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Abstract: Manual measurement of mouse behavior is highly labor intensive and prone to error. This investigation aims 
to efficiently and accurately recognize individual mouse behaviors in action videos and continuous videos. In 
our system each mouse action video is expressed as the collection of a set of interest points. We extract both 
appearance and contextual features from the interest points collected from the training datasets, and then 
obtain two Gaussian Mixture Model (GMM) dictionaries for the visual and contextual features. The two 
GMM dictionaries are leveraged by our spatial-temporal stacked Fisher Vector (FV) to represent each mouse 
action video. A neural network is used to classify mouse action and finally applied to annotate continuous 
video. The novelty of our proposed approach is: (i) our method exploits contextual features from spatio-
temporal interest points, leading to enhanced performance, (ii) we encode contextual features and then fuse 
them with appearance features, and (iii) location information of a mouse is extracted from spatio-temporal 
interest points to support mouse behavior recognition. We evaluate our method against the database of Jhuang 
et al. (Jhuang et al., 2010) and the results show that our method outperforms several state-of-the-art 
approaches. 

1 INTRODUCTION 

Mice are extensively employed in biomedical science 
and their responses to disease or therapy are 
frequently detected by measurement of their behavior 
patterns. In most cases this monitoring is performed 
manually using video recordings. Recording of 
diverse behaviors of home-cage mice generates a 
large amount of information for researchers (Steele et 
al., 2007; Roughan et al., 2009) in pathology, 
psychology, ethology, neuroscience and medicine. 
However, manual annotation of mouse recordings is 
a highly labor intensive process which is error-prone 
and subject to individual interpretation. Furthermore, 
human observers may fail to detect behavioral events 
that are very quick or too slow, and humans may miss 
events because of dwindling attention span. 

In the literature some systems which automatical-
ly recognize animal behaviors have been described. 
For instance, Rousseau et al. (Rousseau et al., 2000) 
were the first to show that the detection of specific 
behaviors was possible. They applied neural network 

techniques to recognize 9 solitary rat behaviors from 
body shape and position, recorded from the side-
view. However, their method of tracking the nose is 
not sufficiently developed to draw conclusions 
concerning its sensitivity and reliability. In 2005 
Dollár et al. (Dollár et al., 2005) recognized mouse 
behavior using the classification of sparse spatio-
temporal features. However, they only considered 
visual features of the interest points (e.g. image 
gradient) without the contextual information such as 
the spatial relationship between different interest 
points. In 2010 Jhuang et al. (Jhuang et al., 2010) used 
background subtraction to get a subwindow of the 
mouse in each frame from the side-view. From the 
mouse subwindow, the features that they used were 
generated based on a computational model of motion 
processing in the human brain (Jhuang et al., 2007), 
followed by classification using a Hidden Markov 
Model Support Vector Machine (SVMHMM). Their 
method to locate the mouse is dependent on a good 
background model, which it turns out can be 
problematic. Recently, Burgos-Artizzu et al. (Burgos-
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Artizzu et al., 2012) created a system for recognizing 
the social behavior of mice, both from the top and side 
views. They applied AdaBoost with spatio-temporal 
and trajectory features to classify mouse behaviors. 
As with the method of Dollár et al. (Dollár et al., 
2005), this method also ignored the spatio-temporal 
contextual features. Furthermore, their trajectory 
features are based on a tracking algorithm which was 
not detailed in their paper.  

A common feature of all of the above studies is 
that the location information of mice is computed by 
tracking (Rousseau et al., 2000); (Burgos-Artizzu et 
al., 2012) or detection (Jhuang et al., 2007) 
algorithms. Also, their extracted features are derived 
from studies of human behavior recognition, such as 
spatio-temporal, trajectory and shape features. Low-
level local features have become popular in action 
recognition due to their robustness to background 
noise and independence of the detection and tracking 
algorithms. Among these local features, spatio-
temporal interest points (Dollár et al., 2005); (Laptev, 
2005) and Improved Dense Trajectories (IDT) (Wang 
and Schmid, 2013); (Wang et al., 2015) are widely 
used because of their ease of use and good 
performance. Spatio-temporal interest points are used 
by some systems (Dollár et al., 2005); (Laptev, 2005) 
to extract visual features around interest points, but 
contextual features also imply a large amount of 
information about spatial location and temporal 
changes of the mouse. 

In our system, we propose to exploit contextual 
features of interest points, which also potentially 
describe mouse location without using an 

independent tracking or detecting algorithm. These 
features are then encoded as spatial-temporal stacked 
Fisher vectors which are the input to the neural 
network. The main contributions of this study are:  

1. We improve upon the performance of Dollar’s 
interest point detector especially under illumine-
tion using frame differencing and Laplacian of 
Gaussian filtering. 

2. We explore new contextual features from the 
spatio-temporal interest points for behavior 
recognition. It is the first attempt to encode this 
contextual feature rather than simply concatenate 
them after appearance features like (Jhuang et al., 
2010), (Burgos-Artizzu et al., 2012) and (Laptev, 
2005). Our contextual features are an important 
feature which can characterize both spatial loca-
tion and temporal changes in mice. We compute 
the absolute and relative positions of each interest 
point and then concatenate them to form the 
contextual features. 

3. We compute spatial-temporal stacked Fisher 
vectors for both contextual and visual features that 
help improve behavior recognition accuracy. We 
generate two GMM dictionaries for contextu-al 
and visual features respectively and then compute 
spatial-temporal stacked Fisher vectors for each of 
them. 

4. We conduct a comprehensive evaluation of the 
proposed algorithm, and compare it with several 
state-of-the-art techniques. 

 

 
Figure 1: The proposed framework.

ICPRAM 2017 - 6th International Conference on Pattern Recognition Applications and Methods

260



2 FRAMEWORK OF OUR 
APPROACH 

As shown in Fig. 1 the pipeline for our method 
consists of five steps: (i) detection of interest points, 
(ii) description of interest points, (iii) generation of 
two Gaussian Mixture Model (GMM) dictionaries, 
(iv) feature encoding with spatial-temporal stacked 
Fisher vector (FV), and (v) classification with a 
neural network (NN). In the following sections, we 
will describe each step in more detail. 

2.1 Detection of Interest Points 

Interest points are local spatio-temporal features 
considered to be salient or characteristic of the action 
captured in a 3D spatio-temporal volume (see Fig. 2). 
Spatio-temporal interest points are those points where 
the local neighborhood has a significant variation in 
both the spatial and the temporal domains. Laptev 
(Laptev, 2005) extended the 2D Harris corner 
detector to 3D. However the main drawback of this 
method is the relatively small number of stable 
interest points. Willems et al. (Willems et al., 2008) 
identify saliency as the determinant of a 3D Hessian 
matrix, which is faster and denser than Harris 3D but 
less dense than Dollar’s detector. Another trend is to 
use dense sampling (Wang and Schmid, 2013), which 
extracts video blocks at regular positions and scales 
in space and time. Obviously dense sampling is able 
to produce many more interest points than the above 
detector. However, it is more difficult to ensure that 
all interest points are on the object. Among various 
interest point detection methods, the one proposed by 
Dollar et al. (Dollár et al., 2005) is perhaps the most 
suitable for mouse action recognition. They calculate 
a response function to locate interest points. Their 
response function has the form: 

ࡾ ൌ ሺࡵ ∗ ࢍ ∗ ሻሻ૛࢚ሺ࢜ࢋࢎ ൅ ሺࡵ	 ∗ ࢍ	 ∗ ሻሻ૛ (1)࢚ሺࢊ࢕ࢎ

  

Figure 2: Some examples of detected interest points 
(depicted by red dots) in a 3D spatio-temporal volume. 

 

 
Figure 3: Comparison between interest points detected 
using our detector (bottom) and the Dollar detector (top) 
under illumination change. 

where g is the 2D Gaussian smoothing kernel which 
is applied only along the spatial dimensions, and ࢜ࢋࢎ 
and ࢊ࢕ࢎ are a quadrature pair of 1D Gabor filters 
applied temporally, defined as: ࢜ࢋࢎሺ࢚; ,࣎ ሻ࢝ ൌ
െ࢙࢕ࢉሺ૛࢚࢝࣊ሻ࢚ିࢋ

૛/࣎૛ , and ࢊ࢕ࢎሺ࢚; ,࣎ ሻ࢝ ൌ
െ࢔࢏࢙ሺ૛࢚࢝࣊ሻ࢚ିࢋ

૛/࣎૛. 
Despite this method’s popularity, since it uses 

solely local information within a small region, it is 
prone to false detection under illumination variation; 
it also tends to generate spurious interest points 
around highly textured background areas. Some 
drawbacks are highlighted in the examples in Fig. 3. 

To overcome these shortcomings, we propose 
here a different interest point detector. In particular, 
although the 1-D Gabor filter applied in the temporal 
domain is effective for capturing the dynamics of 
actions, it is sensitive to both illumination and highly 
textured background. To overcome this problem, the 
proposed detector explores different filters for 
detecting salient spatio-temporal interest points. 
More specifically, our detector consists of two steps: 
1) Laplacian of the Gaussian filtering in the spatial 
domain replacing single Gaussian in Dollar et al. 
(Dollár et al., 2005) for reducing the influence of 
illumination and 2) frame differencing for eliminating 
spurious interest points on the background. This two-
step approach facilitates saliency detection in both the 
temporal and spatial domains to give a combined 
filter response. Hence our response function has the 
form: 

ࡾ ൌ ሺࡵ ∗ ࢍ ∗ ࡸ ∗ ሻሻ૛࢚ሺ࢜ࢋࢎ ൅ ሺࡵ	 ∗ ࢍ	 ∗ ࡸ ∗ ሻሻ૛࢚ሺࢊ࢕ࢎ

(2)
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in which L is the operator of Laplace used on the 
space. Due to introduction of the Laplace operator, 
our interest points detector can effectively reduce the 
influence of illumination, followed by frame 
differencing for ensuring all interest points are on the 
mouse. Fig. 3 also shows that, under the same 
illumination change, our detector can extract more 
precise interest points on the mouse. 

2.2 Contextual and Visual Features 

2.2.1 Spatio-temporal Contextual Feature 
Extraction 

Most existing mouse behavior recognition systems 
(Jhuang et al., 2010; Rousseau et al., 2000; Burgos-
Artizzu et al., 2012) extract position features from 
established trackers. However these tracking 
algorithms do not seem to be very reliable. For 
example, Jhuang et al. (Jhuang et al., 2010) used 
background subtraction to get a subwindow of the 
mouse in each frame, but their foreground detection 
algorithm assumes the background is constant, which 
cannot be guaranteed in a real experiment. Besides, 
trajectory features extracted by Burgos-Artizzu et al. 
(Burgos-Artizzu et al., 2012) are from their 
undetailed tracking algorithm, and the mouse nose 
tracking algorithm applied by Rousseau et al. 
(Rousseau et al., 2000) seems insensitive and 
unreliable. Unlike their approach, we propose a novel 
method to extract contextual information from the 
detected interest points, which also imply the location 
of the mouse without using any extra mouse tracking 
or detection algorithm. 

Our spatio-temporal contextual information of 
interest points is an important action representation, 
because they characterize both spatial location and 
temporal changes of the mouse. There are two types 
of features that are computed: the relative position, 
and absolute spatial position of interest points. The 
position of each interest point in the 3D spatio-
temporal volume is represented by its XYT 
coordinates. Fig. 2 intuitively shows the distribution 
of interest points. Suppose there are R interest points 
detected in an action video. In order to compute 
relative positions, we firstly compute a center interest 

point defined by: ሾࢉࢄ; ;ࢉࢅ ሿࢉࢀ ൌ
૚

ࡾ
∗ ∑ ሾ࢏ࢄ; ;࢏ࢅ ሿ࢏ࢀ

ࡾ
ୀ૚࢏ , 

where ሾࢉࢄ; ;ࢉࢅ ሿࢉࢀ and ሾ࢏ࢄ; ;࢏ࢅ ሿ࢏ࢀ  represent the 
coordinates of the center and the ith interest point 
respectively in an action video. Consequently, the 
relative position of interest points is represented by 
the coordinates of R interest points relative to the 
center interest point: ࢏ࡼ ൌ ሾ࢏ࢄ െ ࢏ࢅ	;ࢉࢄ െ	;ࢉࢅ	࢏ࢀ െ
,ሿࢉࢀ ࢏ ൌ ૚, ૛,… ,  .ࡾ

Using relative position efficiently describes the 
distribution in the 3D spatio-temporal volume, 
because it concentrates on different behavior patterns 
while ignoring outliers. The absolute spatial position 
of each interest point is able to characterize the place 
where the action happens (which can be important for 
location-based behaviors such as drinking). To 
capture this information, we concatenate the XY 
coordinates to the relative position. Overall, the 
contextual feature vector has the form: ࢏ࡲ ൌ ሾ࢏ࢄ െ
࢏ࢅ	;ࢉࢄ െ	;ࢉࢅ	࢏ࢀ െ ;	࢏ࢄ	;ࢉࢀ ,ሿ࢏ࢅ	 ࢏ ൌ ૚, ૛,… ,  .ࡾ

2.2.2 Spatio-temporal Visual Feature 
Extraction 

After detecting the interest points, we extract the 
visual features (see Fig. 4) from the cuboids around 
the interest points in the 3D spatio-temporal volume. 
For simplicity, we extract the brightness gradients 
with three channels (G_x, G_y, G_t) from each 
cuboid and flatten the cuboid into a vector as (Dollár 
et al., 2005). To eliminate noise and retain some 
principle information, Principle Component Analysis 
(PCA) is used to reduce the dimensionality of the 
visual feature vector. 

2.3 Generation of GMM Dictionaries 
for Contextual and Visual Features 

The aim of dictionary generation is to describe the 
local feature space and provide a partition for local 
descriptors (Peng et al. 2014). In some existing mouse 
behavior systems (Dollár et al., 2005; Burgos-Artizzu 
et al., 2012), a mouse action is modeled as a bag of 
independent and unordered visual words; however, 
the spatio-temporal contextual information of interest 
points is ignored. In these approaches, the k-means 
clustering algorithm is used to construct the 
dictionary. In our work, instead of k-means, we use 
Gaussian Mixture Model (GMM), which is a 
probabilistic model to characterize the distribution of 
the given feature space.  

For each type of dictionary, we suppose a K-
component GMM, and each Gaussian k has the form 
(Perronnin et al. 2010): 

࢑࢛ ൌ
૚

ඥሺ૛࣊ሻ࢑ࢳ|ࡰ|
࢖࢞ࢋ ൜െ

૚
૛
ሺ࢞ െ		࢑ࣆሻ࢑ࢳ܂

ି૚ሺ࢞ െ  ሻൠ࢑ࣆ

(3)

where	࢑ࣆ 	and	࢑ࢳ 	are	 the	 D	 dimension	 of	 mean	
vector	 and	 diagonal	 covariance	 matrix	
respectively,	࢑ ൌ ૚, ૛, … 	be	can	GMM	the	Then	.ࡷ,
defined	as:	
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;࢞ሺ࢖ ሻࣂ ൌ෍࣓࢑࢛࢑ሺ࢞; ,࢑ࣆ ሻ࢑ࢳ
ࡷ

ୀ૚࢑

	 (4)

where ࣂ ൌ ሼ࣓࢑, ,࢑ࣆ ,࢑ࢳ ܓ ൌ ૚,… , ۹ሽ ࢑࣓ , is the 
mixture weight of Gaussian ࢑࢛  and subject to 
࢑࣓:࢑∀ ൒ ૙,∑ ࢑࣓ ൌ ૚ࡷ

ୀ૚࢑ .  

Given the feature set ܆ ൌ ሼ࢞૚,… ,  ሽ, we applyࡹ࢞
the Expectation-Maximization (EM) algorithm to 
optimize parameters of GMM, which is learned 
through maximum likelihood (Bishop, 2006).  

There are two benefits in our approach with two 
dictionaries: (1) The two dictionaries consider both 
contextual and visual features of interest points. (2) 
Unlike k-means, GMM delivers not only the mean 
information of code words, but also the shape of their 
distribution. 

2.4 Feature Encoding and Fusion 

Feature encoding aims to leverage the dictionary to 
integrate all local descriptors into a feature vector, 
which can ensure all video clips have the same 
dimension of feature vector, and efficiently improve 
classification performance. Although feature enco-
ding and fusion are very important procedures in 
mouse action recognition, related papers discussing 
this are rare. For example, (Dollár et al., 2005) and 
(Laptev, 2005) only use the traditional encoding 
method of Vector Quantization. For feature fusion, 
some existing mouse behavior recognition systems 
(Jhuang et al., 2010; Rousseau et al., 2000; Burgos-
Artizzu et al., 2012) simply append positional featu-
res after appearance features without encoding. In our 
opinion, appearance features and contextual features 
are two different kinds of feature and vary in value 
range. So it is more reasonable to encode them 
separately. In recent evaluations (Peng et al., 2014; 
Chatfield et al., 2011; Wang et al., 2009), the Fisher 
Vector performs consistently better than bag of 
features, where it is popular to encode features for 
both image and video classification. We also apply 
this encoding method and show that it can improve 
the performance of our features as well (see section 
4.1). Unlike bag of features, Fisher Vector leverages 
GMM as its dictionary for encoding more information 
than the mean of code words. It calculates the 
gradient of the log-likelihood with respect to a 
parameter of GMM, which can describe how that 
parameter contributes to the process of generating a 
particular example (Perronnin et al. 2010). Let 
ܺ ൌ ሼݔ௡, n ൌ 1…ܰሽ be the set of N descriptors of 
interest points in an action video. Then this video can 
be represented by the gradient vector of log likelihood 
(Jaakkola et al. 1999): 
 

ࣂࡳ
ࢄ ൌ

૚
ࡺ
સ࢖ࢍ࢕࢒ࣂሺࢄ; ሻ (5)ࣂ

where ݌ሺܺ; ሻߠ ൌ ∏ ;௡ݔሺ݌ ሻேߠ
௡ୀଵ  and ߠ  is the 

parameter of this function. This is a generative model 
to characterize an action video with a gradient vector 
derived from a probability density function. On the 
basis of this generative model, Perronnin et al. 
(Perronnin et al. 2010) introduced the GMM to replace 
the probability density function ݌ሺݔ௡; ሻߠ  and 
developed an improved Fisher vector as follows: 

ऑ࢑,ࣆ
ࢄ ൌ

૚

࢑ඥ࣓ࡺ

෍࢔ࢵሺ࢑ሻ ൬
࢔࢞ െ ࢑ࣆ
࢑࣌

൰

ࡺ

ୀ૚࢔

 (6)

ऑ࢑,࣌
ࢄ ൌ

૚

ඥ߱௞ࡺ
෍࢔ࢵሺ࢑ሻሾ

ሺ࢔࢞ െ ሻ૛࢑ࣆ

࢑࣌
૛ െ ૚ሿ

ࡺ

ୀ૚࢔

(7)

where ߪ௞
ଶ  has D dimensions and represents the 

diagonal covariance matrices, i.e. the diagonal of ࢑ࢳ. 
In other words, ऑ࢑,ࣆ

ࢄ  and ऑ࢑,࣌
ࢄ  are the D-dimensional 

gradients with respect to the mean ࢑ࣆ and standard 
deviation ࢑࣌ of Gaussian k. Eqs. (6) and (7) are the 
mathematical derivations of Eq. (4) replacing the 
;௡ݔሺ݌  ሻ is the weight࢑ሺ࢔ࢵ ,ሻ of GMM. In additionߠ
of ݔ௡to the kth Gaussian: 

ሻ࢑ሺ࢔ࢵ ൌ
;࢔࢞ሺ࢑࢛࢑࣓ ,࢑ࣆ ሻ࢑ࢳ

∑ ;࢔࢞ሺ࢑࢛࢑࣓ ,࢑ࣆ ࡷሻ࢑ࢳ
ୀ૚࢑

 (8)

If we suppose there are K Gaussians and D 
dimensions of a descriptor after performing PCA in 
our system, then the Fisher vector is the concatenation 
of ऑ࢑,ࣆ

ࢄ  and ऑ࢑,࣌
ࢄ  with a total of 2KD vector 

dimensions, which describes how the parameters of 
the generative model ݌ሺܺ;  ሻ should be modified toߠ
better fit the data X.  

 

Figure 4: Spatial-temporal stacking. 

In our approach, as mentioned in section 2.2, we have 
two GMM dictionaries, one for visual and the other 
for contextual features, so we can compute two Fisher 
vectors for both of them. Note that local sum-pooling, 
which is in the form of (6) and (7), is agnostic to the 
relative location of aggregated features. To capture 
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the spatial-temporal structure within each feature’s 
neighborhood, inspired by spatial stacking of 
(Simonyan et al., 2013), we incorporate the stacking 
sub-layer, which concatenates the spatial-temporal 
adjacent features in the 2*2*2 cuboid which 
encompasses all the detected interest points (Fig. 4). 
After normalizing these spatial-temporal stacked 
Fisher vector by power and L2 normalization, we fuse 
contextual and appearance Fisher vectors to give the 
input to the classifier. In particular, contextual and 
appearance are complementary features, and they 
jointly boost the performance of the classifier (see 
Section 4.2). 

2.5 Classification with a Neural 
Network 

In our study, the fusion FV of contextual and visual 
features is the final feature vector which needs to be 
classified. Although FV are designed to work well 
with a linear classifier (because they correspond to 
the explicit feature map of the Fisher Kernel), we still 
wanted to understand whether FV classification could 
be improved with non-linear classifiers. Perronnin et 
al. (Perronnin et al., 2015) recently gave a positive 
answer for image classification. In our experiment, 
we also apply a non-linear classifier and find that a 
combination of neural networks and Fisher vectors 
can give better results than the conventional 
combination of Fisher vector and linear support 
vector machine (SVM). In our approach, a feed-
forward neural network was constructed with two 
layers of sigmoid hidden neurons and softmax output 
neurons. The feed-forward neural network allows the 
one-way transmission of the data from input to 
output. The hidden layer was fed with the fused and 
normalized Fisher Vector of contextual and visual 
features. In each layer, the input is weighted and 
transformed by an activation function (sigmoid in the 
hidden layer and softmax in the output layer) and is 
then passed to the neurons in the next layer.  

3 EXPERIMENTAL SETUP 

3.1 Benchmark Experiment 

To quantify the improvement obtained by our spatio-
temporal visual and contextual features, we compared 
our method first to the state-of-the-art approach using 
Trajectory Features proposed by Wang et al. (Wang 
et al. 2015), because it has been a popular action 
representation in recent years, albeit for human 
behaviors. 

3.1.1 Spatio-temporal Visual and 
Contextual Features 

The interest point detector used in this experiment 
was proposed by Dollar et al. (Dollár et al., 2005). For 
parameter setting, the spatial and temporal scale 
parameters σ and τ are empirically set to 2 and 3, 
respectively. After detecting the interest points, we 
extract XYT relative and absolute locations of each 
interest point. Afterwards we construct a visual 
feature vector using brightness gradients from 
cuboids, which are centered on the interest points and 
have default size 13*13*19. To eliminate noise and 
retain some principle information, Principle 
Component Analysis (PCA) is then used to reduce the 
dimensionality of visual feature vector by preserving 
98% of the energy. 

3.1.2 Trajectory Features 

Improved Dense Trajectories (IDT) (Wang et al., 
2015) is another widely used local feature. This 
approach densely samples points in each frame.  
Tracking points are achieved using optical flow. We 
used the default trajectory length of 15 frames. For 
each trajectory, we computed descriptors of 
Trajectory, HOG, HOF and MBH (Wang et al., 
2013). The Trajectory descriptor describes its shape 
by a sequence of displacement vectors. The other 
descriptors are computed in the spatio-temporal volu-
me aligned with the trajectory. HOG represents the 
static appearance information by the orientation of 
image gradients. Both HOF and MBH measure mo-
tion information, and are based on optical flow. HOF 
directly quantizes the orientation of flow vectors. 
MBH quantizes the derivatives by splitting the optical 
flow into horizontal and vertical components. The 
final dimensions of the descriptors are 30 for Traje-
ctory, 96 for HOG, 108 for HOF and 192 for MBH. 

3.2 Feature Encoding and 
Classification 

To encode features, we compared bag of features and 
Fisher vector. We used 1500 randomly sampled 
features with k-means to train a codebook for each 
descriptor type including HOG, HOF, MBH, spatio-
temporal visual and contextual features. The size of 
the codebook is set to K=50. Unlike bag of features, 
Fisher vector (Perronnin et al. 2010) encodes both 
first and second order statistics between the video 
descriptors and a Gaussian Mixture Model (GMM). 
In order to estimate the GMM for each descriptor, we 
randomly sample 1500 features from the training set 
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and set the number of Gaussians to K=20. Each 
descriptor type has 2KD dimensional Fisher vector as 
described in (Perronnin et al. 2010). To normalize a 
Fisher vector, we apply power and L2 normalization 
as in (Perronnin et al. 2010). Finally we concatenate 
normalized Fisher vectors of different descriptor 
types and compare the performance of different 
combinations of them. 

For classification, we use neural network (NN), 
linear SVM, radial basis function SVM and K-nearest 
neighbor (kNN) for comparing the performance of the 
trajectory features with our spatio-temporal features. 
For parameter settings of each classification method, 
we fix the number of hidden nodes in NN to 100, use 
a one-against-the-rest strategy for designing multi-
class classification of SVM and set K=1 in kNN. For 
the other parameters, we follow the default setup in 
Matlab. After the experiments, we choose the best 
results as the evidence of the comparison and 
analysis. In all experiments we divided all datasets 
into two parts: half is used for training and half for 
testing. Additionally, to evaluate our system on 
continuous videos, we used leave-one-out procedure 
on a frame-by-frame comparison with human ground 
truth. During the leave-one-out procedure, all except 
one video are used to train a neural network and the 
trained neural network was used to test the one 
remaining video. The procedure is repeated n times 
for all videos and the average performance is reported. 

3.3 Datasets 

The Jhuang database (Jhuang et al., 2010) was used 
for our experimental test. The first type of database 
called the ‘clipped database’ contains 4200 clips in 
which only the best instances of specific behaviors 
are included. This dataset is the largest of the current 
publicly available datasets.  It consists of eight mouse 
behavior classes: rear (399 cases), groom (1477), eat 
(374), drink (61), hang (521), rest (868), walk (233) 
and head (180). Each clip records a single mouse 
from a side-view camera. The second database 
denoted as the ‘full database’ involves 12 frame-by-
frame labeled videos lasting over 10 hours in total. In 
order to make the recognition system more robust 
during the training process, they varied the camera 
angles and lighting conditions. They also used many 
mice of different size, gender, and coat color in 
experiments. In this paper, experiments of 4.1, 4.2, 
4.3 and 4.4 are measured on the ‘clipped database’ 
using a half-by-half cross-validation procedure. The 
‘full database’ is used to train and test our system 
evaluated by a leave-one-out strategy in the last 
experiment. 

4 EXPERIMENTAL RESULTS 

4.1 Comparison with Trajectory 
Features 

In this section, we evaluated the performance of our 
visual features (VF) and contextual features (CF) 
using different feature encoding methods, compared 
with the state-of-the-art IDT features approach.  
Table 1 compares the final performance of the 
different features. In Table 1, we can observe that the 
combined features have better accuracy than just one. 
However, for IDT features, trajectory shapes seem 
not to be suitable for mouse behavior recognition. The 
reason may be that differences between behaviors can 
be subtle, and the trajectory shape may not give 
enough fine detail. The results also show that IDT 
features without trajectory shapes have better 
performance than with trajectory shapes (93.4% vs 
92.6%). Furthermore, a Fisher vector representation 
always results in a better performance than bag of 
features for each type of feature and combined 
features. Taking all the results together it is clear that 
visual features and contextual features give best 
results and their combination provides the best overall 
accuracy (95.9% compared with 93.4% for IDT 
features. 

Table 1: Comparison of the performance (accuracy %) of 
IDT features and spatio-temporal features. 

Features      BOF+NN     FV+linear SVM        FV+NN 

 
IDT 
Trajectory 69.1%  73.6%  73.3% 
HOG  84.8%  91.6%  91.9% 
HOF  77.2%  83.2%  84.9% 
MBH  79.3%  87.9%  89.5% 
Combined  
with trajectory 85.5%  91.9%  92.6% 
Combined  
without  
trajectory  88.5%  92.3%  93.4%

 
Spatio-temporal  
Visual features  87.3%  91.4%  91.3% 
Contextual  
features   89.4%  92.2%  93.0% 
Combined 93.1%  95.4%  95.9% 
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4.2 Evaluation of Spatio-temporal 
Visual and Contextual Features on 
Specific Behaviors 

Table 2 compares the performance of spatio-temporal 
visual and contextual features for specific behaviors. 
This experiment is tested on the same feature 
encoding and classification (FV+NN). In Table 2, we 
see that, except for “walk”, “head” and “groom”, the 
contextual features seem to result in better accuracy. 
The possible explanation is that the contextual 
features are more effective for distinguishing 
behaviors which are more localized, such as “eat”, 
“drink”, “rear” and “hang”. These often happen near 
the feeder, tube, wall and ceiling respectively. 
Although the interest points of “groom”, “walk”, 
“rest”, “groom” and “head” can happen at any place 
except the ceiling, each behavior has a particular 
distribution in both the spatial and temporal domains. 
So this contextual distribution can also contain 
evidence to help distinguish behaviors. However in 
the ROC curve (see Fig. 6) of contextual features, the 
performance for “head” is obviously worse than for 
other behaviors.  “Head” is easily confused with 
similar spatio-temporal contextual and visual 
information. The small proportion of “drink” in the 

dataset also influences the final accuracy; it is 
reasonable to suppose that if we had more “drink” 
action videos for training (see section 4.4), the 
accuracy would be greatly improved. We also note 
that the combined features are able to achieve 
significantly higher accuracy for each behavior than 
either the contextual and visual features on their own. 
Fig. 5 shows the confusion matrix for the combined 
features for more detail. 

Table 2: Comparison of the performance (accuracy %) of 
visual features, contextual features and their combination. 

Action visual     contextual     combined 
         features           features       features 

rear  83.1%  84.0%        94.9% 
groom    96.2%  96.2%                  97.4% 
eat      76.8%  87.5%                  95.7% 
drink 56.3%  84.8%                   72.4% 
hang      93.6%  96.3%                   97.6% 
rest      98.8%  99.1%                   99.5% 
walk      98.2%  96.5%                   98.3% 
head      64.5%  61.5%                   69.8% 
all      91.3%  93.0%        95.9% 
 

 

Figure 5: The confusion matrix for the combination of visual and contextual features. The diagonal cells show the number 
and percentage of correct classifications. The non-diagonal cells contain the number and percentage of incorrectly classified 
behaviors. The proportion of each actual behavior that were correctly or incorrectly predicted is shown in the bottom row. 
The proportion of each predicted behavior that were correct or incorrect is shown in the rightmost column. Overall, the 
proportion of correct predictions is shown in the bottom right corner. 
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Figure 6: The ROC curve of visual features visual features, 
contextual features and their combination. 

4.3 Evaluation of Classification 

In this section we compare our combined spatio-
temporal (ST) features with combined IDT features 
using different encoding methods and classifiers. 
Table 3 shows that our combined ST features always 
outperform the IDT features using different 
combinations of encoding methods and classifiers. 
The table also shows that the combination of FV and 
NN or linear SVM appears to achieve higher accuracy 
for both combined IDT features and combined ST 
features. Moreover, the combination of FV+NN, 
FV+linear SVM and BOF+NN have better results 
than the others. The results also suggest that the 
performance of FV+NN is a little better than 
FV+linear SVM which is used to classify IDT 
features in (Wang et al. 2015). Typically the selection 
of the SVM kernel is based on experience. 

Table 3: Comparison of results (accuracy %) using different 
encoding methods and classifiers. 

Classification IDT   IDT         our ST  
  (no trajectory) (with trajectory)   

 
FV + NN 93.4%  92.6%  95.9% 
FV +  
linear SVM 92.3%  91.9%  95.4% 
FV +  
RBF SVM 90.7%  88.6%  91.1% 
BOF+NN 88.5%  85.5%  93.1% 
BOF+kNN 79.4%  78.4%  90.9% 
BOF+ 
linear SVM 87.1%  86.8%  92.4% 
BOF +  
RBF SVM 85.9%  84.7%  92.7% 

However, NN seems to be more robust to different 
encoding methods, because regardless of the features 
and encoding method used in our experiment the NN 
generally outperforms the other classifiers. 

4.4 Comparison with State-of-the-art 

In this section we compare our method to the method 
proposed by Dollar et al. (Dollár et al., 2005) and 
Wang et al. (Wang et al. 2015) for each specific 
mouse behavior. We use the same validation strategy 
(half-by-half) for each state-of-the art method and 
compare the results in Table 4. Interestingly, all 
methods, including ours, struggle to recognize “drink” 
and “head”. In particular, the method proposed by 
(Wang et al. 2015) achieves very low accuracy (5%). 
The most likely reason is that “drink” and “head” 
have only a small proportion of the training set (1.5% 
and 4.3% respectively). We also see that the 
trajectory features including trajectory shapes and 
descriptors used by (Wang et al. 2015) cannot 
correctly represent “drink” behavior, because their 
interest points detecting method (Improving Dense 
trajectory) struggles to detect useful feature points 
 

Table 4: Comparison of accuracy with state-of-the-art 
methods. 

Action       Dollar         Wang     our method      Jhuang    

 
rear        57.9%  89.7%        94.9%         - 
groom       88.4%  96.2%        97.4%         - 
eat        69.0%  88.8%        95.7%               - 
drink        41.0%  5.0%          72.4%               - 
hang        80.8%  96.9%        97.6%               - 
rest        98.8%  95.8%        99.5%               - 
walk        96.1%  97.0%        98.3%               - 
head        32.2%  64.8%        69.8%               - 
all        82.2%  92.3%        95.9%               93% 
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from the drinking mouse which maintains its posture 
but uses only its mouth (see Fig. 2). Overall, our 
method significantly outperforms the current state-of-
the-art methods for each specific mouse behavior. In 
terms of the final accuracy our method has an 
improvement of 13.7%, 3.6% and 2.9% over (Dollár 
et al., 2005), (Wang et al. 2015) and (Jhuang et al., 
2010), respectively. 

4.5 Continuous Video Annotation 

To annotate continuous videos, sliding windows are 
centered at each frame and both appearance features 
and contextual features are computed inside them. 
Once spatio-temporal features are computed for all 
the sliding windows, Fisher vector is then computed 
for each frame by focusing on a sliding window 
centered in the current frame. These fisher vectors are 
finally classified by a trained neural network and their 
classification results are regarded as labels of all the 
frames. To explore an optimal sliding window size, 
we establish an experiment to compare the percentage 
agreements with human annotation using different 
sliding window sizes, illustrated in Fig. 7. 

 

Figure 7: Continuous video annotation with different 
window sizes. 

5 CONCLUSION 

This paper has presented a new approach to 
automatically recognizing specific mouse behaviors. 
We show that our interest detector is stable under 
illumination. Our appearance and contextual fusion 
features encoded by spatial-temporal stacked fisher 
vector significantly outperform the other state-of-the-
art features. Also, the combination of Fisher vector 
and neural networks improves the performance of our 
system and gives higher accuracy than the other state-
of-the art systems. Overall, our method achieves an 
average of 95.9% accuracy compared to the previous 

best test of 93%. Final experiments on annotation of 
continuous video also obtain results (72.9%) that are 
on a par with human annotation, which is evaluated 
as 71.6% in (Jhuang et al., 2010). Future work will 
include exploring more distinguishing features, 
combining temporal model and extending the range 
of behaviors.  We also plan to study social behavior 
between multiple mice. 
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