

daunting task. 

Computational biomedical science has become 

one of the most attractive research areas for 

multidisciplinary teams of mathematicians, 

computer scientists and biomedical scientists, to 

develop aiding tools that help gain better 

understanding of such complex data. A wide range 

of studies has emerged gradually for identifying 

genes or pathways (groups of genes) that contribute 

to diseases and other biological processes; we follow 

them by giving this matter a close attention and 

studied. 

Traditional analysis begins with the preproces-

sing of intensity values of raw images captured from 

microarray experiments to extract expression values 

for a set of probes, performing quality control, 

filtering and normalizing gene expression data. This 

is followed by conducting statistical tests for each 

gene, comparing expression levels in different 

groups. Finally, genes are sorted in ascending or 

descending order of their p-values or fold change. 

The most significant genes are then subjected to 

clinical conditions or experimental validation and/or 

used to generate biological hypotheses (Wang et al., 

2005; Van’t Veer et al., 2002). The outcome of this 

process, known as molecular biomarkers discovery, 

offers limited insight due to the fact that genes act in 

consistent groups rather than alone. 

Consequently, the attention shifted toward the 

identification of a group of genes that interact 

directly or indirectly in a pathway form with a focus 

on the topology or the structural information 

representing interactions between these genes. For 

example, the number of connected genes and their 

position to assess their association with complex 

diseases and to provide more efficient and accurate 

means for biomarker detection. A number of 

pathway-based models have been developed over 

the last several years, some of these methods focus 

on the topology only in ranking pathways (Vert and 

Kanehisa, 2003; Gao and Wang, 2007). While, 

others combine the measurements of expression 

changes among groups of genes, involved in 

common pathways, with topology information 

(Tarca et al., 2009). 

Ibrahim et al. (2012) used fold-change and 

topology information to identify a new logical 

meaning of enriching pathway data. It integrates all 

expressed genes with biological pathways to be 

ranked using Z-score measurements that combine 

the total number of expressed genes identified by the 

microarray with the total number of genes that 

exceed the fold change and p-value thresholds. 

Selecting gene groups from highly scored pathways 

are then used as biomarkers for disease conditions. 

This Pathway Enrichment and Gene Network 

Analysis (PEGNA) scheme and its MATLAB 

implemented tool is an effective approach to 

pathway-based analysis, which is the initial 

motivation for our work. 

Since the greatest number of human genes has 

not been linked to a particular pathway and the easy 

access to large protein networks, pathway-based 

analysis has been extended to biological network 

analysis in order to perform meaningful insight into 

underlying biological processes and biomarker 

discovery (Chuang et al., 2007). Recent 

investigations developed a number of novel 

modelling techniques as well as several MATLAB 

and Java tools for analysing biological networks. 
Konganti et al. (2013) proposed SBEToolbox 

(Systems Biology and Evolution Toolbox), which is 

a MATLAB toolbox for biological network analysis 

that incorporates a wide range of user-controlled 

functions. The input/output into/from this tool is 

represented in four different formats: MAT, 

tabdelimited, Pajeck, and SIF-file. The SBEToolbox 

offers a collection of network visualization schemes 

in different layouts such as Tree Ring and Circle, 

and calculates a variety of centralities and 

topological metrics like closeness centrality and 

betweenness centrality. In addition, network’s graph 

can be exported to external programs such as Pajek 

and Cytoscape for further interpretation and 

analysis. It adopts three different strategies for 

clustering nodes into connected sub-networks: 

ClusterOne, MCL, and MCODE (for more details 

see (Konganti et al., 2013)). Notably, representing 

the network interactions information as a sparse 

adjacency matrix reduces the efficiency of this 

method. 

Taylor et al. (2015) have presented GeneNet 

toolbox in MATLAB that provides functions that 

enable users to assess connectivity among sets of 

genes (seed-genes) within a biological network of 
their choice. GeneNet offers two methods to 

determine significant connection between selected 

genes: Seed Randomization (SR) and Network 

Permutation (NP). The seed genes should have 
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common attributes for example in a PPI, such as the 

number of edges each node has, while the NP 

scheme keeps the seed-genes same and permute the 

network edges many times, however the network 

must have sufficient number of permutations (As 

shown in Fig 1). An empirical P-value can be 

calculated by comparing the connectivity of direct 

seed to the random gene-sets connectivity in SR or 

the connectivity of direct seed in real network to the 

connectivity of permuted networks in NP. 

Garmhausen et al. (2015) proposed a recursive  

method for implementing Cytoscape plug-in called 

viPEr (Virtual pathway explorer), restricted by the 

maximum number of nodes and the numerical values 

of the nodes (log2fold). It is used to create a focus 

sub-network by integrating a list of significant genes 

with the PPI of a specific organism. This plugin 

offer 3 options: 

 
Network permutation  

 
Seed randomisation 

Figure 1: The two main methods implemented in GeneNet Toolbox (this figure is adapted from Taylor et al. (2015)). 

 A to B: Finds all paths of length N between 

two selected nodes. The search is stopped 

when the maximum number of steps is 

exceeded or the target node is reached, then 

a path is stored and scored using formula 2. 

The sub-network is created from all the 

nodes in stored paths 

𝑆𝑐𝑜𝑟𝑒 =
Number of Differentially Regulated Nodes ∈  path

path length2
 

                                                                                                   (2) 

Note that the gene expression value is 

ignored so no difference between highly 

expressed and not so highly expressed 

genes as long as they pass a threshold. 

 Connecting in Batch: Finds all paths of 

length N between two groups of nodes, by 

calculating all paths between all members 

of a starter list and a target list by using the 

(A to B) search. 

 Environment Search: Creates a sub-

network of all outgoing length N paths 

from a given node. Pathways that have two 

consecutive nodes are not differentially 

expressed, will be discounted. 

This plugin has achieved some success in exploring 

enrichment sub-networks by allowing for one 

unregulated node in the resulting paths, the outcome 

may restrict the accuracy of the results. 

Notably, the research in the field of biological 

systems is not restricted to develop some software 

tools for visualizing and analysing biological 

networks, several efforts have been carried out to 

extract a rich information from these interactions 

networks While some traditional methods ignored 

non-differentially expressed genes (NDEGs), Zhang 
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et al. (2014) developed a mathematical model to 

identify edge biomarker based on differentially 

correlated expression between two genes, which is 

measured by Pearson correlation coefficient, and 

demonstrated that the NGEDs can contribute to 

classifying different phenotypes samples. 

Genes are first sorted by the descending order of 

their standard deviation values (SD) and excluding 

20%, the lowest SD genes in normal or disease 

groups. The P-values are calculated for the filtered 

genes and genes with P-value >0.6 are chosen as 

statistically non-differentially expressed genes. Then 

the Pearsons correlation coefficient (PCC) are 

computed for all possible pairs of NDEGs in normal 

and diseased samples; the pairs of genes which have 

|𝑃𝐶𝐶| >  0.9 are selected as differently correlated 

gene pairs (DCPs). Each DCP pair of genes are then 

transformed to two coupled edge features for the 

normal and the diseased groups to be analysed by 

machine Learning. The Fishers discriminant score is 

used to rank the edge features decreasingly and get 

the top score edge, then the wrapper method applied 

to select the edge-biomarkers from the chosen set to 

improve the prediction. 

A key limitation of correlation networks research 

is that edges are constructed using expression 

correlation, with no background network informa-

tion, i.e. edges represent potential coexpression or 

functional association among molecules rather than 

physical interaction. 

This is similar to the weighted correlation 

network analysis (WGCNA) or functional 

interaction with STRING database. 

In this paper, we propose an expansion of the 

approach developed by Garmhausen et al. (2015), 

discussed above, by incorporating the actual gene 

expression values as well as interaction information. 

5 MICROARRAY DATA 

PREPROCESSING AND 

ANALYSIS 

In this section, we present a brief overview of DNA 

microarray technology with focus on the basic 

principles of microarray techniques. We illustrate 

the preprocessing of microarray raw data in order to 

produce reliable gene expressions, for the diabetes 

mellitus disorder as a case study. We shall 

demonstrate our analytical approach by first 

importing PPI network from public database, input 

the network as a MATLAB variable, and using an 

appropriate network search algorithm to search for 

significant pathways, then ranking these pathways 

by a new innovative score formula that reflects our 

approach. 

5.1 Microarray Technology 

The second half of the 1990s had witnessed the 

appearance of the novel technology of DNA 

microarray. Microarray is defined as thousands of 

spots each representing an identified sequenced 

genes in a regular arrangement printed on a chip 

made of glass or silicon at fixed grids. 

Depending on the length of printed DNA 

fragments, the technique used to spot the DNA on 

the slide/chip and also the generated images. 

Microarrays come in two commercial types that are 

cDNA and Oligonucleotide arrays; cDNA is a 

complementary DNA spot on a glass surface by 

using highspeed robot. While, Oligonucleotide is a 

short DNA oligonucleotides; represent single or 

family of gene are spotted onto a solid support using 

photolithographic masks and photo labile protecting 

groups. For more details, the reader is referred to 

(Pollack, 2007; Singh and Kumar, 2013). 

A microarray technology can be divided into 

three main steps: sample preparation, probes 

labelling and hybridization and finally, image 

scanning and data analysis. For our research we 

focus on the last two steps when fluorescence 

intensities are collected to produce two independent 

tagged image file format (TIFF) for each channel. 

The quantity of each transcript represented on the 

chip can be calculated by measuring the intensity of 

the spot on the image. 

5.1.1 Case Study 

Diabetes mellitus (DM) is a common serious 

metabolic disease that results from different risk 

factors such as a genetic predisposition, inheritance 

environment interaction along with other sedentary 

lifestyle and obesity. Increased hunger, and 

increased thirst, lipids, impaired carbohydrates, 

protein metabolism, high blood sugar that either 

result of insulin action or insufficient insulin 

production or both are the most important symptoms 

of diabetes mellitus. There are two major types of 

diabetes, insulindependent diabetes mellitus (type 1) 

caused by pancreas failure to produce sufficient 

insulin, and noninsulin-dependent diabetes mellitus 

(type 2) that starts with insulin resistance when body 

cells fail to respond to insulin properly (Ozougwu et 

al., 2013; Wu et al.,2014; Lind et al., 2015). Our 

objective is to analyse the molecular mechanism and  
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Unnormalised intensity values 

 
Normalised intensity values   

Figure 2: The effects of the RMA normalisation. 

identify some biomarkers for type 2 diabetes 

mellitus (T2DM) using a dataset created by Taneera 

et al. (2012) who compared gene expression levels 

in mRNA isolated from human pancreatic islets 

taken from 63 donors (9 with type 2 diabetes 

(T2DM) and 54 non-diabetic). The data were 

hybridised to Robust Multi-array Analysis (RMA) 

and Affymetrix Human Gene 1.0 ST to normalise 

the expression values before uploading to the Gene 

Expression Omnibus (http://www.ncbi.nlm.nih.gov/ 

geo/query/acc.cgi?acc=GSE38642). Notably, this 

data has been used in other articles for different 

purposes. For example Cui et al. (2016) used 

expression profile of GSE38642 microarray to 

analyse the pathogenesis of T2DM through 

constructed differential expression network of 

T2DM signature genes. These genes have been 

screened by Affy package (R/Bioconductor) of R 

language into three steps background adjustment, 

quantile normalization and finally summarization, 

and logarithmic transformation. Differentially 

expressed genes (DEGs) analysis were applied using 

Multiple Linear Regression Limma, with a threshold 

of P<0.001 which identified 59 up- and 88 down-

regulated genes (total 147 DEGs).  

We used the Affy package (R/Bioconductor) of 

the R language to download the transcription profile 

GSE38642 from GEO. Then the raw data (CEL 

files) produced by the Affymetrix software and 

contain an estimated intensity values  of the probe 

were preprocessed in three steps: (1) Remove 

background effects to adjust observed intensities and 

remove possible noise from the optical detection 

system; (2) Normalize intensity values across the 63 

arrays that may be caused by variations related to 

laboratory conditions and hybridization reactions;  
   

Biological Network Modelling and Pathway Analysis

21



 

Figure 3: The relationships between the samples. 

and (3) Summarize the normalized intensities into 

one quantity that estimates the rate of the 

proportional amount to the RNA transcript. All steps 

used the oligo::rma package, and figure 2 shows the 

output. 

The intensities from all chips have brought into 

similar distribution characteristics. The samples 

were hierarchically clustered by tissue type and the 

relationships between the clusters are shown in 

figure 3. Prior to the differential gene expression 

analysing, we used the nsFilter to remove 

uninformative data, such as low intensity, empty and 

bad quality spots as well as genes that have a low 

variance or uniformly expressed. This resulted in the 

removal of 16161 probe sets. A design matrix was 

reconstructed with each row and each column 

corresponding to an array and a coefficient that used 

to describe the mRNA sources in the experiment 

respectively. The expression data were fitted to the 

multiple linear regression model which specified by 

the design matrix using lmFit() in Limma package, 

and Empirical Bayes statistical methods (eBayes ()) 

were applied for DEGs analysis. Then, a matrix with 

gene level has obtained from a matrix with probe 

level based on annotation files. The biomaRt 

package have been used to map Ensembl Gene and 

Uniprot Swissprot accessions to the 7572 differen-

tially expressed genes symbols that we assessed their 

significance.  

 

 

 

6 METHODOLOGY 

Having reviewed above the recent biological 

network analysis methods, our approach attempts to 

achieve computational efficiency and address the 

challenges raised above by appropriate incorporation 

of nodes fold change values, edges confidence score, 

and nodes degrees. The PPI network was obtained 

from the open-access IntAct, MINT, Mentha, and 

HPRD databases to provide molecular interaction 

data with rich annotation. These databases use 

UniProt as its main identifier type. The Cytoscape 

Plugin BridgeDB have been used to map the listed 

target proteins (UniProt ids) to Entrez IDs. The fold 

change values from the microarray experiment are 

assigned to the network nodes to be incorporated 

into our new pathway scoring formula introduced 

later. Then, the network is downloaded by using 

Cytoscape in XML file format, and the information 

were read into MATLAB. After removing 

redundancies, a total of 339016 unique PPI pairs 

have saved along with their confidence scores as 

MAT-file. The file consists of two cell string vectors 

stored all the edges and nodes information in the 

network respectively. For efficiency, the adjacency 

list were used to represent the interactions 

information as a two-dimensional array, one for each 

node label and another contains the labels of the 

other nodes, which is connected to it by an edge, see 

Figure 4. 
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Figure 4: The network representation. 

Next, we exploited Graph Theory to identify 

certain clusters from the big network. For that 

reason, we implemented one of a well-known 

network searching technique known as the Dijkstras 

algorithm. The Dijkstras algorithm recursively scans 

all nodes in a network starting from a special node, 

called the root, and creates a spanning tree of a 

connected subnetwork consisting of all shortest 

paths from the root. The link-distance of the path 

refers to the total of costs labelling its edges. In our 

case the root is chosen to be the highest degree node 

ni which forms the initial tree with no edges. At each 

subsequent step, the algorithm searches for a node 

that can connect to the root, so far constructed tree 

as long as the cost of connecting it creates the 

shortest path and does not create acycle. Once such a 

node is found it will be added to the current tree 

together with its connecting edge. The search stops 

when all the nodes of the specific subnetwork have 

been connected to the tree. (For more details see 

(Newman, 2010)). 

Since, Dijkstras algorithm has taken the smallest 

edge weight into account during its search for the 

shortest paths across a subnetwork. We used the 

edges confidence score after adjusting the values 

according the formula 3: 

𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 =  𝑀𝑎𝑥(𝐶𝑆) − 𝐶𝑆𝑖    (3) 

where Max(CS) is the maximum confidence 

score over all the network. To ensure selecting the 

high confidence interaction between the proteins, 

once the all shortest paths tree is constructed we 

revert to the original edge confidence scores. As we 

are interested in investigating the topological 

relationships between the proteins and counting the 

number of differential expression genes. We created 

a score for each node by classifying their fold 

change values known as Score* which can be 

defined as follow: 

Table 1: Fold change classification. 

FC Score* 
0.6-0.8 1 
0.8-1.0 2 
1-1.2 3 

1.2-1.4 4 
1.4-1.6 5 
1.6-1.8 6 

…. ... 

Finally, we count the number of nodes on the 

Dijkstra shortest paths and calculate their confidence 

score by the following formula: 

𝑃𝑎𝑡ℎ 𝑆𝑐𝑜𝑟𝑒 =
∑ 𝑆𝑐𝑜𝑟𝑒∗

𝑀𝑎𝑥(𝐹𝐶).𝑃𝑎𝑡ℎ𝑙𝑒𝑛𝑔𝑡ℎ2       (4) 

After running the Dijkstras algorithm we reveal all 

outgoing paths of length N, from the selected node, 

scored in three different categories: path length, path 

confidence score, and the score calculated by 

formula 4. By combining the path confidence scores 
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and path score listed above in a weighted sum and 

taking into account the path length, we can easily 

filter those pathways to get the most significant and 

highly scored ones. Next we plan to merge the top 

scoring pathways in order to identify biomarkers that 

are strongly correlated with diabetes mellitus type 2. 

Finally, we should assess effectiveness of those 

biomarkers, by measuring sensitivity and classify 

accuracy criteria, we intend to use cross validation 

and Support Vector Machine methods for that 

purpose. In addition we will investigate the 

outcomes by literature mining in order to prove their 

relevance to the studied phenotype. 

7 EXPECTED OUTCOME 

The most important applications for biological 

network modelling and pathway analysis are 

biomarkers identification. In comparison to 

traditional biomarkers discovery approaches which 

handle genes/proteins individually. We argue that 

integrating molecular data with prior biological 

knowledge (i.e. pathways, Gene ontology (GO), 

biological networks) will improve our understanding 

of the underlying disease and provide us with more 

accurate biomarkers for disease classification. 

Moreover, grouping genes into clusters based on 

similarity of their expression profiles can help 

annotate or predict the function of some unknown 

genes or proteins with unknown functions. 

8 STAGE OF THE RESEARCH  

At present, we have developed a new approach to 

reveal some sub-networks and scoring them by own 

formula. This is part of our attempt to identify some 

biomarkers for diabetes mellitus type 2. After 

assessing its success, we will implement this 

approach to different public datasets. Furthermore, 

we will seek to further tune our scoring system and 

implement a tool to analyse biological networks to 

overcome the limitations of existing analysis tools 

through considering a number of factors such as 

edges confidence score, nodes fold change values 

and nodes degree. The implementation should 

enable biomedical researchers to: 

 Import and merge molecular interaction 

networks from different repositories. 

 Upload a list of genes/proteins with their 

expression/fold change values and map 

them onto the large merged network. 

 Use the proposed analysis approaches 
according to own requirements and 
assess their outcome in different textual 
and visual manners. 

The next immediate work will be to test the 

perform-ance of our approach with the case study as 

detailed at the end of the methodology section. We 

shall also go beyond the case study by constructing a 

correlation network for a PCR data conducted in 

Buckingham Institute for Translational Medicine to 

examine the effectof interleukin-1β (IL-1β) on the 

expression of 84 cytokine and chemokine genes. In 

this experiment, Alomar et al. (2015) focused on 

measuring the effect of interleukin-1b on each single 

gene and ignored the relation between them which 

may lead to inhibited or exhibited the expression of 

some those genes. We are interested in identifying a 

subset of differentially correlated molecular pairs, 

known as edge-biomarkers, and hope to propose a 

new approach to representing edges between those 

genes using Pearson correlation coefficient and one 

of machine learning technique for feature selection. 
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