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Abstract: Horizontal gene transfer is a major driver of bacterial evolution and adaptation to niche environments. This 
holds true for the complex microbiome of the human gut. Crohn’s disease is a debilitating condition 
characterized by inflammation and gut bacteria dysbiosis. In previous research, we analyzed transposase 
associated antibiotic resistance genes in Crohn’s disease and healthy gut microbiome metagenomics data 
sets using a graph mining approach.  Results demonstrated that there were significant differences in the type 
and bacterial distribution of transposase-associated antibiotic resistance genes in the Crohn’s and healthy 
data sets. In this paper, we extend the previous research by considering all gene features associated with 
transposase sequences in the Crohn’s disease and healthy data sets. Results demonstrate that some 
transposase-associated features are more prevalent in Crohn’s disease data sets than healthy data sets. This 
study may provide insights into the adaptation of bacteria to gut conditions such as Crohn’s disease. 

1 INTRODUCTION 

The human gut microbiome represents a wealth of 
biological organisms and their related functions. The 
composition and abundances of these microorga-
nisms have been found to be associated with 
numerous important health characteristics. For 
example the gut microbiome has been found to help 
regulate immune function and development 
(Sommer, Bäckhed, 2013) influence dietary 
metabolism (Turnbaugh et al, 2006) and even 
modulate mood and behaviour (Foster, McVey 
Neufeld, 2013). The community of the gut 
microbiome is highly complex with a wide array of 
diverse microbial members that interact with each 
other as well as with the host. In a healthy state, this 
consortium of microorganisms is well adapted to 
perform multiple functions that are beneficial to the 
host as well as for maintaining the homeostasis of 
the gut environment (LeBlanc et al, 2013) (Kamada 
et al, 2013). These community members are 
specifically adapted to flourish in the gut 
environment and are flexible to adapt to changes to 
the environment such as diet alterations (David et al, 
2014) (O’Sullivan et al, 2009). 

One such mechanism that bacteria utilize to 
 

adapt to their environments is the transfer of small 
amounts genetic material called mobile genetic 
elements. Mobile genetic elements include plasmids, 
transposons, and bacteriophage related sequences. In 
particular, transposons are segments of DNA that 
can remove and insert themselves in different 
regions of the same or different genomic sequence. 
Also known as “jumping genes” these transposons 
many times utilize specialized genes called 
transposases to catalyse the excision and movement 
of the transposon sequence. In bacteria, transposons 
often carry accessory genes such as antibiotic 
resistance genes that can confer specialized 
functions to the organism in which it is integrated.  
The horizontal gene transfer of genes between 
bacteria is a major driver of bacterial evolution and 
allows for adaptation of a given bacterial species to 
its environmental niche (Ochman, Lawrence, 
Groisman, 2000). 

Dysbiosis of the gut microbiome occurs in many 
disease states including inflammatory bowel disease 
(IBD) such as Crohn’s disease and ulcerative colitis 
(Manichanh et al, 2012). According to research, this 
dysbiosis may facilitate increased horizontal gene 
transfer between bacterial members of the gut 
microbiome, promoting the spread of virulence 
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factors and antibiotic resistance genes (Stecher, 
Maier, Hardt, 2013).  

Next generation sequencing technologies can be 
applied to investigate the composition of the gut 
microbiome. These technologies are capable of 
producing millions of short DNA fragments called 
reads from a given input DNA sample. The reads are 
produced at such a high coverage of the original 
sample sequence that many overlap. Graph based 
tools called assemblers are used to assemble the 
reads into longer stretches of sequence called contigs 
that are used for downstream analysis (Nagarajan, 
Pop, 2013). We have developed an assembler tool 
called Focus (Warnke, Ali, 2014) that relies on a 
novel assembly graph called the hybrid graph. The 
hybrid graph models the overlap relationships 
between reads in a given data set at multiple levels 
of granularity.  

In previous research (Warnke-Sommer, Ali, 
2016), we demonstrated that transposase sequences 
are associated with graph structure due to their 
repetitive nature within a single genome or across 
multiple different genomes. The distribution of 
transposase sequences was studied in gut 
microbiomes of individuals with Crohn’s disease 
and healthy individuals. Graph mining was used to 
explore genomic regions in proximity to the 
transposase sequences for antibiotic resistance 
genes. Regions around transposase sequences were 
enriched for different types of antibiotic resistances 
genes in the Crohn’s disease versus the healthy gut 
microbiome. The distribution of these antibiotic 
resistance gene groups across genera is also different 
between Crohn’s disease gut microbiomes and 
healthy gut microbiomes with most antibiotic 
resistance genes in the healthy gut samples coming 
from Bacteroides. The distribution of resistance 
genes in the Crohn’s disease samples was more 
diverse across bacterial genera. This study was 
conducted to first demonstrate the capability of the 
hybrid graph to capture biological features in its 
graph structures. Finally this study also provided 
insights into the distribution of antibiotic resistance 
in the gut microbiome of Crohn’s disease, a disease 
whose resulting complications are often treated with 
antibiotics regimens (Roy, Lichitiger, 2016).  

This paper extends the analysis conducted in 
(Warnke-Sommer, Ali, 2016) to examine all gene 
features associated with transposase sequences in the 
Crohn’s disease and healthy metagenomics data sets. 
Antibiotic resistance genes are commonly known to 
be in association with transposase sequences (Ghosh 
et al, 2013). However, it would be beneficial to 
examine additional genetic features associated with 
 

 

Figure 1: The overlap graph. Each read is mapped to a 
node in the overlap graph. Edges represent overlap 
relationships. Each edge is weighted according to the 
length of the overlap region shared between a pair of 
reads. 

transposase sequences in Crohn’s disease and 
healthy gut microbiome samples. The ability to 
determine transposase associated gene differences in 
Crohn’s and healthy gut microbiomes provides 
valuable insights into potential niche adaptations of 
bacterial species in gut environments afflicted with 
Crohn’s disease. Results demonstrate that 
transposase associated gene features are significantly 
different in Crohn’s disease versus healthy gut 
microbiomes. Crohn’s disease samples had 
significantly greater hits to several functional 
categories, including beta-glucoside metabolism, 
maltose and maltodextrin utilization, and heme, 
hemin uptake and utilization systems in gram 
positives. 

2 METHODS 

In this section, the pipeline for analysing the 
transposase-associated gene features in the Crohn’s 
disease and healthy gut microbiomes is discussed. 
First, the graph model applied for modelling the 
metagenomics reads and their overlap relationships 
is described. This graph model is part of the Focus 
assembler pipeline described in detail in (Warnke, 
Ali, 2014). Second, the database that is used to 
functionally annotate gene features is briefly 
discussed. Finally, the graph mining approach for 
extracting transposase related gene features from the 
hybrid graph is presented.   

2.1 Graph Model 

The overlap graph approach is commonly used to 
model reads and their corresponding read overlap 
relationships (Miller, Koren, Sutton, 2010). In this 
approach, each read is mapped to a node in the 
overlap graph and edges represent the overlap 
relationships between reads. The edges can be 
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Figure 2: The multilevel graph set and hybrid graph. The initial overlap graph G0 is shown above. The DNA sequences 
beside G0 represent contigs that can be inferred from the overlap graph.  Notice that the overlap graph captures the 
sequence variation between the two contigs. The multilevel graph set is created by reclusively matching and merging nodes 
to produces a succession of graphs G0 ... G3. The graph G3 is over reduced and does not capture the bubble structure in the 
original overlap graph. The hybrid graph integrates the three graph levels to produce a representation that is concise yet 
captures all sequence structure in the read set. 

weighted to reflect overlap characteristics such as 
overlap length or identity. See Figure 1 for an 
example of the overlap graph. 

The Focus assembly algorithm first performs 
seed-and-extend pairwise alignment to discover 
overlap relationships between reads (Warnke, Ali, 
2014). Once the pairwise alignment module is 
completed, the overlap relationships and reads are 
loaded into an overlap graph representation, denoted 
as G0. In this graph, edges are weighted by the 
lengths of the reads’ shared overlaps.   

The overlap graph G0 is highly complex and can 
contain millions of node, making it difficult to 
recover any useful information from its structures. 
To address this issue, the overlap graph G0 is 
recursively reduced with heavy edge matching and 
node merging to produce a series of reduced graphs 
G1, G2 … Gn, where |G1| ≥ | G2 | ≥ … | Gn |. Heavy 
edge matching is a maximal matching that is 
generated with preference for heavier edge weights 
(Karypis, Kumar, 1998). Focus attempts to find a 
maximal heavy edge matching that satisfies minimal 
edge weight thresholds set by the user. Once this 
matching is found, the endpoints of the edges in the 
matching are merged to form the new nodes in G1. 
An edge between two merged nodes in G1 is 
assigned the summed weight of the edges between 
the merged nodes’ child nodes in G0.  

Figure 2 demonstrates graph reduction and 
multilevel graph set.  Notice that G3 does not capture 
a bubble in the overlap graph and is over reduced. 
Not all levels of the multilevel graph set will be 
appropriate for representing all regions of genomic 
sequence such as complex repeats or other sequence 
variation. To address this issue, nodes are selected 
from various levels of the multilevel graph set and 
integrated to create a novel graph model called the 
hybrid graph. The hybrid graph represents the input 
data set as concise as possible while still capturing 
input data set features.  The nodes are selected from 
the multilevel graph set as follows. First the nodes of 
the coarsest graph Gn are evaluated. If a node is 
found to be a representative of a single contiguous 
sequence, then it will be added to the hybrid graph. 
If the reads that this node represents do not assemble 
into a contiguous sequence, then the algorithm does 
not add the node to the hybrid graph. Instead its 
child nodes in Gn-1 are evaluated to examine whether 
their corresponding reads form a contiguous 
sequence. If they do, then they are added to the 
hybrid graph. If not, then their child nodes in Gn-2 are 
evaluated.  This process continues until G0 is 
reached. The hybrid graph will contain all of the 
nodes in G0, G1, ... Gn that have been evaluated and 
found to form a contiguous region of sequence. Thus 
the hybrid graph represents the input data set as 
concisely as possible while capturing input sequence 
variation. 
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Figure 3: Graph mining for discovering biologically 
significant features. In (a) there are three genomes that 
share a common transposase sequence. In two of these 
genomes, a gene feature is associated with the transposase. 
In (b) the hybrid graph representing these genomes is 
shown. The common transposase region is reduced to a 
single node that has many branching paths representing 
the three unique genomes. Observe that the gene features 
are represented by nodes that are within a short path length 
from the node representing the shared transposase 
sequence. Any genetic features associated with this 
transposase can be determined by exploring the node 
neighbourhood centered on the node representing the 
repeated transposase sequence. 

Please see (Warnke, Ali, 2014) for a formal 
description of the multilevel graph set and hybrid 
graph construction. 

2.2 Seed Subsystems and ACLAME 
Database 

The Seed Subsystems (Overbeek et al, 2014) is an 
organizational database for gene annotation. It is 
organized into several hierarchal levels of functional 
subsystems. This database has annotated protein 
sequences that are organized into families called 
Figfams based on sequence similarity and function 
(Meyer, Overbeek, Rodriguez, 2009). These Figfams 
are then annotated with the subsystem functional 
categories.  

In this paper, the gene prediction software 
FragGeneScan (Rho, Tang, Ye, 2010) was used to 
predict genes within the metagenomics contigs 

produced by Focus. These predicted genes were then 
aligned against the seed subsystem using the 
DIAMOND software tool (Buchfink, Xie, Huson, 
2015). The predicted genes were assigned 
annotations at subsystem level 2 according to the 
Figfam hit that they were most similar to. The 
minimum score for each protein hit was set to 40% 
minimum sequence identity with a minimum 
alignment length of 50. 

The ACLAME database contains a comprehensi-
ve collection of prokaryotic mobile elements (Leplae 
et al, 2004). As before, the DIAMOND software 
was used to align the predicted genes against the 
ACLAME database with a minimum sequence 
identity score of 40% and minimum alignment 
length of 50. Any contigs with hits were annotated 
accordingly.  

Finally, the nodes in the hybrid graph were 
annotated according to their corresponding contigs’ 
annotations as determined by the SEED or 
ACLAME databases.  

2.3 Graph Mining for Biological 
Features Associated with Mobile 
Elements 

In (Warnke-Sommer, Ali, 2016) it was demonstrated 
that graph structure was associated with biologically 
significant features. In particular, sequence regions 
that are repetitive within the same genome or are 
present in multiple different genomes were found to 
be represented by nodes that have a large degree. As 
shown by Fig. 3, a region that is repeated within the 
same genome or is present in multiple different 
genomes will be reduced to a single node in the 
hybrid graph. In the hybrid graph, the number of 
paths containing a node representing a conserved or 
repeated sequence may indicate the number of 
distinct genomic regions that contain that repeated 
sequence. In (Warnke-Sommer, Ali 2016) the 
Shannon's diversity score was used to capture the 
number of paths entering and exiting from a node. 
The formula (Shannon, 2001) used is given by:  
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where n is the number of incident edges, wi is the 
weight of the ith edge, and wtotal is the total weight of 
all of the incident edges. For a given node, this 
formula captures both the number of incident edges 
as well as the evenness of edges’ weights. Recall 
that the weight of a given edge represents the 
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summed length of the overlaps between the reads 
represented by the endpoints of that edge. Thus the 
Shannon's diversity score takes the read coverage of 
paths entering and exiting a node into consideration. 
The greater the number of edges incident to a given 
node and the more even the edges’ weights are, the 
higher that the Shannon's score of that node will be. 
Any incident edges that are spurious such as a single 
read with poor end qualities will have minimal 
impact on the Shannon index score as a edge 
representing an overlap with this read will likely be 
low coverage in comparison to other paths entering 
and exiting the node. Thus the Shannon's index score 
is robust against false positive edges in the hybrid 
graph due to sequencing error and artefacts. 

Observe that in Fig. 3, the nodes within a short 
path distance of the node annotated with the 
transposase sequence are annotated with additional 
genetic features. Analysing the graph neighbourhood 
centered on a given node annotated with a 
transposase sequence can discover any gene features 
related to that transposase sequence. Given a node 
that is annotated with a transposase sequence and 
meets requirements described in the next paragraph, 
all its neighbouring nodes within a path length of 
three are examined to determine if they are 
annotated with any additional gene features. Any 
gene features that are found are considered to be 
transposase associated.  

In this paper, nodes annotated with transposase 
sequences and had a Shannon's score greater than 1 
were chosen for neighbourhood analysis. The 
minimum Shannon's score of one was chosen 
because nodes that have a Shannon's degree greater 
than one are part of multiple paths, indicating that 
they may be part of multiple genomic sequences. 
Greater occurrence in multiple sequence regions 
may indicate that a particular transposase sequence 
has spread between multiple genomic regions and 
may have been or is currently a contributor of 
bacterial evolution and adaptation. The ability to 
analyse genetic features associated with transposase 
sequences that occur across multiple genomic 
regions, whether in the same genome or across 
different genomes, may provide insight into 
functions that have allowed bacterial species to 
adapt to their niche environmental conditions. 

3 RESULTS 

This section presents the results of examining the 
gene features associated with transposase sequences 
in the Crohn's disease and healthy gut microbiome 

data sets. First, gene features associated with 
transposase sequences are extracted as described in 
the methods. Each gene feature is assigned a level 2 
subsystem classification. The counts for each 
subsystem are normalized per data set by dividing 
the subsystem count by the total number of nodes 
explored by neighbourhood analysis and then 
multiplying by a thousand to get number of 
subsystem hits per thousand nodes. Next the Mann-
Whitney U test was used to determine whether there 
is a significant difference in subsystem category hits 
for the Crohn's disease versus the healthy data sets. 
For subsystems that have significantly different 
number of hits between the Crohn's disease and 
healthy data sets, the distribution of bacterial genera 
in which the subsystems occurs was determined. 
Finally, three of the significant features: Mannose 
binding, Beta galactoside, and Heme binding in 
gram positives are explored in more detail in the 
context of their possible roles in the gut microbiome 
of Crohn's disease individuals and previous 
literature.  

3.1 Subsystem Analysis 

This work extends the research on antibiotic 
resistance genes applied to the thirteen data sets in 
(Warnke-Sommer, Ali, 2016). The same data sets 
are used in this analysis. Please see (Warnke-
Sommer, Ali, 2016) for a description of the data sets' 
characteristics and distribution of bacterial genera. 

To begin, all transposase associated gene 
features were assigned a level 2 subsystem classify-
cation. If a given subsystem category did not have at 
least five hits for at least two of the data sets it was 
not included in subsequent analysis. Fig. 4 displays 
the median subsystem category hits per thousand 
nodes for the significant subsystems. Many of these 
subsystems are related to metabolic functions. For 
example, lactate fermentation had many more hits in 
the the Crohn’s disease data sets in comparison to 
the healthy data sets. In the next section, we see that 
this function is found in Lactobacillus. According to 
(Beiko, Harlow, Ragan, 2005) metabolic genes may 
be preferentially transferred horizontally between 
bacterial types, allowing for adaptation to novel 
energy sources. 

Here we will give a brief description of each of 
the subsystems that were significantly different in 
the Crohn’s and healthy gut microbiome data sets.   

 Alginate metabolism: Alginate is a 
polysaccharide found in the cell walls of brown 
algae and capsules of soil bacteria (Draget, 
Smidsrød,   Skjåk‐Bræk,  2000).  Alginates   are 
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Figure 4: Transposase associated subsystem differences between Crohn’s disease and healthy gut microbiome samples. 
Median gene hits to each significant subsystem are shown for Crohn’s (red) and healthy (blue) samples. 

commonly added to food as a thickener or 
stabilizer (Aliste, Vieira, Del Mastro, 2000). 

 Beta-Glucoside metabolism: A glucoside is a 
glucose sugar molecule(s) that is attached to 
another non-sugar functional group. They are 
commonly found in plant material (Hollman et 
al, 1999).   

 Cellulosome: Cellulosomes are large enzymes 
capable of digesting cellulose, a polysaccharide 
that is the major component of cell walls (Doi et 
al, 2003). 

 Chorismate synthesis: Chorismate is a precursor 
in the synthesis of aromatic amino acids in most 
prokaryotes (Hopper, Rao, 2013).   

 Conjugative transposon, Bacteroides: This is a 
DNA element that excises itself, forms a 
circular intermediate, and then reintegrates itself 
into the same genome or transfers between cells 
to a different genome (Salyers et al, 1995).  

 Fermentations: Lactate: In bacteria, lactate is 
produced by the fermentation of carbohydrates 
Garvie, 1980). 

 Fructooligosaccharides(FOS) and Raffinose 
Utilization: FOS and Raffinose are 
nondigestible oligosaccharides that can be 
found in plants (Barrangou et al, 2006). 

 Heme hemin uptake and utilization systems in 
Gram Positives: Iron is often an enzyme 

cofactor in many prokaryotic biological 
processes. Many pathogens obtain iron through 
the uptake of heme (Anzaldi, Skaar, 2010).  

 Iron acquisition in Vibrio: This includes Ton-B 
dependent transport of heme in Gram Negatives 
(Stojiljkovic, Hantke, 1992).   

 Maltose and Maltodextrin Utilization: Maltose 
is a disaccharide that can be formed from the 
digestion of starch (Nichols et al, 2003). 
Maltodextrin is a modified starch that is 
commonly used as a food additive (Nickerson, 
McDonald, 2012).  

 NAD and NADH cofactor biosynthesis global: 
The pyridine nucleotide redox pair 
NAD/NADH is an essential cofactor for all 
living organisms (Kurnasov et al, 2003). 

 Phage integration and excision: Bacteriophages 
are capable of integrating their DNA into a host 
genome (Paatero et al, 2008). 

 Proteasome bacterial: These perform protein 
degradation in bacteria to maintain homeostasis 
(Butler et al, 2006.   

 tRNA aminoacylation: Aminoacyl-tRNA 
synthetases catalyse the addition of amino  acid 
to a transfer RNA (Park, Schimmel, Kim, 
2008). 
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Figure 5: Distribution of Genera for Significant Subsystems. (A) shows the genera distribution for subsystems with a 
greater number of hits in Crohn’s samples and (B) shows the genera distribution for subsystems with a greater number of 
hits in the healthy samples. 

Fig. 5 displays the genera distribution for each of the 
significant subsystems. In the healthy samples, most 
of the transposase-associated subsystems were found 
in Bacteroides. The transposase-associated 
subsystems that were found in the Crohn’s disease 
samples were more distributed across bacterial 
genera. For an example, the subsystem Fermenta-
tion:Lactate was found mostly in Lactobacillus. The 
subsystem Fructooligosaccharides (FOS) and 
Raffinose utilization was found commonly in 
Bifidobacterium. Species of Bifidobacterium are 
known to be capable of fermenting 
Fructooligosaccharides (Rossi et al, 2005).  

Finally, Table 1 displays the subsystems that 
were not found to be significant between the 
Crohn’s disease and healthy gut microbiome data 
sets. A few of these subsystems, such as At1g69340, 
appear to come from Arabidopsis thaliana. We 
would like to note that the SEED subsystem contains 
prokaryote orthologs of Arabidopsis thaliana 
(Gerdes et al, 2011). 

3.2 in-Depth Analysis of Pathologically 
Relevant Subsystems 

In this section, an in-depth summary of the Heme, 
Hemin Uptake and Utilization, Maltose and 
Maltodextrin Utilization, and Beta-Glucoside 
Metabolism subsystems is presented. 

The subsystem Heme, Hemin, Uptake and 
Utilization are found most commonly in 
Streptococcus and Lactobacillus as well as in 
unknown genera. Iron is a cofactor of many enzymes 
in living systems.  Its uptake is essential for 
pathogenic infection (Anzaldi, Skaar, 2010).  In 
mammalian systems, the most abundant form of iron 
is bound in heme. Thus many bacterial systems have 
developed for the uptake of heme.    The availability 
of host heme to bacterial pathogens can greatly 
increase the difficulty of clearing an infection 
(Contreras et al, 2014). 

The subsystem Maltose and Maltodextrin is 
found in Bifidobacterium, Lactobacillus, Collinsella, 
and Enterococcus. Some studies have found that the 
food additive Maltodextrin can alter the bacterial 
homeostasis of the intestine (Nickerson, Chanin, 
McDonald, 2015). Maltodextrin has also been found 
to increase adhesion of Crohn’s disease associated 
ecoli (Nickerson, McDonald, 2012) and promote 
Salmonella mucosal colonization and survival 
(Nickerson et al, 2014). 

According to Fig. 5 beta-glucoside subsystem 
functions are found most commonly in 
Ruminococcus, Clostridium, and Lactobacillus 
genera. A large portion of the beta-glucoside 
functions occurs in unknown genera. Glucosidases 
are capable of producing metabolites that are 
implicated in colon cancer (Sobhani et al, 2013). 
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Table 1: Subsystems that were not significantly different between Crohn’s disease and healthy gut microbiome  samples. 
For each subsystem the median number of hits per thousand nodes is shown for the Crohns disease (C) and healthy (H) gut 
microbiome samples. 

Subsystem C. H. Subsystem C. H. 

16S rRNA modification within P site of 
ribosome 

1 1 Entner-Doudoroff Pathway 3 2 

5-FCL-like protein                    9 7 Folate Biosynthesis 5 2.5 

ABC transporter oligopeptide        (TC 
3.A.1.5.1)            

1 0 
Galactosylceramide and Sulfatide 

metabolism 
9 9 

Alanine biosynthesis 7 0 Glycogen metabolism 6 2.5 

Alkanesulfonate assimilation 0 4 Group II intron-associated genes 6 3.5 

Ammonia assimilation 7 3.5 Heat shock dnaK gene cluster extended 3 6.5 

Aromatic conversions and predicted Co2 
transporter cluster 

5 1 
High affinity phosphate transporter and 

control of PHO regulon 
10 1 

At1g69340 At2g40600 2 3 Histidine Biosynthesis 4 0.5 

At3g21300 8 0.5 L-fucose utilization 0 2.5 

At5g63420 7 1 L-rhamnose utilization 2 3 

ATP-dependent Nuclease 5 0 
Lactose and Galactose Uptake and 

Utilization 
9 2 

Bacterial Cell Division 9 3.5 Mannose Metabolism 3 1.5 

Bacterial Cytoskeleton 9 1 Methionine Biosynthesis 8 5 

Beta-lactamase 1 3 Multidrug Resistance Efflux Pumps 10 5 

Beta-lactamase cluster in Streptococcus 2 2 Oxidative stress 2 0.5 

C jejuni colonization of chick caeca   Potassium homeostasis 8 3.5 

Calvin-Benson cycle 6 2 Purine conversions 15 2.5 

Cell Division Subsystem including 
YidCD 

5 1 Restriction-Modification System 15 17.5 

Cell division-ribosomal stress proteins 
cluster 

3 1 Ribonucleotide reduction 4 0.5 

Chitin and N-acetylglucosamine 
utilization 

5 5.5 Ribosome LSU bacterial 10 1.5 

D-Galacturonate and D-Glucuronate 
Utilization 

4 7.5 Sialic Acid Metabolism 4 0 

De Novo Pyrimidine Synthesis 4 1 Streptococcal group antigen operons 5 0 

DMT transporter 2 1 
Tetracycline resistance, ribosome 

protection type 
3 0 

DNA Repair Base Excision 7 2.5 Transcription factors bacterial 2 2.5 

DNA repair, bacterial 13 4 tRNA modification Archaea 2 2 

DNA repair, bacterial RecFOR pathway 0 4.5 Universal GTPases 5 2 
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Fig. 6 provides a more granular view of the level 
3 subsystems classification counts for Heme, Hemin 
Uptake and Utilization, Maltose and Maltodextrin 
Utilization, and Beta-Glucoside Metabolism. 

 

 

 

 

 
Figure 6: Level 3 subsystem counts for Heme, Hemin 
Uptake and Utilization Systems, Maltose and Maltodextrin 
Utilization., and Beta-Glucoside Metabolism. 

4 CONCLUSIONS 

In conclusion, this paper presents an extension of 
previous work using graph mining to explore 
transposase associated genetic elements in Crohn’s 
disease and health individuals. Graph mining is 
shown to be a powerful tool that can be applied to 
extract biologically relevant features of the input 
dataset. 

Flat fasta files of contigs loose information, as 
relationships between the contigs are lost in flat 
files. The hybrid graph maintains all of the global 
and local relationships within its structures. This is 
especially important for difficult to assemble regions 
such as repetitive regions, including transposes. 
Many assemblers produce fragmented results in 
these areas, as it is difficult to place repetitive 
regions. In contrast, the hybrid graph maintains all 
possible relationships allowing for extraction of 
information even from difficult to assemble areas. 

Results demonstrate several important 
transposase associated genetic features that are more 
prevalent in Crohn’s disease gut microbiome 
samples than healthy samples. Several of these 
functions have been implicated in previous research 
as biologically relevant to Crohn’s disease and 
associated conditions. The results in this paper 
provide insights into gene features that may allow 
gut bacteria to adapt to their ecological niches.  
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