Regulatory T cell Development in the Human Thymus - A Comprehensive Approach Combining Genome-wide Analysis and Single-cell Protein Expression by Computational Flow Cytometry

Yumie Tokunaga, Helena Nunes-Cabaço, Ana Serra-Caetano, Henrique Machado, Catarina Godinho-Santos, Ana E. Sousa


The immune responses need to be tightly controlled to avoid harmful effects. T cells are key players to orchestrate this immune process. There is one T cell subset called regulatory T cells (Treg) defined by the expression of the transcription factor forkhead box P3 (FOXP3), which devoted to suppress immune responses. They can develop either in the thymus, the organ where T cells are produced, or be generated during immune responses. Thymic Tregs are considered particularly important to ensure self-tolerance and prevent autoimmunity. There are very few data regarding the factors that determine the Treg lineage commitment in the human thymus, as well as those that contribute to their maintenance after leaving the thymus as naïve Tregs. Naïve Tregs are known to continuously replenish the memory fully suppressor Treg pool, but the mechanisms involved in their maintenance throughout life are largely unknown. Our main objective is to investigate these processes by using next-generation sequencing (NGS) and computational flow-cytometry approaches. The currently available NGS data from human thymocytes are very limited. Additionally, flow-cytometry analysis has been mainly done based on a sequential gating strategy, which only focus on cell populations identified by pre-defined cellular markers. An unbiased approach will be more effective for exploring unknown developmental stages. Importantly, flow-cytometry generates multi-parameter protein expression profiles at the single-cell level. Applying computational analysis to these single-cell high dimensional data will provide relevant new relevant insights. This study is expected to significantly improve our understanding of human Treg development and homeostasis, with implications for tolerance induction and autoimmune diseases.


  1. Attridge, K. et al., 2012. IL-21 inhibits T cell IL-2 production and impairs Treg homeostasis. Blood, 119(20), pp.4656-4664.
  2. Boursalian, T.E. et al., 2004. Continued maturation of thymic emigrants in the periphery. Nat Immunol, 5(4), pp.418-425. Available at: ni1049.
  3. Caramalho, Í. et al., 2015b. Regulatory T-Cell Development in the Human Thymus. Frontiers in immunology, 6. Available at: http://www.ncbi.nlm.
  4. Caramalho, I. et al., 2015a. Human regulatory T-cell development is dictated by Interleukin-2 and-15 expressed in a non-overlapping pattern in the thymus. Journal of autoimmunity, 56, pp.98-110. Available at: 6841114001668.
  5. Cebula, A. et al., 2013. Thymus-derived regulatory T cells contribute to tolerance to commensal microbiota. Nature, 497(7448), pp.258-62. Available at: rtid=3711137&tool=pmcentrez&rendertype=abstract.
  6. Cedar, H. & Bergman, Y., 2011. Epigenetics of haematopoietic cell development. Nature reviews. Immunology, 11(7), pp.478-88. Available at:
  7. Conesa, A. et al., 2016. A survey of best practices for RNA-seq data analysis. Genome Biology, 17(1), p.13. Available at:
  8. Gotot, J. et al., 2012. Regulatory T cells use programmed death 1 ligands to directly suppress autoreactive B cells in vivo. Proceedings of the National Academy of Sciences, 109(26), pp.10468-10473.
  9. Hori, S., Nomura, T. & Sakaguchi, S., 2003. Control of regulatory T cell development by the transcription factor Foxp3. Science, 299(5609), pp.1057-1061. Available at: eutils/elink.fcgi?dbfrom=pubmed&id=12522256&ret mode=ref&cmd=prlinks%5Cnpapers3://publication/do i/10.1126/science.1079490.
  10. Iikuni, N. et al., 2009. Cutting edge: Regulatory T cells directly suppress B cells in systemic lupus erythematosus. Journal of immunology, 183(3), pp.1518-22. Available at: http://www.pubmedcentral. ntrez&rendertype=abstract.
  11. Ito, T. et al., 2008. Two functional subsets of FOXP3+ regulatory T cells in human thymus and periphery. Immunity, 28(6), pp.870-80. Available at: rtid=2709453&tool=pmcentrez&rendertype=abstract.
  12. Kitagawa, Y., Ohkura, N. & Sakaguchi, S., 2015. Epigenetic control of thymic Treg-cell development. European Journal of Immunology, 45(1), pp.11-16.
  13. Klatzmann, D. & Abbas, A.K., 2015. The promise of lowdose interleukin-2 therapy for autoimmune and inflammatory diseases. Nature reviews. Immunology, 15(5), pp.283-94. Available at: http:// nri3823.html.
  14. Lin, W. et al., 2007. Regulatory T cell development in the absence of functional Foxp3. Nature immunology, 8(4), pp.359-368.
  15. Liu, Z. et al., 2009. Treg suppress CTL responses upon immunization with HSP gp96. European Journal of Immunology, 39(11), pp.3110-3120.
  16. Miyara, M., Ito, Y. & Sakaguchi, S., 2014. TREG-cell therapies for autoimmune rheumatic diseases. Nature reviews. Rheumatology, 10(9), pp.543-51. Available at:
  17. Mota, C. et al., 2014. Delta-like 1-Mediated Notch Signaling Enhances the In Vitro Conversion of Human Memory CD4 T Cells into FOXP3-Expressing Regulatory T Cells. The Journal of Immunology, 193(12), pp.5854-62. Available at: http://
  18. Nagalakshmi, U., Waern, K. & Snyder, M., 2010. RNAseq: A method for comprehensive transcriptome analysis. Current Protocols in Molecular Biology, (SUPPL. 89).
  19. Nunes-Cabaço, H. et al., 2011. Differentiation of human thymic regulatory T cells at the double positive stage. European journal of immunology, 41, pp.3604-3614. Available at: 10.1002/eji.201141614/full.
  20. Ohkura, N. et al., 2012. T Cell Receptor StimulationInduced Epigenetic Changes and Foxp3 Expression Are Independent and Complementary Events Required for Treg Cell Development. Immunity, 37(5), pp.785- 799.
  21. Pandiyan, P. et al., 2007. CD4+CD25+Foxp3+ regulatory T cells induce cytokine deprivation-mediated apoptosis of effector CD4+ T cells. Nature immunology, 8(12), pp.1353-1362.
  22. Povoleri, G.A.M. et al., 2013. Thymic versus induced regulatory T cells-who regulates the regulators? Frontiers in Immunology, 4(JUN), pp.1-22.
  23. Ralainirina, N. et al., 2007. Control of NK cell functions by CD4+CD25+ regulatory T cells. J Leukoc Biol, 81(1), pp.144-153. Available at: http://
  24. Relland, L.M. et al., 2012. The TCR repertoires of regulatory and conventional T cells specific for the same foreign antigen are distinct. Journal of immunology, 189, pp.3566-74. Available at: rtid=3538134&tool=pmcentrez&rendertype=abstract.
  25. Roadmap Epigenomics Consortium, et al., 2015. Integrative analysis of 111 reference human epigenomes. Nature, 518(7539), pp.317-330. Available at:
  26. Saeys, Y., Gassen, S. Van & Lambrecht, B.N., 2016. Computational flow cytometry: helping to make sense of high-dimensional immunology data. Nature Reviews Immunology. Available at: http://
  27. Shumway, M., Cochrane, G. & Sugawara, H., 2009. Archiving next generation sequencing data. Nucleic Acids Research, 38(SUPPL.1), pp.2009-2010.
  28. Silva, S.L. et al., 2016. Human naive regulatory T-cells feature high steady-state turnover and are maintained by IL-7. Oncotarget.
  29. Spence, A. et al., 2015. Targeting Treg signaling for the treatment of autoimmune diseases. Current Opinion in Immunology, 37, pp.11-20.
  30. Spits, H., 2002. Development of aß t cells in the human thymus. Nature Reviews Immunology, 2(10), pp.760- 772. Available at: 10.1038/nri913.
  31. Starr, T.K., Jameson, S.C. & Hogquist, K.A., 2003. Positive and negative selection of T cells. Annu Rev Immunol, 21, pp.139-176. Available at: http:// e&db=PubMed&dopt=Citation&list_uids=12414722.
  32. Tang, Q. & Bluestone, J.A., 2013. Regulatory T-cell therapy in transplantation: Moving to the clinic. Cold Spring Harbor Perspectives in Medicine, 3(11).
  33. Tarakhovsky, A., 2010. Tools and landscapes of epigenetics. Nature immunology, 11(7), pp.565-568. Available at:
  34. Wang, R.-F., 2006. Regulatory T cells and toll-like receptors in cancer therapy. Cancer research, 66(10), pp.4987-90. Available at: http://www.ncbi.nlm. pubmed/16707417.
  35. Wang, Z., Gerstein, M. & Snyder, M., 2009. RNA-Seq: a revolutionary tool for transcriptomics. Nature reviews. Genetics, 10(1), pp.57-63. Available at: http://
  36. Wong, J. et al., 2007. Adaptation of TCR repertoires to self-peptides in regulatory and nonregulatory CD4+ T cells. Journal of immunology, 178(11), pp.7032-7041. Available at: papers2://publication/uuid/C9A56955- F35C-4DA9-BAE2-4C050A1104EC.
  37. Yu, A. et al., 2009. A Low Interleukin-2 Receptor Signaling Threshold Supports the Development and Homeostasis of T Regulatory Cells. Immunity, 30(2), pp.204-217. Available at: j.immuni.2008.11.014.

Paper Citation

in Harvard Style

Tokunaga Y., Nunes-Cabaço H., Serra-Caetano A., Machado H., Godinho-Santos C. and E. Sousa A. (2017). Regulatory T cell Development in the Human Thymus - A Comprehensive Approach Combining Genome-wide Analysis and Single-cell Protein Expression by Computational Flow Cytometry . In Doctoral Consortium - DCBIOSTEC, (BIOSTEC 2017) ISBN , pages 3-10

in Bibtex Style

author={Yumie Tokunaga and Helena Nunes-Cabaço and Ana Serra-Caetano and Henrique Machado and Catarina Godinho-Santos and Ana E. Sousa},
title={Regulatory T cell Development in the Human Thymus - A Comprehensive Approach Combining Genome-wide Analysis and Single-cell Protein Expression by Computational Flow Cytometry},
booktitle={Doctoral Consortium - DCBIOSTEC, (BIOSTEC 2017)},

in EndNote Style

JO - Doctoral Consortium - DCBIOSTEC, (BIOSTEC 2017)
TI - Regulatory T cell Development in the Human Thymus - A Comprehensive Approach Combining Genome-wide Analysis and Single-cell Protein Expression by Computational Flow Cytometry
SN -
AU - Tokunaga Y.
AU - Nunes-Cabaço H.
AU - Serra-Caetano A.
AU - Machado H.
AU - Godinho-Santos C.
AU - E. Sousa A.
PY - 2017
SP - 3
EP - 10
DO -