Fluorine Phosphate Glasses Doped with Cadmium Sulfide and Selenide Quantum Dots with High Quantum Efficiency at Room-temperature

E. V. Kolobkova, Zh. Lipatova, M. S. Kuznetsova, N. Nikonorov

Abstract

The results of the study of the luminescent properties of the CdS(Se) quantum dots (QDs) with the mean size of 2-4 nm synthesized in the fluorine phosphate glass are discussed. The changes of the photoluminescence absolute quantum yield (PL AQY) magnitude of the CdS(Se) QDs with various mean sizes induced by the heat treatment are studied. It was found that the PL AQY of the CdSe QDs increases monotonically to a maximum and then fells down. PL AQY magnitudes for glasses doped with CdS QDs demonstrate weak dependence on the size. It was found that CdS(Se) QDs represents a series of excellent emitters in the 600-750 nm spectral region. PL AQY in the glasses can reach 50-65%, which is equal to the value in the colloidal nanocrystals and higher than it was reported earlier for the silicate glasses. The glass matrix protects the QDs from external influence and their optical properties remain unchanged for a long time.

References

  1. Han, M. et al., 2001. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat. Biotechnol. 19. pp 631-635.
  2. Bruchez, M. et al., 1998. Semiconductor nanocrystals as fluorescent biological labels. Science. 281. pp 2013- 2016.
  3. Chan, W.C.W., Nie, S. M. 1998. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science, 281, pp 2016-2018.
  4. Artemyev, M. et al.,2001. Light trapped in a photonic dot: Microspheres act as a cavity for quantum dot emission. Nano Lett., 1. Pp 309-314.
  5. Klimov, V. I. et al., 2000. Optical Gain and Stimulated Emission in Nanocrystal.Science, 290,pp 314-317.
  6. Sundar, V. C. et al.,2000, Full color emission from II-VI semiconductor quantum dot-polymer composites Adv.Mater. 12. Pp 1311-1312; Novel light emitting devices using cadmium selenide nanocrystals. Abstracts of papers of the American chemical society.220. ppU206-U206.
  7. Schlamp, M.C., Peng, X., Alivisatos, A.P., 1997. Improved efficiencies in light emitting diodes made with CdSe(CdS) core/shell type nanocrystals and a semiconducting polymer. J. Appl. Phys. 82. Pp 5837- 5842.
  8. Qu, L., Peng, X. 2002. Control of Photoluminescence Properties of CdSe Nanocrystals in Growth. J. Am. Chem. Soc. 124(9).pp 249-255.
  9. Fu, H.; Zunger, A. 1997. InP quantum dots: Electronic structure, surface effects, and the redshifted emission. Phys. Rev. B: Condens. Matter, 56, pp 1496-1508.
  10. Talapin D.V., et al.,2001. Highly luminescent monodisperse CdSe and CdSe/ZnS nanocrystals synthesized in a hexadecylamine-trioctylphosphine oxide-trioctylphospine mixture, Nano Lett. 14. pp 207-211.
  11. Wang, X et al.,2003. Surface-Related Emission in Highly Luminescent CdSe Quantum Dots. Nano Lett., 3(8) pp 1103-1106.
  12. Borreli, N.F. et al.,1987. Quantum confinement effects of semiconducting microcrystallites in glass, J. Appl. Phys. 61.pp 5399-5409.
  13. Su, Z.et al., 1996. Selenium molecules and their possible role in deep emission from glasses doped with selenide nanocrystals, J. Appl. Phys. 80.Pp 1054-105.
  14. Vaynberg, B. et al., 1996. High optical nonlinearity of CdSxSe1-x microcrystals in fluorine-phosphate glass Optics communications. 132 (3-4). Pp 307-310.
  15. Lipovskii, AA. et al., 1999. Formation and growth of semiconductor nanocrystals in phosphate glass matrix. Journal of the European ceramic society.19 (6-7). Pp 865-869.
  16. Xu, K.M. et al., 2010. Optical properties of CdSe quantum dots in silicate glasses. J Non-Crystalline Solids.356.Pp 2299-2301.
  17. Martin, J.L., Rivera, R., Cruz, S.A. 1998. Confinement of excitons in spherical quantum dots. J. Phys.: Condence Matter. 10. Pp1349-1361.
  18. Kim, J, M. et al., 2012. Photoluminescence enhancement in CdS quantum dots by thermal annealing. Nanoscale Research Letters. 7. Pp 482-489.
  19. Lipatova, Zh.O., Kolobkova, E.V., Aseev,V.A. 2015. Kinetics and luminescence of cadmium sulfide quantum dots in fluorine-phosphate glasses, Opt. Spectrosc. 119(I2), pp 229-233.
  20. Norris, D. J. and Bawendi M. G. 1996. Measurement and assignment of the size-dependent optical spectrum in CdSe quantum dots. Physical Rev. B. 53, (24). pp 16338-16446.
  21. Norris, D. J. and Bawendi, M. G. 1995. Structure in the lowest absorption feature of CdSe quantum dots. . Chem. Phys., 103(130). pp5260-5268.
Download


Paper Citation


in Harvard Style

Kolobkova E., Lipatova Z., Kuznetsova M. and Nikonorov N. (2017). Fluorine Phosphate Glasses Doped with Cadmium Sulfide and Selenide Quantum Dots with High Quantum Efficiency at Room-temperature . In Proceedings of the 5th International Conference on Photonics, Optics and Laser Technology - Volume 1: PHOTOPTICS, ISBN 978-989-758-223-3, pages 328-333. DOI: 10.5220/0006266203280333


in Bibtex Style

@conference{photoptics17,
author={E. V. Kolobkova and Zh. Lipatova and M. S. Kuznetsova and N. Nikonorov},
title={Fluorine Phosphate Glasses Doped with Cadmium Sulfide and Selenide Quantum Dots with High Quantum Efficiency at Room-temperature},
booktitle={Proceedings of the 5th International Conference on Photonics, Optics and Laser Technology - Volume 1: PHOTOPTICS,},
year={2017},
pages={328-333},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006266203280333},
isbn={978-989-758-223-3},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 5th International Conference on Photonics, Optics and Laser Technology - Volume 1: PHOTOPTICS,
TI - Fluorine Phosphate Glasses Doped with Cadmium Sulfide and Selenide Quantum Dots with High Quantum Efficiency at Room-temperature
SN - 978-989-758-223-3
AU - Kolobkova E.
AU - Lipatova Z.
AU - Kuznetsova M.
AU - Nikonorov N.
PY - 2017
SP - 328
EP - 333
DO - 10.5220/0006266203280333