A Low Cost Wireless System to Monitor Plantar Pressure using Insole Sensor: Feasibility Approach

Renato Varoto, Gustavo Casagrande Oliveira, Adolfo Victor Freire de Lima, Matheus Missola Critter, Alberto Cliquet Jr.

Abstract

Plantar pressure analysis is an important strategy applied in clinical, orthopaedics, sports and rehabilitation studies. In this context, this work describes the development and application of wireless system to monitor plantar pressure. This system is composed by a data acquisition module based on low cost electronic instrumentation, high resolution insole flexible pressure sensor and Java application for data real-time visualization. To verify the feasibility and effectiveness of the system, workbench tests were realized and a healthy subject performed pilot trials based on static and dynamic activities on the biomechanics platform. According to the preliminary results, this system is effective to show the interaction between the foot and floor in static and dynamic conditions, presenting a measurement range of pressure of 0-300kPa and rapid response, among other features. Thus, this system is a feasible tool for quick and practical mapping of plantar pressure.

References

  1. Bellizzi, M., Rizzo, G., Bellizzi, G., Ranieri, M., Fanelli, M., Megna, G. and Procoli, U. (2011), Electronic baropodometry in patients affected by ocular torticollis, Strabismus, vol. 19, pp. 21-25.
  2. Castro, M. C. and Cliquet, A. Jr. (2000), Artificial sensorimotor integration in spinal cord injured subjects through neuromuscular and electrotactile stimulation, Artif Organs, vol. 24, pp. 710-717.
  3. Chapman, J. D., Preece, S., Braunstein, B., Höhne, A., Nester, C. J., Brueggemann, P. and Hutchins, S. (2013), Effect of rocker shoe design features on forefoot plantar pressures in people with and without diabetes, Clin Biomech, vol. 28, pp. 679-685.
  4. Crea, S., Donati, M., De Rossi, S. M., Oddo, C. M. and Vitiello, N. (2014), A wireless flexible sensorized insole for gait analysis, Sensors, vol. 14, pp. 1073- 1093.
  5. Flexiforce® Force Sensor Design & Integration Guide, Tekscan, Inc., 2015.
  6. Girard, O., Eicher, F., Micallef, J. P. and Millet, G. P. (2010), Plantar pressures in the tennis serve, J Sports Sci, vol. 28, pp. 873-880.
  7. Hills, A. P., Hennig, E. M., McDonald, M. and Bar-Or, O. (2001), Plantar pressure differences between obese and nonobese, Int J Obes Relat Metab Disord, vol. 25, pp. 1674-1679.
  8. Hsiao, H., Guan, J. and Weatherly, M. (2002), Accuracy and precision of two in-shoe pressure measurement systems, Ergonomics, vol. 2, pp. 537-555.
  9. Keijsers, N. (2013), The Science of Footwear, R. S. Goonetilleke, Ed. Boca Raton, USA: CRC Press.
  10. Kaercher, C. W., Genro, V. K., Souza, C. A., Alfonsin, M. Berton, G. and Filho J. S. C. (2011), Baropodometry on women suffering from chronic pelvic pain - a crosssectional study, BMC Womens Health, vol. 11.
  11. Kalamdani, A., Messom, C. and Siegel, M. (2006), Tactile sensing by the sole of the foot part II: calibration and real-time processing, Proceedings of 3rd International Conference on Autonomous Robots and Agents.
  12. Koch, M., Lunde, L. K., Ernst, M., Knardahl, S. and Veiersted, K. B. (2016), Validity and reliability of pressure-measurement insoles for vertical ground reaction force assessment in field situations, Applied Ergonomics, vol. 53, pp. 44-51.
  13. Ledoux, W. R., Shofer, J. B., Cowley, M. S., Ahroni, J. H., Cohen, V. and Boyko, E. J. (2013), Diabetic foot ulcer incidence in relation to plantar pressure magnitude and measurement location, J Diabetes Complications, vol. 27, pp. 621-626.
  14. McPoil, T.G., Cornwall, M.W. and Yamada, W. (1995), A comparison of two in-shoe plantar pressure measurement systems, Lower Extremity, vol. 2, pp. 95- 103.
  15. Medical Sensor 3000 data sheet, Tekscan, Inc., Boston, USA.
  16. Melvin, J. M. A., Preece, S., Nester, C. J., and Howard, D. (2014), An investigation into plantar pressure measurement protocols for footwear research, Gait Posture, vol. 40, pp. 682-687.
  17. Motha, L., Kim, J. and Kim, W. S. (2015) Instrumented rubber insole for plantar pressure sensing, Organic Electronics, vol. 23, pp. 82-86.
  18. Podoloff, R. M., Benjamin, M. H., Winters, J. and Golden, R. F. (1991), Flexible tactile sensor for measuring foot pressure distributions and for gaskets, U.S. Patent 5 033 291.
  19. Price, C., Parker, D. and Nester, N. (2016), Validity and repeatability of three in-shoe pressure measurement systems, Gait Posture, vol. 46, pp. 69-74.
  20. Robinson, C. C., Balbinot, L. F., Silva, M. F., Achaval, M. and Zaro, M. A. (2013), Plantar pressure distribution patterns of individuals with prediabetes in comparison with healthy individuals and individuals with diabetes, J Diabetes Sci Technol, vol. 7, pp. 1113 - 1121.
  21. Saito, M., Nakajima, K., Takano, C., Ohta, Y., Sugimoto, C., Ezoe, R., Sasaki, K., Hosaka, H., Ifukube, T., Ino, S. and Yamashita, K. (2011), An in-shoe device to measure plantar pressure during daily human activity, Med Eng Phys, vol. 33, pp. 638-645.
  22. Smith, B. T., Coiro, D. J., Finson, R., Betz, R. R. and McCarthy, J. (2002), Evaluation of force-sensing resistors for gait event detection to trigger electrical stimulation to improve walking in the child with cerebral palsy, IEEE Trans Neural Syst Rehabil Eng, vol. 10, pp. 22-29.
  23. Tan, A. M., Fuss, F. K., Weizman, Y., Woudstra, Y. and Troynikov, O. (2015), Design of low cost smart insole for real time measurement of plantar pressure, Procedia Technology, vol. 20, pp. 117-122.
  24. Test & Measurement - Impossible Insights Made Possible Through Minimally Invasive Force & Pressure Measurement, Tekscan, Inc., 2014.
  25. Woodburn J. and Helliwell, P. S. (1996), Observations on the F-Scan in-shoe pressure measuring system, Clin Biomech, vol. 11, pp. 301-304.
  26. Yaniger, S. I. (1991), Force sensing resistors: a review of the technology, Electro. Int., pp. 666-668.
Download


Paper Citation


in Harvard Style

Varoto R., Oliveira G., de Lima A., Critter M. and Cliquet Jr. A. (2017). A Low Cost Wireless System to Monitor Plantar Pressure using Insole Sensor: Feasibility Approach . In Proceedings of the 10th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 1: BIODEVICES, (BIOSTEC 2017) ISBN 978-989-758-216-5, pages 207-214. DOI: 10.5220/0006246402070214


in Bibtex Style

@conference{biodevices17,
author={Renato Varoto and Gustavo Casagrande Oliveira and Adolfo Victor Freire de Lima and Matheus Missola Critter and Alberto Cliquet Jr.},
title={A Low Cost Wireless System to Monitor Plantar Pressure using Insole Sensor: Feasibility Approach},
booktitle={Proceedings of the 10th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 1: BIODEVICES, (BIOSTEC 2017)},
year={2017},
pages={207-214},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006246402070214},
isbn={978-989-758-216-5},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 10th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 1: BIODEVICES, (BIOSTEC 2017)
TI - A Low Cost Wireless System to Monitor Plantar Pressure using Insole Sensor: Feasibility Approach
SN - 978-989-758-216-5
AU - Varoto R.
AU - Oliveira G.
AU - de Lima A.
AU - Critter M.
AU - Cliquet Jr. A.
PY - 2017
SP - 207
EP - 214
DO - 10.5220/0006246402070214