PGX.UI: Visual Construction and Exploration of Large Property Graphs

Julia Kindelsberger, Daniel Langerenken, Malte Husmann, Korbinian Schmid, Hassan Chafi

Abstract

Transforming existing data into graph formats and visualizing large graphs in a comprehensible way are two key areas of interest of information visualization. Addressing these issues requires new visualization approaches for large graphs that support users with graph construction and exploration. In addition, graph visualization is becoming more important for existing graph processing systems, which are often based on the property graph model. Therefore this paper presents concepts for visually constructing property graphs from data sources and a summary visualization for large property graphs. Furthermore, we introduce the concept of a graph construction time line that keeps track of changes and provides branching and merging, in a version control like fashion. Finally, we present a tool that visually guides users through the graph construction and exploration process.

References

  1. Abello, J., Ham, F. V., and Krishnan, N. (2006). Askgraphview: A large scale graph visualization system. IEEE Transactions on Visualization and Computer Graphics, 12(5):669-676.
  2. Angles, R. and Gutierrez, C. (2008). Survey of graph database models. ACM Comput. Surv., 40(1):1:1- 1:39.
  3. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., and Ives, Z. (2007). Dbpedia: A nucleus for a web of open data. In Proceedings of the 6th International The Semantic Web and 2Nd Asian Conference on Asian Semantic Web Conference, ISWC'07/ASWC'07, pages 722-735, Berlin, Heidelberg. Springer-Verlag.
  4. Google (2012). Introducing the knowledge graph: things, not strings. https://googleblog.blogspot.com/2012/05/ introducing-knowledge-graph-things-not.html. Accessed: 2016-11-15.
  5. Gualdron, H., Cordeiro, R. L. F., and Rodrigues, J. F. (2015). Structmatrix: Large-scale visualization of graphs by means of structure detection and dense matrices. In Proceedings of the 2015 IEEE International Conference on Data Mining Workshop (ICDMW), ICDMW 7815, pages 493-500, Washington, DC, USA. IEEE Computer Society.
  6. Hanneman, R. A. and Riddle, M. (2005). Introduction to social network methods.
  7. Herman, I., Melancon, G., and Marshall, M. S. (2000). Graph visualization and navigation in information visualization: A survey. IEEE Transactions on Visualization and Computer Graphics, 6(1):24-43.
  8. InfiniteGraph (2016). Infinitegraph. http://www.objectivity. com/products/infinitegraph/. Accessed: 2016-11-10.
  9. Itoh, T. and Klein, K. (2015). Key-node-separated graph clustering and layouts for human relationship graph visualization. IEEE Computer Graphics and Applications, 35(6):30-40.
  10. Kaliyar, K. R. (2015). Graph databases: A survey. In Computing, Communication Automation (ICCCA), 2015 International Conference on, pages 785-790.
  11. Kumar, R., Raghavan, P., Rajagopalan, S., Sivakumar, D., Tompkins, A., and Upfal, E. (2000). The web as a graph. In Proceedings of the Nineteenth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS 7800, pages 1-10, New York, NY, USA. ACM.
  12. Kwon, O. H., Muelder, C., Lee, K., and Ma, K. L. (2016). A study of layout, rendering, and interaction methods for immersive graph visualization. IEEE Transactions on Visualization and Computer Graphics, 22(7):1802- 1815.
  13. Lequay, V., Ringot, A., Haddad, M., Effantin, B., and Kheddouci, H. (2015). Graphexploiter: Creation, visualization and algorithms on graphs. In Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, ASONAM 7815, pages 765-767, New York, NY, USA. ACM.
  14. Liang, J. and Huang, M. L. (2010). Highlighting in information visualization: A survey. In 2010 14th International Conference Information Visualisation, pages 79-85.
  15. Neo4j (2016). Neo4j graph database. https://neo4j.com/. Accessed: 2016-11-10.
  16. Newman, M. E. (2003). The structure and function of complex networks. SIAM review, 45(2):167-256.
  17. Olken, F. (2003). Tutorial on graph data management for biology. In IEEE Computer Society Bioinformatics Conference (CSB), volume 3.
  18. Sarkar, M. and Brown, M. H. (1992). Graphical fisheye views of graphs. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 7892, pages 83-91, New York, NY, USA. ACM.
  19. Sevenich, M., Hong, S., van Rest, O., Wu, Z., Banerjee, J., and Chafi, H. (2016). Using domain-specific languages for analytic graph databases. Proc. VLDB Endow., 9(13):1257-1268.
  20. Shekhar, S., Coyle, M., Goyal, B., Liu, D.-R., and Sarkar, S. (1997). Data models in geographic information systems. Commun. ACM, 40(4):103-111.
  21. Suchanek, F. M., Kasneci, G., and Weikum, G. (2007). Yago: A core of semantic knowledge. In Proceedings of the 16th International Conference on World Wide Web, WWW 7807, pages 697-706, New York, NY, USA. ACM.
  22. Tinkerpop (2016). Defining the property graph model. http://tinkerpop.apache.org/docs/current/reference/. Accessed: 2016-11-10.
  23. Titan (2016). Titan distributed graph database. http://titan. thinkaurelius.com/. Accessed: 2016-11-10.
  24. Valdivia, P., Dias, F., Petronetto, F., Silva, C. T., and Nonato, L. G. (2015). Wavelet-based visualization of time-varying data on graphs. In Visual Analytics Science and Technology (VAST), 2015 IEEE Conference on, pages 1-8.
  25. van der Zwan, M., Codreanu, V., and Telea, A. (2016). Cubu: Universal real-time bundling for large graphs. IEEE Transactions on Visualization and Computer Graphics, 22(12):2550-2563.
  26. Ware, C. and Bobrow, R. (2004). Motion to support rapid interactive queries on node-link diagrams. ACM Trans. Appl. Percept., 1(1):3-18.
  27. Yang, X., Procopiuc, C. M., and Srivastava, D. (2011). Summary graphs for relational database schemas.
  28. Zhao, J., Glueck, M., Breslav, S., Chevalier, F., and Khan, A. (2016). Annotation graphs: A graph-based visualization for meta-analysis of data based on userauthored annotations. IEEE Transactions on Visualization and Computer Graphics, PP(99):1-1.
Download


Paper Citation


in Harvard Style

Kindelsberger J., Langerenken D., Husmann M., Schmid K. and Chafi H. (2017). PGX.UI: Visual Construction and Exploration of Large Property Graphs . In Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 3: IVAPP, (VISIGRAPP 2017) ISBN 978-989-758-228-8, pages 305-310. DOI: 10.5220/0006231603050310


in Bibtex Style

@conference{ivapp17,
author={Julia Kindelsberger and Daniel Langerenken and Malte Husmann and Korbinian Schmid and Hassan Chafi},
title={PGX.UI: Visual Construction and Exploration of Large Property Graphs},
booktitle={Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 3: IVAPP, (VISIGRAPP 2017)},
year={2017},
pages={305-310},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006231603050310},
isbn={978-989-758-228-8},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 3: IVAPP, (VISIGRAPP 2017)
TI - PGX.UI: Visual Construction and Exploration of Large Property Graphs
SN - 978-989-758-228-8
AU - Kindelsberger J.
AU - Langerenken D.
AU - Husmann M.
AU - Schmid K.
AU - Chafi H.
PY - 2017
SP - 305
EP - 310
DO - 10.5220/0006231603050310