A Hardware-in-the-loop Simulation Study of a Mechatronic System for Anterior Cruciate Ligament Injuries Rehabilitation

Juan C. Yepes, A. J. Saldarriaga, Jorge M. Vélez, Vera Z. Pérez, Manuel J. Betancur

Abstract

One of the main ligaments of the knee is the Anterior Cruciate Ligament (ACL), which is critical to maintain stability and regular gait patterns. Moreover, the knee is the most complex and largest joint in the human body. There are many traditional methods and devices to assist therapy. Nevertheless, there are several research studies in robotic platforms for lower limb rehabilitation. This paper presents a hardware-in-the-loop (HIL) simulation of a movement control algorithm for mechatronic-assisted rehabilitation based on exercises and movements associated with therapies for ACL injuries. The implementation of the algorithm was conducted using a computational model in order to test the mechatronic system Nukawa without having to use the actual robot. Several tests were performed in order to validate the mathematical model of Nukawa. In order to assess whether the implemented HIL simulator works properly for ACL rehabilitation exercises, a physiotherapist performed six exercises and the movements were recorded with a commercial acquisition device, these trajectories were conducted to the HIL simulator. The Integral-Square-Error (ISE) was computed for each test, and since it was small, it may be despised. Therefore, the motion control algorithm is able to manipulate the three joints at the same time, hence it is possible to follow specific trajectories. In addition, the mean execution time M = 11.5 ms and the standard deviation SD = 3.9 taken by the controller is smaller than the sampling period, therefore we proposed that this system can be tested in real-time, without notable delays related to the movement control algorithm.

References

  1. Akdogan, E. and Adli, M. A. (2011). The design and control of a therapeutic exercise robot for lower limb rehabilitation: Physiotherabot. Mechatronics, 21(3):509-522.
  2. American Academy of Orthopaedic Surgeons (2011). Sports Medicine Media Guide an Illustrated Resource on the Most Common Injuries and Treatments in Sports.
  3. Arosha Senanayake, S. M. N., Malik, O. A., Iskandar, P. M., and Zaheer, D. (2014). A knowledge-based intelligent framework for anterior cruciate ligament rehabilitation monitoring. Applied Soft Computing Journal, 20:127-141.
  4. Augusta, V. (2013). Comparación entre diferentes procedimientos de ajuste de controladores PID. I. Valores máximos de la variable controlada y de la sen˜al reguladora.
  5. Biometrics Ltd (1998). Goniometer and torsiometer operating manual. Technical report.
  6. Blaya, J. a. and Herr, H. (2004). Adaptive Control of a Variable-Impedance Ankle-Foot Orthosis to Assist Drop-Foot Gait. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 12(1):24-31.
  7. Cimino, F., Volk, B. S., and Setter, D. (2010). Anterior cruciate ligament injury: Diagnosis, management, and prevention. American Family Physician, 82(8):917- 922.
  8. De Leva, P. (1996). Adjustments to zatsiorsky-seluyanov's segment inertia parameters. Journal of Biomechanics, 29(9):1223-1230.
  9. Departamento Administrativo Nacional de Estadísctica (2004). Información estadística de la discapacidad.
  10. Dollar, A. M. and Herr, H. (2008). Lower extremity exoskeletons and active orthoses: Challenges and state-of-the-art. IEEE Transactions on Robotics, 24(1):144-158.
  11. Eby, W. R. (2005). Feasibility Analysis of a Powered Lower-Limb Orthotic for the Mobility Impaired User by. Simulation.
  12. Eurostat (2014). Disability statistics - prevalence and demographics. 2011(September):1-5.
  13. Ganley, T. J. (2011). Preface: ACL Injuries in the Young Athlete: A Focus on Prevention and Treatment. Clinics in Sports Medicine, 30(4):xv-xviii.
  14. Guizzo, E. and Goldstein, H. (2005). The rise of the body bots [robotic exoskeletons. IEEE Spectrum, 42(10):50-56.
  15. K. S. Fu, R.C. Gonzalez, C. L. (1987). Robotics: Control, Sensing, Vision, and Intelligence. Mcgraw-Hill Book Company.
  16. Kiguchi, K., Tanaka, T., and Fukuda, T. (2004). Neurofuzzy control of a robotic exoskeleton with EMG signals. IEEE Transactions on Fuzzy Systems, 12(4):481-490.
  17. Kirby, F. (2016). Simulación de los algoritmos de control de un sistema de rehabilitación de miembro inferior (LegSys). Master's thesis, Universidad Pontificia Bolivariana.
  18. Lasso, I. L., Masso, M., and Vivas, O. A. (2010). Exoesqueleto para reeducación muscular en pacientes con IMOC tipo diplejía esp ástica moderada. pages 1 - 88.
  19. Li, A. Y. and Ng, G. Y. (2004). Overview of Anterior Cruciate Ligament Rehabilitation and its Evolution in Hong Kong in the Past 8 Years. Hong Kong Physiotherapy Journal, 22(1):14-21.
  20. Machhindra, V., Lal, H., Chowdhury, B., Dev, C., Meena, S., and Kumar, K. (2016). ScienceDirect Arthroscopic anatomic double bundle anterior cruciate ligament reconstruction : Our experience with follow-up of 4 years. 7:3-8.
  21. Nancy Berryman, W. D. B. P. (2002). Joint Range of Motion and Muscle Length Testing. 1st edition.
  22. Nguyen-Tuong, D. and Peters, J. (2008). Learning robot dynamics for computed torque control using local Gaussian processes regression. Proceedings of the 2008 ECSIS Symposium on Learning and Adaptive Behaviors for Robotic Systems, LAB-RS 2008, pages 59-64.
  23. Olaya, A. R. (2008). Sistema robótico multimodal para análisis y estudios en biomecánica, movimiento humano y control neuromotor. pages 1-256.
  24. Pan, D., Gao, F., Miao, Y., and Cao, R. (2015). Cosimulation research of a novel exoskeleton-human robot system on humanoid gaits with fuzzy-PID/PID algorithms. Advances in Engineering Software, 79:36-46.
  25. Patin˜o, J. G., Bravo, E. E., Perez, J. J., and Perez, V. (2013). Lower limb rehabilitation system controlled by robotics, electromyography surface and functional electrical stimulation. Pan American Health Care Exchanges, PAHCE, (2002):6257.
  26. Piriyaprasarth, P., Morris, M. E., Winter, A., and Bialocerkowski, A. E. (2008). The reliability of knee joint position testing using electrogoniometry. BMC musculoskeletal disorders, 9:6.
  27. Plagenhoef, S., Evans, F. G., and Abdelnour, T. (1983). Anatomical Data for Analyzing Human Motion. Research Quarterly for Exercise and Sport, 54(2):169- 178.
  28. Pratt, J., Krupp, B., Morse, C., and Collins, S. (2004). The RoboKnee: an exoskeleton for enhancing strength and endurance during walking. IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA 7804. 2004, 3(April):2430-2435.
  29. World Health Organization (2011). World Report on Disability. Technical report, World Health Organization, Ginebra.
  30. Yan, T., Cempini, M., Oddo, C. M., and Vitiello, N. (2015). Review of assistive strategies in powered lower-limb orthoses and exoskeletons. Robotics and Autonomous Systems, 64:120-136.
  31. Zoss, A. B., Kazerooni, H., and Chu, A. (2006). Biomechanical Design of the Berkeley Lower Extremity Exoskeletong (BLEEX). IEEE/ASME Transactions on Mechatronics, 11(2):128-138.
Download


Paper Citation


in Harvard Style

Yepes J., Saldarriaga A., Vélez J., Pérez V. and Betancur M. (2017). A Hardware-in-the-loop Simulation Study of a Mechatronic System for Anterior Cruciate Ligament Injuries Rehabilitation . In Proceedings of the 10th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 1: BIODEVICES, (BIOSTEC 2017) ISBN 978-989-758-216-5, pages 69-80. DOI: 10.5220/0006252800690080


in Bibtex Style

@conference{biodevices17,
author={Juan C. Yepes and A. J. Saldarriaga and Jorge M. Vélez and Vera Z. Pérez and Manuel J. Betancur},
title={A Hardware-in-the-loop Simulation Study of a Mechatronic System for Anterior Cruciate Ligament Injuries Rehabilitation},
booktitle={Proceedings of the 10th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 1: BIODEVICES, (BIOSTEC 2017)},
year={2017},
pages={69-80},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006252800690080},
isbn={978-989-758-216-5},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 10th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 1: BIODEVICES, (BIOSTEC 2017)
TI - A Hardware-in-the-loop Simulation Study of a Mechatronic System for Anterior Cruciate Ligament Injuries Rehabilitation
SN - 978-989-758-216-5
AU - Yepes J.
AU - Saldarriaga A.
AU - Vélez J.
AU - Pérez V.
AU - Betancur M.
PY - 2017
SP - 69
EP - 80
DO - 10.5220/0006252800690080