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Abstract: Bitcoin is an open source payment system with a market capitalization of about 15 G$. During the years
several key management solutions have been proposed to enhance bitcoin. The common characteristic of
these techniques is that they allow to derive public keys independently of the private keys, and that these keys
match. In this paper we overview the historical development of such techniques, specify and compare all
major variants proposed or used in practical systems. We show that such techniques can be designed based on
2 distinct ECC arithmetic properties and how to combine both. A major trend in blockchain systems is to use
by Stealth Address (SA) techniques to make different payments made to the same payee unlikable. We review
all known SA techniques and show that early variants are less secure. Finally we propose a new SA method
which is more robust against leakage and against various attacks.

1 INTRODUCTION

Bitcoin has been in existence for nearly 8 years.
It is a digital currency, payment and final clear-
ing/settlement system and technology, a distributed
property register and digital notary service, all in one.
Bitcoin allows owners to authorize the transfer of
their coins using digital signatures. Currently, bit-
coin uses ECDSA cryptography with SHA256 and
the secp256k1 curve. Cryptographic literature does
not provide an answer to whether or not ECDSA is
provably secure, and whether there is an attack on
ECDSA other than computing discrete logs. However
it is widely believed that ECDSA is secure modulo
some usage precautions.

Cryptographic literature shows that both RSA and
ECDSA-based public key cryptography can fail if de-
ployed at a large scale if keys and random nonces
are generated with insufficient entropy. More pre-
cisely there are three major ways in which ECDSA
can fail in practice, in systems such as bitcoin:
due to bad or repeated randoms (Courtois3d, 2015;
N.T. Courtois, 2014), due to weak or user-chosen
passwords (N.T. Courtois, 2016) and due to poor key
management (Courtois3b, 2015; S. Eskandari, 2015;
G. Gutoski, 2015). There are also combination at-
tacks which exploit several of the above properties
(N.T. Courtois, 2014; Courtois3d, 2015). In this pa-

per we concentrate on the questions of private/public
key management. The usage of such techniques have
greatly increased in crypto currency systems in the re-
cent years.

1.1 Why Key Management?

We refer to (N.T. Courtois, 2014; Courtois3b, 2015;
S. Eskandari, 2015; G. Gutoski, 2015) for a de-
tailed discussion on how the need for key manage-
ment emerges in bitcoin and in the industry at large.
Main reasons are the necessity to use several keys due
to poor anonymity of existing blockchain systems,
possibility to hide the public key and to use each key
only once for security reasons, questions of reliable
backup of bitcoin wallets and cold storage, etc. In
recent works on this topic cf. (N.T. Courtois, 2014)
the primary reasons to use advanced key management
techniques in bitcoin were first just to diversify keys
to be used in different transactions, then to develop
so called “Type 2 techniques” cf. (N.T. Courtois,
2014; Courtois3b, 2015). Here the important prop-
erty , which we will also need in this paper, is to have
“Audit Capabilities” which allow third parties to de-
rive public keys from certain “master public keys” and
without knowledge of private keys.

More recently the Stealth Address techniques
have become popular. These techniques have an ad-
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ditional major objective: privacy for the receivers
of moneys. These methods allow public keys which
appear in the blockchain to be totally disconnected
from “stealth” public keys which are advertised by
merchants. In the same way as in HD Wallet solu-
tions (N.T. Courtois, 2014; Courtois3b, 2015) here
again, the public keys advertised serve as “master
public keys” from which ephemeral public keys are
derived. In this paper we study all major variants of
such techniques, their security, we propose more gen-
eral methods, and show how can they be made even
more robust against certain attacks.

1.2 Key Management with Audit - Main
Principle

We outline the primary methods used in creating “Au-
ditable” key management sometimes called “Type 2
techniques” cf. (N.T. Courtois, 2014; Courtois3b,
2015). The crucial property we need is to be able
to derive public keys independently from the private
keys, or rather do both in bulk from some sort of
“Master” public key1 and a “Master” private key, cf.
Fig. 1 below. We need two key Child Key Deriva-
tion (CKD) functions, a “Private CKD” function and
a “Public CKD” function as shown on Fig. 1.

Figure 1: General key derivation principle from (N.T. Cour-
tois, 2014) with modified notations. It must be such that the
diagram commutes and public keys Ki obtained either way
are identical.

The crucial property is then that the correspond-
ing lower level keys match. This property means that
our diagram in Fig. 1 should commute.

One-wayness. In (N.T. Courtois, 2014) it is also re-
quired that all the 4 arrows (derivations) are one-way
functions and that the public master key/seed should
NOT reveal the private master key/seed or any of the
private keys.

1 Sometimes a word “SEED” is used instead of the word
“key”, and sometimes other terms such as “Extended” Pub-
lic/Private Key are used (N.T. Courtois, 2014; Courtois3b,
2015). In this paper we prefer to use the term of “Master”
keys.

Extensions. It possible to see that such solutions
can be deployed at several levels and lead to Hi-
erarchical Deterministic (HD) solutions where more
complex multi-level diagrams will also commute,
cf. (N.T. Courtois, 2014; Courtois3b, 2015; Wuille,
2014). Such systems can be studied in terms of “se-
curity domains” or partially ordered sets which al-
lows for information flow analysis cf. (N.T. Courtois,
2014).

2 KEY MANAGEMENT WITH
AUDIT SOLUTIONS

The main idea in constructing such schemes [at-
tributed to Greg Maxwell and improved/developed
by Peter Wuille] is as follows, cf. (Wuille, 2014).
Both derivation functions are essentially the same
and have the same inputs or other “higher sensitive”
inputs which allow to derive them. Then in the
“Private Type 2 Derivation” function the private
key is simply used to compute the corresponding
public key and algebraic properties of ECC crypto
are used. Following (N.T. Courtois, 2014) there are
two distinct major ways to achieve this objective, a
multiplicative one and an additive one.

Notation. In what follows we will assume that we
work with an elliptic curve group generator G of
E(IFP) with Q elements, where P,Q are two large
primes. We will use small letters for private keys
(integers mod Q) and capital letters for public keys
∈ E(IFP). We will write k̂ and K̂ for master pri-
vate/public keys. We will then write the application
of “Private CKD” function k(x) instead of SKx in
(N.T. Courtois, 2014) and Fig. 1. Then let K(x) be the
corresponding “Public CKD” function which would
be denoted by PKx in (N.T. Courtois, 2014). Our new
notations emphasize the fact that x will no longer be a
low-entropy index i but can be a quantity with a larger
entropy.

Now we can propose the two basic methods and
prove their correctness.

Theorem 2.0.1 (Two Basic Methods). The mul-
tiplicative method based on (older2) Solution 1 of

2 Both solutions have been implemented and widely
used in bitcoin community. Their history goes back
to June 2011, a date when the forum thread “De-
terministic Wallets” was started by Greg Maxwell at
https://bitcointalk.org/index.php?topic=19137.0. The mul-
tiplicative solution was proposed earlier and was used in
various systems such as Electrum. Since April 2013 there
was a shift towards the additive method, claimed to be faster
and easier to implement (Wuille, 2014) which became stan-
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(N.T. Courtois, 2014) has Private CKD function:
k(x) = k̂ ·H(k̂.G,x) mod Q

The additive method based on (more recent2) So-
lution 2 of (N.T. Courtois, 2014) is:

k(x) = k̂+H(k̂.G,x) mod Q
where H is some hash function with output re-

duced mod Q. Now in the multiplicative method
we use the Public CKD:

K(x) = H(K̂,x).K̂ in E(IFP)

where K̂ = k̂.G and for the additive method we use:
K(x) = K̂ +H(K̂,x).G in E(IFP)

Then for each method both CKD functions match, i.e.
K(x) = k(x).G.
Proof: We write the proof to see what is that makes
the result true. In the multiplicative solution we have

k(x).G = (k̂ ·H(k̂.G,x)).G =

(H(k̂.G,x)).(k̂.G) = (H(K̂,x)).K̂ = K(x).
the property we needed is that a.(b.P) = b.(a.P)

which we could call the scalar property or DH prop-
erty. For the additive solution we have

k(x).G = (k̂+H(k̂.G,x)).G =

k̂.G+H(k̂.G,x).G = K̂ +H(K̂,x).G = K(x).
the property we needed was that (a+b).P= a.P+

b.P a.k.a. distributive (or homomorphic) property. We
see that both methods work and use two distinct alge-
braic properties of elliptic curve cryptography in or-
der to obtain the same sort of result.

2.0.1 New Combined Method

It appears that nobody have yet noticed that both
methods can be combined and that we can have a
combined key derivation technique with a combined
correctness result as follows:
Theorem 2.0.2 (Combined Method) . We assume
that K̂ = k̂.G for the master secrets. We define a de-
rived private key by:

k(x) = k̂ ·H(k̂.G,x)+H ′(k̂.G,x) mod Q
where H,H ′ are two different hash functions with

output reduced mod Q. The corresponding public
key will be then:

K(x) = H(K̂,x).K̂ +H ′(K̂,x).G in E(IFP)

For this new combined method we also have K(x) =
k(x).G.
Proof: Proof needs simply to combine the two proofs
above, one with H and other with H ′ to prove the
equality of both parts independently.

dardized inside BIP032 specification. Later in 2014-15 a
multi-key multiplicative method is shown to bring extra ro-
bustness (G. Gutoski, 2015).

2.1 Simple Exploit and More Robust
Methods

In all these schemes we have the following
well known [folklore] privilege escalation attack
(N.T. Courtois, 2014; Courtois3b, 2015; G. Gutoski,
2015) in which one single derived key k(x) and the
higher level public key K̂ allows to recompute the
master private key k̂. If we show it for our new com-
bined scheme it will work also for earlier schemes
which can be seen as special cases. Here is the for-
mula which allows the attacker to recover the mas-
ter private key: k̂ = H ′(k̂.G,x)−k(x)

H(k̂.G,x)
mod Q. In 2014-

15 Gutoski and Stebila proposed a multi-key multi-
plicative key management technique which allows to
avoid this attack (G. Gutoski, 2015). A similar tech-
nique designed for our (different) purpose and against
a wider range of attacks will be proposed in Section 6
below.

3 STEALTH ADDRESS KEY
MANAGEMENT METHODS

The most basic Stealth Address (SA) technique was
invented by user ‘bytecoin’ in bitcoin forum on 17
April 2011 (user ‘bytecoin’, 2011). Improved vari-
ants were proposed later in 2013-14 (van Saberhagen,
2013; Todd, 2014) which we study below in Section
3.1.

The goal of all Stealth Address (SA) methods is
to send money to a certain “publicly visible” master
key in such a way that this key does not appear in the
blockchain. For this purpose, other seemingly totally
unrelated keys are used, and in their essence all these
methods are key management techniques with addi-
tional secrets or/and randomness very similar to those
we have studied so far. We first summarize and ex-
amine the exact original method of (user ‘bytecoin’,
2011) using the notations of slide 21 in (Courtois6,
2016).

1. The recipient has a public key B = b.G

2. The sender uses public key A = a.G

3. Now Diffie-Hellman allows both the sender and
the recipient to compute a certain value S.

S = a.B = b.A ∈ E(IFP)

4. The ephemeral transfer address is then simply
H(S).G in E(IFP), private key is c = H(S)
mod Q and in normal bitcoin operation only
H ′(H(S).G) would be revealed initially when
coins are sent to pk = H(S).G.
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5. The receiver actively monitors the blockchain
or other channels for all plausible A and
checks if somebody is sending coins to some
H ′(H(b.A).G). He can spend all such outputs.

This original 2011 method contains two serious mis-
takes which affect both security and privacy. The first
mistake is to use words ’by his private key’ for the
sender which wrongly suggests or implies the usage
of a permanent identity A, or it is not clear on this
and allows the developers to get it wrong. Now if the
sender uses this A more than once or if this key A is
in any way related to his other actions in the network,
this is not a good idea, cf. slides 15-38 in (Courtois6,
2016). Later specifications such as (van Saberha-
gen, 2013) and Todd post (Todd, 2014) make it clear
we need to use a random ephemeral ’nonce keypair’
here denoted3 as r,R. In this case the value R must
be somewhat transmitted with the transaction which
increases the blockchain space required. A popular
modern method to publish extra data in bitcoin is to
use the OP RETURN instruction which allows to put
arbitrary data in outputs of bitcoin transactions.

A second mistake in the original method which
was also already discussed in 2011 (user ‘bytecoin’,
2011) and fixed in all later proposals (van Saberha-
gen, 2013; Todd, 2014), is that in this scheme both
the sender and the receiver can spend. Both can com-
pute the ephemeral private key c, cf. (user ‘bytecoin’,
2011; Todd, 2014; Courtois6, 2016). Therefore if the
receiver does not spend them immediately or is of-
fline, the sender can change his mind and take his
money back.

3.1 Improved Basic Stealth Address
Method

Fixing these 2 problems leads to an improved basic
method which is basically extended by an additive key
management technique in the sense of Thm. 2.0.1.
where a DH public key mechanism is used to de-
rive the private key offset. This method is frequently
claimed to be designed in Jan. 2014 by Todd in (Todd,
2014) and is also described in (dev. team Darkwallet,
2014) and on slides 27-29 in (Courtois6, 2016) if we
rename a,A by r,R. In fact it was clearly known ear-
lier and the same exact method with exactly the same
formulas was already earlier described by Nicolas van
Saberhagen in CryptoNote white paper in Oct. 2013

3The notation used is P = e.G in (Todd, 2014; dev. team
Darkwallet, 2014) and R = f .G in DarkWallet (dev. team
Darkwallet, 2014) and P = e.G in ShadowCash source code
at github.com/shadowproject. Our preferred notation is
rather R = r.G as in (van Saberhagen, 2013; Courtois6,
2016).

(van Saberhagen, 2013). Only later on 6 January 2014
it was adapted4 by Todd to make it work within bit-
coin spec (Todd, 2014).

1. The recipient has a public key B = b.G

2. The sender uses a one-time nonce pair R = r.G,
r← random mod Q.

3. Diffie-Hellman allows both to compute the same
value c = H(S):

c = H(S) = H(r.B) = H(b.R) mod Q

4. The ephemeral private key which only the receiver
can compute is then:

c+b = H(b.R)+b mod Q

and the publicly visible address which will appear
on the blockchain (which all three: sender, audi-
tor and receiver can compute) is the address with
public key equal to B+H(S).G and:

H(S).G+B = H(r.B).G+B = H(b.R).G+b.G

5. The receiver actively monitors the blockchain for
transactions which included a publication of some
R value for example after an OP RETURN, and
for such transactions he can compute the private
key and spend.

Speed vs. Privacy Variants. In (Todd, 2014) Todd
suggests several additional methods to publish a few
bits of extra information together with R in order to
do blockchain scanning faster.

3.2 The Question of Audit and
View-only Wallets

Until now the SA solutions have a serious problem:
the same entity has to know the private ‘spend’ key
b and scan the blockchain in the real-time for some
pairs H(S).G+B,R. This is contrary to very common
practice of cold/disconnected storage of private keys.
One very simple solution to this problem is called
“Non-P2SH-Multisig stealth” in (dev. team Darkwal-
let, 2014). The solution proposed is to use the pre-
vious method twice, with B = b.G and B′ = b′.G and
B′ is advertised together with B as a (twice longer)
stealth address. Here b′ can be held in cold storage
and will not be needed to check for incoming pay-
ments. This is achieved by using multi-sig on the top
of PK1 = H(S).G+B transfer key which is not used

4Todd clearly says that the orignal (more basic and
partly flawed) idea comes from 2011 ‘bytecoin’ post and
also credits Maxwell, Back, Taaki and others for inputs, yet
he omits to mention (van Saberhagen, 2013).

ICISSP 2017 - 3rd International Conference on Information Systems Security and Privacy

562



directly. Instead the sender sends coins to a 2-out-of-
2 multi-sig address of type PK1,PK2, i.e. two keys
are needed to spend. The nonce r which is called e
in (dev. team Darkwallet, 2014) is proposed to be the
same in both cases. We have:

PK1 = H(r.B).G+B = H(b.R).G+b.G ∈ E(IFP)

PK2 = H(r.B′).G+B′ = H(b′.R).G+b′.G ∈ E(IFP)

This can be extended to more general multisig
scenarios. To the best of our knowledge, using the
same nonce r twice here is NOT a problem in this
method of (dev. team Darkwallet, 2014). Re-using
r’s is also encouraged on p. 7 of (van Saberhagen,
2013).

Disambiguation. The method above, although it uses
two keys is NOT what is commonly called Dual-key
or 2-key SA, which do not require any multi-sig, and
which we study below.

4 DUAL-KEY IMPROVED
STEALTH ADDRESS METHODS

An important enhancement to SA methods is due
to a developer known as rynomster/sdcoin who has
on 2/08/2014 announced a first full working im-
plementation of Dual-key SA in ShadowCash at
https://bitcointalk.org/ index.php? topic=700087.msg
8153845. Here is a short description of Dual-key SA
method which is used in many current systems [Mon-
ero,DarkWallet,ShadowCash,etc] and is described in
Section ‘Dual-key stealth’ of (dev. team Darkwallet,
2014) and on slides 31-40 in (Courtois6, 2016).

1. The recipient has Stealth Address SA in the form
of two public keys hence Dual-key name. We
have a ‘scan’ public key V and a ‘spend’ pub-
lic key B using vocabulary of (sx library, 2013;
dev. team Darkwallet, 2014). We have V = v.G
and B = b.G using the notations on slides 31-40
in (Courtois6, 2016). ECC points V,B have 33
bytes typically, cf. (sx library, 2013), the scalars
v,b require only 32 bytes.

2. We have V = v.G and we call V a ‘scan pubkey’
(sx library, 2013) or ‘View key’ cf. (Courtois6,
2016). We have B = b.G and we call B a ‘spend
pubkey’ (sx library, 2013; dev. team Darkwallet,
2014).

3. The key advertised by the receiver of coins is B,V .
None of these keys ever appears in the blockchain,
only the sender and the receiver know B,V .

4. The sender uses a one-time nonce pair R = r.G,
r← random mod Q.

5. Diffie-Hellman allows both the sender and the re-
cipient to compute the same value c = H(S):

c = H(S) = H(r.V ) = H(v.R) mod Q

6. The ephemeral private key which only the receiver
can compute is:

c+b = H(v.R)+b mod Q

and the publicly visible address which will appear
on the blockchain (which all three: sender, auditor
and receiver can compute) is again B+H(S).G:

H(S).G+B = H(r.V ).G+B = H(v.R).G+b.G

7. The auditor, hot wallet, proxy server or read-only
wallet knows/has the pair B,v.

8. The auditor actively monitors the blockchain for
transactions which included a publication of some
R value for example after an OP RETURN, and
for such transactions he can compute

pk = H(v.R).G+B ∈ E(IFP)

and see if this pk or its hash appears in the
blockchain.

9. The auditor is not able to spend coins because he
does not know b. Only the recipient knows b and
can compute sk = H(v.R)+ b mod Q and spend
these bitcoins.

4.0.1 Dual-key SA In Practice

Details on how this can be done in practice in
bitcoin can be found in (dev. team Darkwallet, 2014;
sx library, 2013). For Monero an interactive tool is
available at https://xmr.llcoins.net/addresstests.html.
In ShadowCash the functionality is imple-
mented inside StealthSecretSpend() specified in
https://github.com/shadowproject/shadow/blob/
master/src/stealth.cpp.

4.1 Dual-key SA Security and Privacy

It is worth noting that the Dual-key SA is provides
very strong anonymity for receivers and unlink-
ability of different payments received by the same
receiver. Thus “users can receive CryptoNote-based
cryptocurrencies with no concern for their privacy”
(A. Mackenzie, 2015) for Monero, and the same
applies to ShadowCash and to bitcoin users who
use DarkWallet (dev. team Darkwallet, 2014).
Unhappily this property is frequently violated by
users themselves or by their software wallets see
(A. Mackenzie, 2015), this as soon as they spend
the moneys received. When various attributions are
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later inputs to the same transaction there is a good
chance that amounts sent to different PK belonging
to the same user will be later merged and thus linked
together in the blockchain (DarkWallet provides
additional mixing (dev. team Darkwallet, 2014)).

CryptoNote De-Anonymising Attacks. An interest-
ing question in all SA schemes is whether a bugged or
malicious choice of the hash function H could make
these schemes less secure. This has recently hap-
pened in ShadowCash extension of CryptoNote pro-
tocol where our Dual-key SA is combined with a ring
signature scheme cf. https://archive.is/3VEHr.

5 A BAD RANDOM ATTACK

In this section we describe a simple attack which
shows that a solution more robust than those de-
scribed above may be required. It is going to
be a combination attack similar as in (N.T. Cour-
tois, 2014). We refer to (N.T. Courtois, 2014)
and blog.bettercrypto.com/?page id=1467 for statis-
tics about bad random events in bitcoin. The key point
is that bad random attacks are not always very strong.
For example if the same random r is used twice in two
different signatures the only attack in such case is the
each of the two users can recover the other user’s pub-
lic key, cf. Proposition 43 in (N.T. Courtois, 2014).
Now additional attacks in which anyone can recover
their keys are possible in some configurations, see for
example Proposition 45 in (N.T. Courtois, 2014). Fur-
thermore many more additional attacks are possible
if user keys are derived using key popular key man-
agement techniques such as those we studied here in
Section 2 or HD Wallet/BIP032 techniques (Wuille,
2014) Then we have a larger of possible attacks, cf.
Sections 6-10 in (N.T. Courtois, 2014). In this paper
we show that similar attacks are also possible with
Stealth Address methods.

Theorem 5.0.1 (Combination Attack On Dual-key
Wallets). If the attacker knows the audit key B,v for
one recipient AND if two identical randoms are used
just once in any pair of transactions sent to this re-
cipients, then we can recover the private key b which
allows to spend all coins ever sent to B,V .

Proof: We recall how a standard ECDSA signature
works. We pick a random non-zero number a mod Q
and the signature of m is the pair u,s with

u = (a.G)x; s = (H(m)+ ku)/a mod Q

Now in our attack we have:

as = (H(m)+uk) mod Q
as′ = (H(m′)+uk′) mod Q

k = H(v.R)+b mod Q
k′ = H(v.R′)+b mod Q

So we have:

u(H(v.R)−H(v.R′)) = a(s− s′)+(H(m)−H(m′))

This equation allows to compute u by division
mod Q and then the first two equations allow to com-
pute k and k′ which given the last two equations give
b and b′.

6 A NEW ROBUST STEALTH
ADDRESS TECHNIQUE

We are now going to define a new particularly robust
stealth payment technique which combines the ideas
of using both the additive and multiplicative tech-
nique of Thm. 2.0.2 and the idea of a multi-key mul-
tiplicative technique of (G. Gutoski, 2015) in order to
be resistant to key leakage and other attacks such as
above.

1. The recipient will have m+ 1 private/public key
pairs. We have one ‘scan pubkey’ or a.k.a. ‘View
key’ V = v.G. and we have m different ‘spend’
public keys Bi. and Bi = bi.G.

2. The key advertised by the receiver of coins is
B1 . . .Bm,V . None of these need to appear in the
blockchain and only the sender and the receiver
need to know them.

3. The sender uses a one-time nonce pair R = r.G.

4. Diffie-Hellman allows both the sender and the re-
cipient to compute the same value S:

S = r.V = v.R ∈ E(IFP)

5. We assume that we have an expanding hash func-
tion H0, . . .Hm with m+ 1 outputs which are all
numbers mod Q, which can be implemented as
a combination of a standard hash function and a
stream cipher or RNG.

6. The ephemeral private key which only the receiver
can compute is:

H0(v.R)+∑Hi(S).bi mod Q

and the publicly visible address which will appear
on the blockchain (which all three: sender, auditor
and receiver can compute) is now:

H0(S).G+∑Hi(S).Bi ∈ E(IFP)
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7. The auditor, hot wallet, proxy server or read-
only wallet contains/knows m+ 1 values Bi and
the secret key v. Again he actively monitors the
blockchain for transactions which included some
R value and for such transactions he can compute

pk = H(v.R).G+∑Hi(v.R).Bi ∈ E(IFP)

and see if this pk or its hash appears in the
blockchain. Auditor is not able to spend coins be-
cause he does not know the bi.

Now we are going to specify our security assumption
(same as in (G. Gutoski, 2015)):
Definition 6.1 (EC 1MDLP Problem). We consider
all the attackers as follows. The attacker is a proba-
bilistic Turing machine M with bounded computations
with access to two oracles. The first is a challenge or-
acle which produces m random elements Qi ∈ E(IFP).
The second oracle allows to solves the ECDL prob-
lem for up to m− 1 queries chosen by the attacker
machine M. We say that M wins if it is able to output
the discrete logarithms for all m elements Qi provided
by the first oracle.
Now we claim that:
Theorem 6.0.1 (Security of Robust SA Method).
Our new robust stealth payment scheme allows to pro-
tect anonymity of users and protect the spending keys
against thefts even when the attacker can recover5

up to m1 individual spending private keys and if up
to m2 bad6 randoms were used in ECDSA spending
transaction with any m1 +m2 < m. If an attacker can
break our payment scheme, one can (efficiently) con-
vert it into an oracle solving EC 1MDLP. (G. Gutoski,
2015).
Proof [sketch]: With a recovery of up to m1 in-
dividual spending private keys and up to m2 re-
peated/bad/related randoms we can hope to obtain at
most m1 +m2 < m linear equations which involve at
least m variables bi by formulas such as in the proof of
Thm. 5.0.1. This remains insufficient to solve a linear
system of equations and leads to a situation identical
as in the proof of main Thm. in (G. Gutoski, 2015).
If in our robust stealth payment scheme, all the m pri-
vate spend keys can be recovered by a certain attacker
M we can argue by game hopping that the attacker
should also be able to recover m private keys with
the knowledge of m− 1 discrete logs from an oracle,
querying these specific combinations. This is believed
to be a hard problem cf. (G. Gutoski, 2015).

5 Could be due to malware, side channel attacks, brain
wallets (N.T. Courtois, 2016) or other from of leakage or
compromise.

6 Random numbers can be repeated, guessed due low
entropy or related to each other, cf. Section 5 in (N.T. Cour-
tois, 2014).

7 CONCLUSION

In this paper we review the principal key manage-
ment and Stealth Address techniques which have been
invented in the recent years and are used in numer-
ous crypto currency and blockchain wallets and sys-
tems. We show their correctness, discuss additional
variants, and show that some techniques offer yet a
limited level of privacy and security. In addition we
show that one can do better than the Dual-key Stealth
Address technique which is the one which is used
in many current systems such as Monero or Dark-
Wallet. We propose a new improved SA technique
which was designed to be more robust against a va-
riety of attacks. Our new method is resistant to the
leakage/compromise of one or several private keys. It
can also resist to other incidents at operation such as
bad-random events. The price to pay for this is an
m-fold increase in the size of the higher level public
keys. The size of the actual transactions which need
to be published on the blockchain does not need to
increase.
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