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Abstract: This paper presents an algorithm to predict the outcome of a protein x-ray crystallisation trial. Results obtained 
from classification of individual images in a time-course are used, along with random forests, to make a 
prediction of the time-course outcome. Experiments on multiple datasets show that the first 8 frames of each 
time-course are quite sufficient to predict the final outcome.

1 INTRODUCTION 

X-ray crystallography is widely used to determine the 
three-dimensional atomic structure of biological 
macromolecules, and provides the ability to gain 
unique understanding about the function of a protein 
(Newman et al., 2007). Without hyperbole, X-ray 
crystal structures have transformed biology, being the 
most successful way of determining the fundamental 
structure of macromolecules; well over 80% of 
entries in the Protein Data Bank (rcsb-PDB) have 
been determined using X-ray crystallography. 
Understanding the structure / function relationship, as 
revealed by crystallographic analyses, is also one of 
the most important  tools for rational drug design 
(Dessau and Modis, 2011). 

The technique of X-ray crystallography uses 
diffraction patterns generated by irradiating a 
crystalline sample of the molecule of interest with X-
rays, thus the production of diffraction quality 
crystals is mandatory for this process.  To date, the 
production of crystals requires triaging through an 
enormous chemical space to find conditions that 
preserve the delicate tertiary structure of the protein 
molecules whilst enabling the molecules to form a 
crystal lattice. The limiting factor is most often 
production of the pure protein sample required for the 
crystallization trials.  Thousands of crystallisation 
experiments may be carried out in a single structural 
biology laboratory every day. As crystal growth is 
time dependent, each experiment is observed over 
time, with the normal timespan being weeks to 

months.  Only since the turn of the century have 
robotic imagers become available, and these 
instruments automatically collect photographic 
images of a crystallisation trial over the course of the 
experiment.  As each trial is imaged over time, 
multiple images are collected of the same trial at 
different time points; a set of images that belong to a 
single trial is called a time-course.  

Currently, analysis and classification of the 
crystallisation image data are performed manually. 
As most crystallisation trials do not produce crystals, 
the process of manual observation and annotation is 
tedious, with numbers from the CSIRO C3 
crystallisation laboratory suggesting that less than 2% 
of the 10-20K images collected each day are 
annotated, and there is simply no way of estimating 
how many of the images have actually been 
examined. Automating the classification process may 
aid the goal of labelling all the images collected as 
individual frames, but also may well allow the 
assignment of a common label for a whole time-
course using sequence classification.  This would 
both save significant time and effort for 
crystallographers, as well as providing coverage for 
all the images produced. The final goal would be to 
be able to predict from the early images in a time- 
course what the eventual outcome might be.  

As significant numbers of crystallisation time- 
courses may be produced in a single laboratory (in its 
ten years of operation, the C3 has produced over 3 
million time-courses), a large number of interesting 
time-courses may get ignored due to lack of resources 
to analyse each one manually. Moreover, large 
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amounts of memory are also occupied by the huge 
datasets collected over time.  Even more compelling, 
crystallographers are interested in finding and 
interrogating crystals as soon as possible in order to 
minimise the time until a protein structure is 
available.  Thus, it is important to identify interesting 
conditions that produce crystals as early as possible.  

This paper focuses on the prediction of protein 
crystallisation trial image time-courses by developing 
sequence classification techniques. The next section 
provides a brief overview of related techniques. Our 
approach for the prediction of crystallisation sample 
time-courses is presented next, followed by the 
results obtained. The final section discusses our 
conclusions and potential future work. 

2 RELATED WORK 

Image processing on protein crystallisation trial 
images is a relatively unexplored research area. So far 
the experiments carried out on this data have focussed 
on classification of single frames without 
consideration of the time-course context of each 
image (Buchala and Wilson, 2008, Cumbaa and 
Jurisica, 2005, Kotseruba Y et al., 2012, Lekamge et 
al., 2013, Walker et al., 2007, Watts et al., 2008, 
Wilson and Wilson, 2006, Yang et al., 2006). 
Prediction of the final outcome of a protein 
crystallisation trial time-course is a new and 
orthogonal approach to the problem of classifying 
images of crystallisation trials. 

Random Forests has been used to predict the 
amino acids in a protein sequence that may be 
involved in mediating protein - protein interactions. 
Šikić et al (2009) used a combination of sliding 
windows and Random Forests to predict the protein - 
protein interaction sites in sequences. First the system 
classifies the data using the sliding windows method 
and then Random Forests is applied on a weighted 
class system for prediction of protein - protein 
interaction sites.  

Some techniques that have been used for sequence 
classification and prediction in machine learning 
include sliding windows (Babcock et al., 2002, Gama 
et al., 2013, Li et al., 2005) and Hidden Markov 
Models (Dietterich, 2002). Although these techniques 
provide good results for regular sequence learning 
problems, they can be challenging to apply to our data 
set as the time gap between frames in a single time-
course varies considerably.  

2.1 Contributions 

To our knowledge, predicting the outcome of protein 
x-ray crystallisation trial time-courses has not yet 
been studied. This paper provides a new tool  to the 
field of crystallography by proposing and testing a 
method for the prediction of the eventual outcome of 
a crystallisation trial. It utilizes pre-processing and 
single frame classification techniques already 
developed in our group (Lekamge et al., 2013, 
Lekamge et al., 2016, Mele et al., 2013), and extends 
them to time-course classification. 

3 APPROACH 

Processing of the protein crystallisation trial time- 
course is different from normal video processing. In 
a normal video, there are usually a large number of 
frames, whereas in the crystallisation dataset the 
number of frames is very small, varying between 9 
and 15 frames. Moreover, in a normal video, the 
frame rate is stable whereas in the crystallography 
data the time gap between the frames is variable and 
very large. An example of a protein crystallisation 
trial image time-course is presented in Table 1. 

The proposed method to predict time-course 
labels consists of several steps. First each image is 
pre-processed to find the area around the droplet and 
align each image according to the time-course. Next 
the difference images are obtained by obtaining the 
difference between the first image in a time-course 
and the rest. Then single frame classification is 
carried out using both original and difference images, 
and the results obtained from single frame 
classification are used for time-course label 
prediction. An overview of the approach is presented 
in Figure 1. This paper mainly concentrates on the last 
step, namely time-course prediction. 

3.1 Data 

The data for this work was acquired from C3 
(Collaborative Crystallisation Centre), CSIRO, 
Melbourne, Australia. Each image data set is the 
result of  observing crystallisation experiments over a 
period of time, from one hour to 10 weeks after the 
start of the experiment. The set of images belonging 
to one experiment is called a time-course (Table 1). 
The images are gray scale and each provides a 
snapshot of changes inside the experimental droplet 
at that point in time. 
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Table 1: A crystal producing time-course with time stamps. 
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3.2 Pre-processing and Frame 
Classification 

Images belonging to a time-course are first  arranged 
according to  acquisition time (step 2, Figure 1), and 
the area of the droplet (Figure 2) is identified using 
the droplIt algorithm (Vallotton et al., 2010). Then the 
difference images are computed (step 3, Figure 1). 
This has been  explained in more detail elsewhere 
(Mele et al., 2013). Next feature extraction (step 4, 
Figure 1) is carried out (Lekamge et al., 2013). 

After pre-processing, classification of single 
frames is carried out using multi-view learning, with 
random forests as the classifier for each view 
(Lekamge et al., 2016) (step 5, Figure 1) The MVL-
based algorithm for single frame classification will be 
termed as Crys_MVL_RF hereafter. 

 

Figure 1: System overview. 

 

Figure 2: Droplet in a well (a)Well area (b) Droplet area. 

3.3 Prediction of Time-course Labels 

To predict the final outcome of a protein 
crystallisation experiment, named time-course 
prediction hereinafter, the single frame classification 
results obtained using Crys_MVL_RF are used as the 
starting point. During single frame classification, 
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each image is labelled as belonging to one of the 
following classes: 

i. Crystal 
ii. Precipitation 

iii. Skin 
iv. Clear and  
v. Other 

Some examples of these classes are presented in 
Figure 3. 

 

Figure 3: Classification examples. The original and 
respective difference images (a) crystal (b) precipitation (c) 
skin and (d) clear (Lekamge et al., 2016). 

For the time-course prediction experiments, only 
four classes were used; the skin class was again re-
classified into one of the following classes. 

i. Crystal 
ii. Precipitation 

iii. Clear 
iv. Other 

Random Forests was used, along with the frame 
classification results, to predict the whole time-course 
label. The number of frames used in prediction was 
varied systematically and the corresponding 
prediction accuracies were computed.  The least 
number of frames required to make an accurate 
prediction of the final outcome of a protein crystal 
experiment was then picked out.  

The purpose of predicting the final outcome of a 

crystallography time-course is to identify at the 
earliest the experiments that are most likely to 
produce interesting results.  In turn this would allow 
discontinuation of those experiments that are unlikely 
to have interesting outcomes. The images produced 
by the experiments were grouped together into a 
dataset based on the protein sample, as the number of 
frames in a crystallography experiment depends on 
the settings chosen for imaging purposes, and these 
remain constant for a specific protein.  These datasets 
were obtained during separate experiment rounds. 

For each dataset, Random Forests was used as the 
prediction algorithm and the single frame results 
obtained using Crys_MVL_RF were reused as the 
input. The experiments were repeated for different 
numbers of training frames in each round per time-
course, and the prediction outcomes were computed 
in each round. The number of frames was increased 
by one in every iteration of these experiments.   

4 RESULTS 

The results are presented below on a per-protein 
basis, as that is the basis for grouping into a dataset. 

 

MA003389 Dataset: This dataset has 15 frames in 
each time-course, and at every round of training an 
extra frame was added to the training set until 14 
frames were used for training. The prediction of the 
final frame was recorded at each round. This dataset 
has 96 time-courses. For classification, Random 
Forests was used with 10 times 10-fold cross 
validation. The results obtained are illustrated in Fig. 
4 (blue line). 

From the results, it is clear that the prediction 
accuracy increases rapidly up to the eighth frame, 
thereafter the accuracy increases much more slowly 
and tails off after about 10 frames.  Therefore, the 
crystallographer could choose to terminate the 
experiments after 8-10 timeframes, depending on the 
urgency and need to conserve resources.   
 

MA100420 Dataset: This dataset has only 9 
frames in each time-course and at every round an 
extra frame was added to the training set until upto 8 
frames. The prediction of the final outcome was 
recorded for each round as before. This dataset also 
has 96 time-courses. Random Forests was used for 
prediction and the results obtained are illustrated in 
Fig. 4 (red line) 

On analysing the results, it can be seen that even 
though the prediction accuracy keeps increasing as 
expected, the highest prediction accuracy achieved is 
lower compared to the MA003389 dataset. It appears 
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that a total of 9 frames is insufficient and extending 
the crystallography experiments for a longer period of 
time might help. More experimental data is needed to 
verify the trend and evaluate the utility of extending 
the time period. 

 

MC006299 Dataset: This dataset has 14 frames in 
each time-course and in every round an extra frame 
was added to the training set until upto 13 frames, and 
the prediction of the final frame label was recorded 
for each round. This dataset has 192 time-courses. 
Random Forests was used again for these 
experiments. The results obtained for this dataset are 
illustrated in Fig. 4 (green line). 

On analysing the results for the MC006299 
dataset, it is clear that the prediction accuracy follows 
a similar pattern to MA003389, with the prediction 
accuracy increasing steadily until the eighth frame, 
then tailing off.  In this case, the recommendation to 
terminate the crystallography experiments after 8 
frames is very clear and easy to make. 
 

MC007204 Dataset: This dataset again has 14 
frames in each time-course and in every round an 
extra frame was added to the training set until up to 
13 frames, and the prediction of the final frame label 
was recorded for each iteration. This dataset has 192 
time-courses as well. Random Forests was used again 
in these experiments. The results obtained for this 
dataset are illustrated in Fig. 4 (yellow line). 

On analysing these results, it can be seen that the 
results obtained by this dataset are similar to both 
MA003389 and MC006299 datasets. The results also 
show a steady increase in prediction accuracy until 
the eighth round, then more modest increase. The 
choice to terminate after 8 frames is available, if 
desired.  

By analysing the results for all the datasets, it can 
be seen that the highest prediction accuracy obtained 
is 88.75%. However, this accuracy is attained only 
when all the frames before the final frame are used 
for training, and therefore is quite expensive. 

To estimate the minimum number of frames 
necessary for prediction of a time-course label, the 
best accuracy ratio per number of frames used is 
computed. The formula is presented below: ܲ݊݋݅ݐܿ݅݀݁ݎ	ݕܿܽݎݑܿܿܽ	݋݅ݐܽݎ {(݃݊݅݊݅ܽݎݐ	ݎ݋݂	݀݁ݏݑ	ݏ݁݉ܽݎ݂	݂݋	ݎܾ݁݉ݑ݊	/݀݁݊݅ܽݐܾ݋	ݕܿܽݎݑܿܿܽ	݊݋݅ݐܿ݅݀݁ݎ݌)	}=  (1) --݈ܾ݈݁ܽ݅ܽݒܽ	ݏ݁݉ܽݎ݂	݂݋	ݎܾ݁݉ݑ݊	݈ܽݐ݋ݐ∗

 

The prediction accuracy ratio was computed for 
all the datasets and is presented in Fig 5. 

On analysing the values and trends for the 
prediction accuracy ratio, it can be seen that except 
for the  dataset  MC006299  all the  datasets attain  the 

 

Figure 4: Prediction results for all datasets. 

 

Figure 5: Prediction accuracy ratio for all datasets. 

peak value of the prediction accuracy ratio on frame 
8, with the MC006299 dataset attaining its peak at 
frame 7. For dataset MA100420 (represented by the 
red line graph), the peak value is impossible to 
declare as it has only 8 frames per time-course.  

5 CONCLUSIONS 

By analysing the values of the prediction accuracy 
ratios, it is possible to declare that the best possible 
number of frames for prediction is 8 frames as the 
increase in prediction accuracy is relatively low after 
that, and in fact the crystallography experiments may 
be terminated after 8 frames. These results also co-
incide with the observations reported by Ng et al who  
observed the experiments carried out at the Oxford 
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site of the Structural Genomics Consortium (Ng et al., 
2016). More experiments can be carried out using 
different protein solutions to confirm the number of 
frames required to accurately predict the final 
outcome of a time-course in the future. Moreover, 
details about the protein solutions also can be used 
along with the frame labels in order to confirm the 
prediction accuracy. 
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