Identity Deception Detection on Social Media Platforms

Estée van der Walt, J. H. P. Eloff


The bulk of currently available research in identity deception focuses on understanding the psychological motive behind persons lying about their identity. However, apart from understanding the psychological aspects of such a mindset, it is also important to consider identity deception in the context of the technologically integrated society in which we live today. With the proliferation of social media, it has become the norm for many people to present a false identity for various purposes, whether for anonymity or for something more harmful like committing paedophilia. Social media platforms (SMPs) are known to deal with massive volumes of big data. Big data characteristics such as volume, velocity and variety make it not only easier for people to deceive others about their identity, but also harder to prevent or detect identity deception. This paper describes the challenges of identity deception detection on SMPs. It also presents attributes that can play a role in identity deception detection, as well as the results of an experiment to develop a so-called Identity Deception Indicator (IDI). It is believed that such an IDI can assist law enforcement with the early detection of potentially harmful behaviour on SMPs.


  1. Al-Garadi, M. A., Varathan, K. D. & Ravana, S. D. 2016. Cybercrime detection in online communications: The experimental case of cyberbullying detection in the Twitter network. Computers in Human Behavior, 63, 433-443.
  2. Alowibdi, J. S., Buy, U. A., Philip, S. Y., Ghani, S. & Mokbel, M. 2015. Deception detection in Twitter. Social Network Analysis and Mining, 5, 1-16.
  3. Back, M. D., Stopfer, J. M., Vazire, S., Gaddis, S., Schmukle, S. C., Egloff, B. & Gosling, S. D. 2010. Facebook profiles reflect actual personality, not selfidealization. Psychological science.
  4. Bond, C. F. & Depaulo, B. M. 2006. Accuracy of deception judgments. Personality and social psychology Review, 10, 214-234.
  5. Buller, D. B. & Burgoon, J. K. 1996. Interpersonal deception theory. Communication theory, 6, 203-242.
  6. Clarke, R. 1994. Human identification in information systems: Management challenges and public policy issues. Information Technology & People, 7, 6-37.
  7. Conroy, N. J., Rubin, V. L. & Chen, Y. 2015. Automatic Deception Detection: Methods for Finding Fake.
  8. Cook, D. M., Waugh, B., Abdipanah, M., Hashemi, O. & Abdul Rahman, S. 2014. Twitter Deception and Influence: Issues of Identity, Slacktivism, and Puppetry. Journal of Information Warfare, 13, 58-71.
  9. Dedkova, L. 2015. Stranger Is Not Always Danger: The Myth and Reality of Meetings with Online Strangers. LIVING IN THE DIGITAL AGE, 78.
  10. Depaulo, B. M., Lindsay, J. J., Malone, B. E., Muhlenbruck, L., Charlton, K. & Cooper, H. 2003. Cues to deception. Psychological bulletin, 129, 74.
  11. Drasch, B., Huber, J., Panz, S. & Probst, F. 2015. Detecting Online Firestorms in Social Media.
  12. Duranti, L. & Rogers, C. 2016. Trust in Records and Data Online. Integrity in Government through Records Management. Essays in Honour of Anne Thurston, 203- 214.
  13. Ghiassi, M., Skinner, J. & Zimbra, D. 2013. Twitter brand sentiment analysis: A hybrid system using n-gram analysis and dynamic artificial neural network. Expert Systems with Applications, 40, 6266-6282.
  14. Guillory, J. & Hancock, J. T. 2012. The effect of Linkedin on deception in resumes. Cyberpsychology, Behavior, and Social Networking, 15, 135-140.
  15. Haque, M. A. & Rahman, T. 2014. Sentiment analysis by using fuzzy logic.
  16. Kashy, D. A. & Depaulo, B. M. 1996. Who lies? Journal of Personality and Social Psychology, 70, 1037.
  17. Levine, T. R., Ali, M. V., Dean, M., Abdulla, R. A. & Garcia-Ruano, K. 2016. Toward a Pan-cultural Typology of Deception Motives. Journal of Intercultural Communication Research, 45, 1-12.
  18. Li, J. & Wang, A. G. 2015. A framework of identity resolution: evaluating identity attributes and matching algorithms. Security Informatics, 4, 1.
  19. Liu, H., Han, J. & Motoda, H. 2014. Uncovering deception in social media. Social Network Analysis and Mining, 4, 1-2.
  20. Mohammad, S. 2016. NRC Emotion Lexicon.
  21. Navidi, W. C. 2006. Statistics for engineers and scientists, McGraw-Hill New York.
  22. Oxford 2012. The English Oxford Dictionary. Third Edition, March 2012 ed.: Oxford University Press.
  23. Peterson, T. 2016. Rapist who used social media to lure child victims sentenced to 20 years. News24, 15 Jun 2016.
  24. Quercia, D., Kosinski, M., Stillwell, D. & Crowcroft, J. Our Twitter profiles, our selves: Predicting personality with Twitter. Privacy, Security, Risk and Trust (PASSAT) and 2011 IEEE Third Inernational Conference on Social Computing (SocialCom), 2011 IEEE Third International Conference on, 2011. IEEE, 180-185.
  25. Radziwill, N. M. & Benton, M. C. 2016. Bot or Not? Deciphering Time Maps for Tweet Interarrivals. arXiv preprint arXiv:1605.06555.
  26. Robinson, D. 2016. Two people write Trump's tweets. He writes the angrier ones. Washington Post, 12 Aug 2016.
  27. Schulz, A., Bergen, E., Schuhmann, P., Hoyer, J. & Santtila, P. 2015. Online Sexual Solicitation of Minors How Often and between Whom Does It Occur? Journal of Research in Crime and Delinquency, 0022427815599426.
  28. Schwartz, H. A., Eichstaedt, J. C., Kern, M. L., Dziurzynski, L., Ramones, S. M., Agrawal, M., Shah, A., Kosinski, M., Stillwell, D. & Seligman, M. E. 2013. Personality, gender, and age in the language of social media: The open-vocabulary approach. PloS one, 8, e73791.
  29. Sharma, S. 2013. Black Twitter? Racial hashtags, networks and contagion. New Formations, 78, 46-64.
  30. Sloan, L., Morgan, J., Burnap, P. & Williams, M. 2015. Who tweets? Deriving the demographic characteristics of age, occupation and social class from Twitter user meta-data. PloS one, 10, e0115545.
  31. Squicciarini, A. & Griffin, C. 2014. Why and how to deceive: game results with sociological evidence. Social Network Analysis and Mining, 4, 1-13.
  32. Van Der Walt, E. & Eloff, J. H. P. 2015. Protecting minors on social media platforms - A Big Data Science experiment HPI Cloud Symposium "Operating the Cloud". Potsdam, Germany: Hasso Plattner Institut.
  33. Van Liere, D. How far does a tweet travel?: Information brokers in the twitterverse. Proceedings of the International Workshop on Modeling Social Media, 2010. ACM, 6.
  34. Von Solms, R. & Van Niekerk, J. 2013. From information security to cyber security. Computers & Security, 38, 97-102.
  35. Wang, G. A., Chen, H., Xu, J. J. & Atabakhsh, H. 2006. Automatically detecting criminal identity deception: an adaptive detection algorithm. Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on, 36, 988-999.
  36. Wick, M. 2016. Geonames.

Paper Citation

in Harvard Style

van der Walt E. and Eloff J. (2017). Identity Deception Detection on Social Media Platforms . In Proceedings of the 3rd International Conference on Information Systems Security and Privacy - Volume 1: ICISSP, ISBN 978-989-758-209-7, pages 573-578. DOI: 10.5220/0006271105730578

in Bibtex Style

author={Estée van der Walt and J. H. P. Eloff},
title={Identity Deception Detection on Social Media Platforms},
booktitle={Proceedings of the 3rd International Conference on Information Systems Security and Privacy - Volume 1: ICISSP,},

in EndNote Style

JO - Proceedings of the 3rd International Conference on Information Systems Security and Privacy - Volume 1: ICISSP,
TI - Identity Deception Detection on Social Media Platforms
SN - 978-989-758-209-7
AU - van der Walt E.
AU - Eloff J.
PY - 2017
SP - 573
EP - 578
DO - 10.5220/0006271105730578