A Web- and Cloud- based Service for the Clinical Use of a CAD (Computer Aided Detection) System - Automated Detection of Lung Nodules in Thoracic CTs (Computed Tomographies)

M. E. Fantacci, A. Traverso, S. Bagnasco, C. Bracco, D. Campanella, G. Chiara, E. Lopez Torres, A. Manca, D. Regge, M. Saletta, M. Stasi, S. Vallero, L. Vassallo, P. Cerello

Abstract

M5L, a Web-based Computer-Aided Detection (CAD) system to automatically detect lung nodules in thoracic Computed Tomographies, is based on a multi-thread analysis by independent subsystems and the combination of their results. The validation on 1043 scans of 3 independent data-sets showed consistency across data-sets, with a sensitivity of about 80% in the 4-8 range of False Positives per scan, despite varying acquisition and reconstruction parameters and annotation criteria. To make M5L CAD available to users without hardware or software new installations and configuration, a Software as a Service (SaaS) approach was adopted. A web front-end handles the work (image upload, results notification and direct on-line annotation by radiologists) and the communication with the OpenNebula-based cloud infrastructure, that allocates virtual computing and storage resources. The exams uploaded through the web interface are anonymised and analysis is performed in an isolated and independent cloud environment. The average processing time for case is about 20 minutes and up to 14 cases can be processed in parallel. Preliminary results on the on-going clinical validation shows that the M5L CAD adds 20% more nodules originally overlooked by radiologists, allowing a remarkable increase of the overall detection sensitivity.

References

  1. Armato, S. G., Roberts, R. Y., Kocherginsky, M., et al. (2009). Assessment of radiologist performance in the detection of lung nodules: dependence on the definition of truth. Academic radiology, 16(1):28-38.
  2. Armato III, S. et al. (2011). The lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on CT scans. Medical Physics, 38(2):915-931.
  3. Bagnasco, S., Berzano, D., Brunetti, R., et al. (2014). Integrating multiple computing needs via a private cloud infrastructure. Journal of Physics: Conference Series, 513(032100).
  4. Beattie, E. J., Martini, N., Rosen, G., et al. (1975). The management of pulmonary metastases in children with osteogenic sarcoma with surgical resection combined with chemotherapy. Cancer, 35(3):618-621.
  5. Bellotti, R., Cerello, P., Tangaro, et al. (2007). Distributed medical images analysis on a grid infrastructure. Future Generation Computer Systems, 23(3):475-484.
  6. Berzano, D. (2014). github.com/dberzano/elastiq.
  7. Beyer, F., Zierott, L., Fallenberg, E., et al. (2007). Comparison of sensitivity and reading time for the use of computer-aided detection (CAD) of pulmonary nodules at MDCT as concurrent or second reader. European radiology, 17(11):2941-2947.
  8. Brochu, B., Beigelman-Aubry, C., Goldmard, J., et al. (2007). Evaluation de l'impact d'un systeme CAD sur la performance des radiologues pour la detection des nodules pulmonaires sur des examens scanographiques multicoupes du thorax. Journal de Radiologie, 88(4):573-578.
  9. Brown, M. S., Goldin, J. G., Rogers, S., et al. (2005). Computer-aided lung nodule detection in ct: Results of large-scale observer test1. Academic radiology, 12(6):681-686.
  10. Buncic, P., Aguado Sanchez, C., Blomer, J., et al. (2010). Cernvm-a virtual software appliance for LHC applications. In Journal of Physics: Conference Series, volume 219, page 042003. IOP Publishing.
  11. Camarlinghi, N., Gori, I., Retico, A., et al., (2012). Combination of computer-aided detection algorithms for automatic lung nodule identification. Int J CARS, 7:455-464.
  12. Cerello, P., Cheran, S. C., Bagagli, F., et al. (2008). The channeler ant model: object segmentation with virtual ant colonies. In 2008 IEEE Nuclear Science Symposium Conference Record, pages 3147-3152. IEEE.
  13. CERNVM (2015). http://cernvm.cern.ch/portal/ucernvm.
  14. Coombs, K. (2009). Drupal done right. Library journal, 134(19):30-32.
  15. Das, M., Muhlenbruch, G., Mahnken, A., et al. (2006). Small pulmonary nodules: Effect of two computeraided detection systems on radiologist performance 1. Radiology, 241(2):564-571.
  16. De Nunzio, G., Tommasi, E., Agrusti, et al. (2011). Automatic lung segmentation in ct images with accurate handling of the hilar region. Journal of digital imaging, 24(1):11-27.
  17. Goo, J. (2015). Computer-aided nodule detection and volumetry: role in lung cancer screening. European Congress of Radiology, Wien 4-8 March 2015.
  18. Li, Q., Sone, S., and Doi, K. (2003). Selective enhancement filters for nodules, vessels, and airway walls in twoand three-dimensional CT scans. Medical Physics, 30(8):2040-2051.
  19. Lopez Torres, E., Fiorina, E., Pennazio, et al. (2015). Large scale validation of the M5L lung CAD on heterogeneous CT datasets. Medical Physics, 42(4):1477-1489.
  20. Malvezzi, M., Bertuccio, P., Rosso, T., et al. (2015). European cancer mortality predictions for the year 2015: does lung cancer have the highest death rate in EU women? Annals of Oncology, 26(4):779-786.
  21. Mang, T., Peloschek, P., Plank, C., et al. (2007). Effect of computer-aided detection as a second reader in multidetector-row ct colonography. European radiology, 17(10):2598-2607.
  22. Matsumoto, S., Ohno, Y., Yamagata, H., et al. (2008). Computer-aided detection of lung nodules on multidetector row computed tomography using threedimensional analysis of nodule candidates and their surroundings. Radiation Medicine, 26(9):562-569.
  23. Mell, P. and Grance, T. (2011). The NIST definition of cloud computing. Milojicic, D., Llorente, I. M., and Montero, R. (2011). Opennebula: A cloud management tool. IEEE Internet Computing, (2):11-14.
  24. Moyer, V. (2014). Screening for lung cancer: Us preventive services task force recommendation statement. Annals of Internal Medicine, 160(5):330- 338.
  25. National Lung Screening Trial (2011). Reduced lungcancer mortality with low-dose computed tomographic screening. The New England Journal of Medicine, 365(5):395.
  26. Retico, A., Delogu, P., Fantacci, et al. (2008). Lung nodule detection in low-dose and thin-slice computed tomography. Computers in biology and medicine, 38(4):525-534.
  27. Retico, A., Fantacci, M., Gori, I., et al. (2009). Pleural nodule identification in low-dose and thin-slice lung computed tomography. Computers in Biology and Medicine, 39(12):1137-1144.
  28. Rosset, A., Spadola, L., and Ratib, O. (2004). OsiriX: an.
  29. DICOM images. Journal of Digital Imaging, 17(3):205- 216.
  30. Society, A. C. (2015). Cancer facts & figures. The Society.
  31. Tannenbaum, T., Wright, D., Miller, K., et al. (2001). Condor: a distributed job scheduler. In Beowulf cluster computing with Linux, pages 307-350. MIT press.
  32. Turner IV,W. P., PE, J., Seader, P., and Brill, K. (2006). Tier classification define site infrastructure performance. Uptime Institute, 17.
  33. van Ginneken, B., Armato, S. G., de Hoop, B., et al. (2010). Comparing and combining algorithms for computer-aided detection of pulmonary nodules in computed tomography scans: the anode09 study. Medical image analysis, 14(6):707-722.
Download


Paper Citation


in Harvard Style

Fantacci M., Traverso A., Bagnasco S., Bracco C., Campanella D., Chiara G., Torres E., Manca A., Regge D., Saletta M., Stasi M., Vallero S., Vassallo L. and Cerello P. (2017). A Web- and Cloud- based Service for the Clinical Use of a CAD (Computer Aided Detection) System - Automated Detection of Lung Nodules in Thoracic CTs (Computed Tomographies) . In Proceedings of the 10th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 3: BIOINFORMATICS, (BIOSTEC 2017) ISBN 978-989-758-214-1, pages 202-209. DOI: 10.5220/0006245402020209


in Bibtex Style

@conference{bioinformatics17,
author={M. E. Fantacci and A. Traverso and S. Bagnasco and C. Bracco and D. Campanella and G. Chiara and E. Lopez Torres and A. Manca and D. Regge and M. Saletta and M. Stasi and S. Vallero and L. Vassallo and P. Cerello},
title={A Web- and Cloud- based Service for the Clinical Use of a CAD (Computer Aided Detection) System - Automated Detection of Lung Nodules in Thoracic CTs (Computed Tomographies)},
booktitle={Proceedings of the 10th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 3: BIOINFORMATICS, (BIOSTEC 2017)},
year={2017},
pages={202-209},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006245402020209},
isbn={978-989-758-214-1},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 10th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 3: BIOINFORMATICS, (BIOSTEC 2017)
TI - A Web- and Cloud- based Service for the Clinical Use of a CAD (Computer Aided Detection) System - Automated Detection of Lung Nodules in Thoracic CTs (Computed Tomographies)
SN - 978-989-758-214-1
AU - Fantacci M.
AU - Traverso A.
AU - Bagnasco S.
AU - Bracco C.
AU - Campanella D.
AU - Chiara G.
AU - Torres E.
AU - Manca A.
AU - Regge D.
AU - Saletta M.
AU - Stasi M.
AU - Vallero S.
AU - Vassallo L.
AU - Cerello P.
PY - 2017
SP - 202
EP - 209
DO - 10.5220/0006245402020209