Initial Results of a Method for the Generation of Triangle Meshes Representing Bone Fragments using a Spatial Decomposition

Félix Paulano-Godino, Juan J. Jiménez-Delgado

Abstract

The generation of a virtual representation of the bones and fragments is an artificial step required in order to obtain helpful models to work with in a simulation. Nowadays, the Marching Cubes algorithm is a de facto standard for the generation of geometric models from medical images. However, bone fragments models generated by Marching Cubes are huge and contain many unconnected geometric elements inside the bone due to the trabecular tissue. The development of new methods to generate geometrically simple 3D models from CT image stacks that preserve the original information extracted from them would be of great interest. In order to achieve that, a preliminary study for the development of a new method to generate triangle meshes from segmented medical images is presented. The method does not modify the points extracted from CT images, and avoid generating triangles inside the bone. The aim of this initial study is to analyse if a spatial decomposition may help in the process of generating a triangle mesh by using a divide-and-conquer approach. The method is under development and therefore this paper only presents some initial results and exposes the detected issues to be improved.

References

  1. Chen, H. H. and Huang, T. S. (1988). A survey of construction and manipulation of octrees. Computer Vision, Graphics, and Image Processing, 43(1):112-113.
  2. Egol, K. A., Koval, K. J., and Zuckerman, J. D. (2010). Handbook of Fractures. Lippincott Williams & Wilkins.
  3. Feito, F. R. and Torres, J. C. (1997). Inclusion test for general polyhedra. Computers & Graphics, 21(1):23-30.
  4. Fornaro, J., Harders, M., Keel, M., Marincek, B., Trentz, O., Szekely, G., and Frauenfelder, T. (2008). Interactive visuo-haptic surgical planning tool for pelvic and acetabular fractures. Studies in health technology and informatics, 132(Figure 1):123-5.
  5. Fornaro, J., Keel, M., Harders, M., Marincek, B., Székely, G., and Frauenfelder, T. (2010a). An interactive surgical planning tool for acetabular fractures: initial results. Journal of orthopaedic surgery and research, 5(50):1-8.
  6. Fornaro, J., Székely, G., and Harders, M. (2010b). Semiautomatic segmentation of fractured pelvic bones for surgical planning. Biomedical Simulation, 5958:82- 89.
  7. F ürnstahl, P., Székely, G., Gerber, C., Hodler, J., Snedeker, J. G., and Harders, M. (2012). Computer assisted reconstruction of complex proximal humerus fractures for preoperative planning. Medical image analysis, 16(3):704-20.
  8. Ho, C.-c., Fu-che, W., Bing-yu, C., and Ouhyoung, M. (2005). Cubical marching squares: Adaptive feature preserving surface extraction from volume data. Computer Graphics Forum, 24:2005.
  9. Jiménez, J. J., Feito, F. R., and Segura, R. J. (2011). Tetratrees properties in graphic interaction. Graphical Models, 73(5):182-201.
  10. Jiménez, J. J., Feito, F. R., Segura, R. J., and Ogáyar, C. J. (2006). Particle Oriented Collision Detection using Simplicial Coverings and Tetra-Trees. Computer Graphics Forum, 25(1):53-68.
  11. Jiménez, J. J., Paulano, F., Pulido, R., and Jiménez, J. (2016). Computer assisted preoperative planning of bone fracture reduction: simulation techniques and new trends. Medical Image Analysis, 30:30-45.
  12. Jiménez, J. J. and Segura, R. J. (2008). Collision detection between complex polyhedra. Computers & Graphics, 32(4):402-411.
  13. Lee, P.-Y., Lai, J.-Y., Hu, Y.-S., Huang, C.-Y., Tsai, Y.- C., and Ueng, W.-D. (2012). Virtual 3D planning of pelvic fracture reduction and implant placement. Biomedical Engineering: Applications, Basis and Communications, 24(03):245-262.
  14. Lorensen, W. E. and Cline, H. E. (1987). Marching cubes: A high resolution 3D surface construction algorithm. ACM Siggraph Computer Graphics, 21(4):163-169.
  15. Paulano, F., Jiménez, J. J., and Jiménez, J. (2015). Surface reconstruction of bone fragments: A comparative study. In Tavares, J. M. R. S. and Jorge, R. N., editors, Computational Vision and Medical Image Processing V, chapter 51, pages 321-326. CRC Press.
  16. Paulano, F., Jiménez, J. J., and Pulido, R. (2014). 3D segmentation and labeling of fractured bone from CT images. The Visual Computer, 30(6-8):939-948.
  17. Pulido, R., Paulano, F., and Jiménez, J. J. (2014). Reconstruction & Interaction with 3D Simplified Bone Models. In WSCG 2014 Communication Papers Proceedings, pages 321-327.
  18. Samet, H. (2010). Sorting in space: multidimensional, spatial, and metric data structures for computer graphics applications. In SA 7810 ACM SIGGRAPH ASIA 2010 Courses, pages 1-52, Seoul, Republic of Korea. ACM.
  19. Tsai, M.-D., Hsieh, M.-S., and Jou, S.-B. (2001). Virtual reality orthopedic surgery simulator. Computers in Biology and Medicine, 31(5):333-351.
  20. Willis, A., Anderson, D., Thomas, T., Brown, T., and Marsh, J. L. (2007). 3D reconstruction of highly fragmented bone fractures. In Medical Imaging 2007: Image Processing. Proceedings of the SPIE, page 65121.
Download


Paper Citation


in Harvard Style

Paulano-Godino F. and Jiménez-Delgado J. (2017). Initial Results of a Method for the Generation of Triangle Meshes Representing Bone Fragments using a Spatial Decomposition . In Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2017) ISBN 978-989-758-224-0, pages 298-305. DOI: 10.5220/0006266302980305


in Bibtex Style

@conference{grapp17,
author={Félix Paulano-Godino and Juan J. Jiménez-Delgado},
title={Initial Results of a Method for the Generation of Triangle Meshes Representing Bone Fragments using a Spatial Decomposition},
booktitle={Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2017)},
year={2017},
pages={298-305},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006266302980305},
isbn={978-989-758-224-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2017)
TI - Initial Results of a Method for the Generation of Triangle Meshes Representing Bone Fragments using a Spatial Decomposition
SN - 978-989-758-224-0
AU - Paulano-Godino F.
AU - Jiménez-Delgado J.
PY - 2017
SP - 298
EP - 305
DO - 10.5220/0006266302980305