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Abstract: Enterprises today face the problem of complying with ever-increasing regulation. Use of rule engines for
implementing compliance is widespread, however, the rule base needs to be encoded manually. We present
a method using model-driven architecture (MDA) to automate generation of rules in a rule language, from
a platform-independent model derived from a specification given by domain experts. We demonstrate how
a Semantics of Business Vocabulary and Rules (SBVR) model of regulation rules can serve as the common
source model for generating rules on various categories of rule engine platforms. The approach is illustrated
using a real-life case study from the MiFID-2 financial regulation.

1 INTRODUCTION

The regulatory environment in which enterprises op-
erate is steadily growing in complexity as more and
more regulations come into force. Enterprises grapple
with the problem of implementing compliance while
managing costs, time to market, accuracy and correct-
ness. Compliance is mandatory and non-compliance
entails heavy penalties and reputational risk. Regula-
tory compliance therefore figures among the top few
concerns of enterprises worldwide1.

Compliance implementations in enterprise IT sys-
tems are broadly classified into two categories: one
where rule checks are implemented directly in appli-
cation code, and the other where rule engines are used
to encode and check rules in an orthogonal manner,
outside of application code.

The rule engine approach is increasingly being
adopted since it allows a declarative specification of
rules to be maintained separately from the processes
and workflow encoded in applications. Rules main-
tained in such business rule management systems
(BRMS) may originate not just from regulations, but
organizational policies, business requirements, or any
other source. The business rule approach (Bauer,
2009), as this is called, allows rules to be maintained
by users without the need to modify IT systems.

Although BRMS are in widespread use, they re-

1Top Ten Problems Faced by Business, http://www.bmgi.
com/resources/articles/top-ten-problems-faced-business

quire rules to be manually encoded from their natural
language source, i.e. legal text of regulations, into the
target rule language. Compliance implementation and
subsequent change management therefore require in-
tensive involvement of human experts, to encode rules
as well as compute impact when there is a change on
the regulation or enterprise side. The implementation
team needs to be conversant with technicalities of the
rule-checking platform, posing a severe challenge for
effective participation of domain and legal experts.

Automation is highly desirable to address all of
these issues, especially, an approach that allows do-
main experts to specify rules in domain terms, yet
enables automated derivation of the formal specifica-
tion of rules. Direct derivation of formal specification
from a natural language format specified by domain
experts is not possible, as also discussed in (Levy and
Nazarenko, 2013). We advocate creation of models as
an intermediate step.

In this paper, we demonstrate the applicability
of the the model-driven engineering process pre-
scribed by Object Management Group (OMG)2 in
their Model-Driven ArchitectureT M (MDAT M) stan-
dard, to the problem of automated rule generation
from their natural language specification. Specifi-
cally, we show how such an architecture can be imple-
mented using the Semantics of Business Vocabular-

2OMG Model Driven Architecture, http://www.omg.org/
mda/
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Figure 1: Layers in MDA.

ies and RulesT M (SBVRT M) standard by OMG3. We
demonstrate how SBVR is highly suitable for building
a platform-independent model of rules from which
any platform-specific rule implementation can be de-
rived. We discuss rule generation for two rule plat-
forms, viz. DR-Prolog (Dimaresis, 2007) and JBoss
Drools4.

The following sections outline the principles of
MDA and describe their application to the problem
of rule base generation, the choice of models in our
architecture, their mappings, a detailed illustration
of rule generation for DR-Prolog using a case study
example. We show how the architecture easily en-
ables mapping and generation onto a different kind of
rule platform, i.e. Drools, from the same platform-
independent model.

2 OVERVIEW OF MDA

MDA advocates creation of abstract, machine-
readable models of the problem and solution space,
stored in standardized repositories (Kleppe et al.,
2003). These models can then be repeatedly ac-
cessed to generate implementation artefacts such as
schemas, code, test harnesses, deployment scripts
(Kleppe et al., 2003; Kulkarni and Reddy, 2003).
Models give a higher-level abstraction over code, that
is easier to understand and maintain.

3Semantics of Business Vocabulary and Business Rules,
http://www.omg.org/spec/SBVR/1.2/

4RedHat Drools BRMS, http://www.drools.org/

2.1 Principles of MDA

MDA emphasizes separation of concerns, where do-
main, structural, and platform details are encapsu-
lated in separate layers of abstraction (Kulkarni and
Reddy, 2003). A description of the problem in purely
domain-specific terms is captured in the computation-
independent model (CIM)5. The next layer is the
platform-independent model (PIM) that captures de-
sign details of the solution in terms of structure and
behavior. The PIM is devoid of any technology plat-
form details. Finally, there is the platform-specific
model (PSM) that is the realization of the PIM on
a specific technology platform. The three layers of
MDA are illustrated in Figure 1.

Separation of concerns enables details of each as-
pect to be clearly specified without getting entangled
with another. This makes the specification maintain-
able.

2.2 MDA Layers and SDLC

As can be seen from the definitions of the MDA lay-
ers in Section 2.1, each layer corresponds to a phase
in the software development lifecycle (SDLC). CIM
is the specification of a system created in the Require-
ments Gathering phase, while PIM corresponds to the
Analysis, and PSM to the Design phase (Alhir, 2003),
as shown in Figure 1.

5Model Driven Architecture - A Technical Perspective,
http://www.omg.org/cgi-bin/doc?ormsc/2001-07-01
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2.3 Model Mapping and
Transformation

The advantage of MDA is that models are machine
operable. Successive layers of the model, i.e. PIM
and PSM can be derived from the previous layers, i.e.
CIM and PIM respectively, by meta-model mapping
and automated transformation. This results in pro-
ductivity and cost benefits. It also enables tracking
impact of changes in one layer on another, making
change management easier. Moving to new technol-
ogy platforms or a different design choice requires
only the relevant part of the model or mapping to be
changed. Downstream model layers can be generated
afresh to reflect the changes. For instance, to derive
the PSM for a different technology platform, the PIM
needs only to be mapped to the meta-model for the
new platform, and its PSM generated.

The mapping and transformations between the
three layers are illustrated in Figure 2. A mapping
is a set of rules for deriving one model layer from
another, and is based on the meta-models of the two
layers. PIM-PSM mapping can be used to gener-
ate a realization of the logical PIM on physical ex-
ecution infrastructure6. If both PIM and PSM are
MOF-compliant models, model-to-model transforma-
tion techniques and tools such as QVT7 can be used to
generate the PSM. The implementation on the chosen
technology platform can then be generated from the
PSM using model-to-text transformation. In the next

6Model Driven Architecture - A Technical Perspective,
http://www.omg.org/cgi-bin/doc?ormsc/2001-07-01

7Meta Object Facility (MOF) 2.0 Query/View/Transforma
tion Specification, http://www.omg.org/spec/QVT/1.2/

section, we describe our approach of applying MDA
to the problem of creating and maintaining a rule base
in a BRMS.

3 MDA FOR RULE BASE
GENERATION

BRMS or rule engines work on the basic premise that
the truth status of defined rules needs to be deter-
mined, given information available as facts.

Rule engines can be classified into the following
three principal kinds8 based on the reasoning algo-
rithm used

1. Pure inferencing engines such as Prolog, DR-
Prolog. These either use forward chaining i.e.
data-driven inferencing about rules based on
available data or information, or backward chain-
ing, i.e. goal-driven inferencing beginning with a
goal or query given by the user, and testing for the
truth value of its contained goals one by one.

2. Production Rule Systems (PRS) such as JBoss
Drools that combine inferencing using forward or
backward chaining or both, called hybrid reason-
ing, and take actions based on the conclusions
drawn.

3. Reactive rule engines that do complex event pro-
cessing, i.e. detect events from available informa-
tion, and react to them.

8Production Rule RepresentationT M , http://www.omg.org/
spec/PRR/
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Rule languages for these engines differ in their
syntax, but are based on a common paradigm called
fact-oriented modeling (FOM). A fact-oriented model
captures rules as compositions of facts. A fact is a re-
lation between concepts. The layers of a fact-oriented
model are illustrated in Figure 3.

Similar to application code, rules in these lan-
guages need to be coded by development teams con-
versant with language syntax, whereas their require-
ments are understood only by domain experts. Rules
are the most critical component of any business appli-
cation and drive all the processes in the organization.
It is therefore imperative that domain experts are able
to directly specify, maintain, and control business rule
repositories. Production rule systems though widely
used, are unfortunately not usable by domain experts.

We opine that MDA is highly applicable to this
problem scenario, and provides an alternative to man-
ual encoding of rules. We propose use of a model-
driven architecture for automated generation of rule
bases. A high-level specification of rules in domain
language, given by domain experts forms the CIM of
rules. The common conceptual model used by all rule
engines, comprising rules dependent on facts, consti-
tutes a PIM of rules, since it gives a structure for def-
inition of rules. Individual rule languages denote the
PSM of rules. The PIM is common to all rule lan-
guages and can be mapped to the PSM for individual
rule languages. The implementation in individual rule
language can then be generated from this PIM-PSM
mapping. This offers the possibility of switching to or
maintaining different implementations of a rule base
on various platforms using a common PIM.

The characteristics each model layer must have, as
specified by OMG, are listed below.

• CIM should be able to express details about the
problem domain in the language of the domain
expert, with no references to how they should be
implemented, whether in terms of design or tech-
nology.

• PIM needs to capture high-level design details of
the solution. These include structure, relations,
and behavior of various entities, also details of
implementation, without being bound to a specific

technology platform.

• PSM should be able to capture low-level design of
the solution as the platform-specific interpretation
of the PIM.

In the next few sections, we discuss our choice of
modeling languages for each layer.

3.1 The CIM and PIM Layers

Several general-purpose rule languages and notations
exist, such as SBVR, Production Rule Representation
(PRR), RuleML, SWRL, W3C RIF. SWRL, RuleML
and W3C RIF are specially designed for capturing on-
tologies. SWRL combines the capabilities of RuleML
and OWL. PRR has been explicitly devised to create a
generic representation of rules that addresses all types
of production rule systems.

SBVR was devised by OMG as a standard for
capturing the vocabulary used by a business domain,
definitions and relations between terms, and business
rules governing the domain. SBVR is a fact-oriented
modeling notation (Nijssen, 2007; Halpin, 2007), that
captures rules as compositions of facts. This is the
same conceptual model as that used by all rule en-
gines, making SBVR the natural choice of model.

SBVR has a MOF-compliant meta-model, and
also its own controlled natural language notation for
specifying the model, called SBVR Structured En-
glish (SE). SBVR SE is a restricted subset of natu-
ral language, with a well defined set of keywords that
connect natural language phrases denoting concepts
and their relations. We use SBVR SE for the CIM,
since it is a structured, yet near-natural language nota-
tion in which the vocabulary and rules for any domain
can be specified, fulfilling the criteria for a CIM.

SE is intended as a means to populate the SBVR
model, hence its elements have direct correspondence
with the SBVR meta-model. A translation scheme
from SE to an SBVR model can thus be worked out.
It therefore follows that we use SBVR as the PIM.
SBVR SE and SBVR model have often been clubbed
in literature and classified as a CIM (Diouf et al.,
2007). We choose to treat SE as a CIM notation,
and the SBVR model as a PIM since it captures struc-
ture and behaviour of domain entities using a specific
meta-model. A concept model captures the structure,
while rules captured as logical formulations built on
the concept model encode the behaviour.

We choose SBVR as PIM because its seman-
tic fact-oriented model captures the complete depen-
dence hierarchy of rules on fact types and concepts,
crucial for the inferencing done by rule engines. We
choose SBVR over other languages for its inherent
mapping to SE. Any other rule language as PIM
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Figure 4: SBVR meta-model.

would require designing the CIM-PIM mapping from
SE. SBVR captures both structure and behavior in a
single notation, whereas when PRR is used to capture
rules, structure needs to be defined using UML class
models.

The expressiveness of SBVR is sufficient to cap-
ture a generic platform-independent representation of
rules. The generic SBVR meta-model can be mapped
to the platform-specific conceptual models of DR-
Prolog as well as a PRS, as we illustrate in the next
few sections. The SBVR meta-model subset we use
is shown in Figure 4, and described in detail in the
next section.

3.2 SBVR Meta-model

We use a subset of the OMG SBVR meta-model9 for
capturing regulation rules, shown in Figure 4. The
meta-model comprises three sections, as shown in the
figure.

1. Meaning Vocabulary: This is the meta-model for
capturing structure or the body of concepts. Noun
concepts denote entities, while verb concepts, also
called fact types, signify relations. Fact types
take the form role verb role, where role denotes
a noun concept. General concepts and concept
types specialize concepts and help create concept
hierarchies. Attributes of a concept are captured
as characteristics.

2. Logical Formulation of Semantics Vocabulary:
This section comprises logical formulations of
fact types. Compound logical formulations e.g.

9Semantics of Business Vocabulary and Business Rules,
http://www.omg.org/spec/SBVR/1.2/

conjunctions, implications, negations are com-
posed of atomic formulations. Each atomic for-
mulation is based on a fact type from the body of
concepts.

3. Rule vocabulary: This section specifies rules,
based on logical formulations. We use three types
of rules: rules to denote obligations, definitional
rules to denote necessity formulations, and oper-
ational rules to denote actions to be executed. A
rule inherits from Proposition, that is meant by a
logical formulation that is a formal expression of
the rule in terms of fact types.

SBVR thus provides a comprehensive meta-model for
capturing the semantics of rules as logical formula-
tions over fact types and concepts.

The next subsection discusses platform-specific
models for rules.

3.3 The PSM Layer

We select DR-Prolog and JBoss Drools as our target
platforms for rule generation. Each is representative
of a separate class of rule engines, viz. backward-
chaining and production rule systems respectively.
Our objective is to demonstrate that MDA helps gen-
erate code onto multiple platforms using a single PIM.

The DR-Prolog and Drools rule definition meta-
models are the PSMs for our MDA for rules. DR-
Prolog attempts to answer queries by working back-
wards from the query through its constituent goals to
the available information to see whether the query
is satisfied. Drools and other production rule sys-
tems use the hybrid reasoning Rete algorithm10 to in-

10RedHat Drools BRMS, https://www.drools.org/learn/
documentation.html
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fer which rules of the form when condition then ac-
tion apply, and trigger the corresponding action which
changes the state of the system. Applicable rules have
to be freshly recomputed on the new system state and
this cycle continues.

Although rule syntax and execution semantics dif-
fer in the two rule engines, their rule definition meta-
models follow the fact-oriented modeling paradigm
and therefore easily map to the SBVR meta-model.
We create the PIM-PSM meta-model map for the spe-
cific platform, say, DR-Prolog, and use it for trans-
formation of the PIM instance to PSM instance. We
then translate the PSM instance to rules in DR-Prolog
syntax. Our model driven architecture for rule base
generation is depicted in Figure 5.

MDA also allows multiple PIM-PSM layers to be
used, with each PSM becoming the PIM for the next
layer. For instance, it was possible to use SBVR as
PIM and PRR as a PSM, since it captures the model
for the PRS class of systems. The PRR model then
becomes the PIM for a Drools PSM.

The next section describe the method for generat-
ing the rule base in the chosen rule language, using
this architecture.

4 METHOD FOR RULE BASE
GENERATION

The method for rule base generation comprises cre-
ation of the CIM and PIM of regulation rules using
SBVR, mapping the PIM i.e. SBVR meta-model to
the PSM, i.e. meta-model of the chosen rule language,
and finally, PIM to PSM transformation from SBVR
to the rule language. These steps are detailed in the
next couple of sections.

4.1 Create CIM and PIM of Regulation
Rules in SBVR

We use the Eclipse Modeling Framework (EMF)
(IBM, 2016) model-to-model conversion tools and
code generators to generate code for an SBVR editor.
We convert the MOF-compliant SBVR meta-model
available on the OMG SBVR website to EMF Ecore
format and use it as the basis for generating editor
code.

We build the CIM and PIM of regulation rules us-
ing SBVR in the following steps

1. Domain experts mark in the NL regulation text,
the statements representing rules to be checked,
definitions of terms used in the rules, and data de-
scriptions relevant to the rules.

2. The domain experts then write each NL rule state-
ment in the controlled natural language SBVR
Structured English (SE). This is the CIM of the
regulation. SBVR SE is written using a restricted
English vocabulary and specific font styles, viz.
the term font for designating noun concepts, gen-
eral concepts, concept types and roles; Name font
for individual concepts or names; verb font for
designations of fact types; and keyword font for
other words in definitions and statements.

3. We mapped the SE meta-model to the SBVR
meta-model. We create the SBVR PIM corre-
sponding to the captured SE statements manually
using the SBVR editor. Automation of the CIM-
PIM translation from SE to SBVR model is our
ongoing work and its description is outside the
scope of this paper.

The next section describes PIM to PSM transforma-
tion, from SBVR to our chosen rule language, DR-
Prolog.
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Table 1: SBVR to DR-Prolog mapping.

SBVR element DR-Prolog construct DR-Prolog syntax
Element of guidance Defeasible rule defeasible(rule name, obligation, rule

consequent, [rule antecedent]).
Logical formulation Rule
Implication (consequent, an-
tecedent)

Implication rule (conse-
quent, antecedent)

fact(consequent):- fact(antecedent).

Conjunction (operands) Conjunction rule (operands) fact(conjunction):- fact(operand1),
fact(operand2).

Disjunction (operands) Disjunction rule (operands) fact(disjunction):- fact(operand1).
fact(disjunction):- fact(operand2).

Negation (operand) Negation rule (operand) fact(negation):- fact(not(operand)).
Atomic formulation based
on verb concept

Predicate fact(verbConcept(role-list)).

Concept (Delimiting charac-
teristic, characteristics)

Predicate (key
attribute,attribute-list)

fact(concept(key attribute,attribute-
list)).

General concept (Special-
ization of concept)

Implication (consequent, an-
tecedent)

fact(concept1(key attribute,attribute-
list):- fact(concept2(key
attribute,attribute-list)).

Characteristic of concept Unary predicate (Delimiting
characteristic of concept)

fact(characteristic(key attribute of con-
cept))

Delimiting characteristic of
concept

Primary key of predicate fact(concept(key attribute, attribute-
list)).

Fact type (concept-list) Predicate (concept-list) fact(factType(list of key attributes of
concepts)).

Ground facts Ground facts fact(concept(key value, value-list)).

4.2 Transform PIM to PSM: SBVR to
DR-Prolog

In order to transform rules from SBVR PIM to DR-
Prolog, we create the PIM-PSM map between SBVR
and DR-Prolog meta-models, shown in the first two
columns of Table 1. The conceptual model of DR-
Prolog has almost a one-to-one correspondence with
the SBVR meta-model.

We have written a custom program to use this
PIM-PSM map to generate the DR-Prolog PSM in-
stance model from the SBVR PIM instance model.
From the DR-Prolog PSM, another program generates
rules in the corresponding textual DR-Prolog syntax
shown in the third column of Table 1.

In the next section, we illustrate our approach us-
ing a real-life case study example from the MiFID-2
regulation11.

11MiFID2: http://ec.europa.eu/finance/securities/isd/mifid
2/index en.htm

5 CASE STUDY

The MiFID-2 (Markets in Financial Instruments Di-
rective) regulation lays down obligations on financial
institutions regarding the types of transactions that
must be included/ excluded in reporting trades to the
regulatory body. We illustrate here the relevant ex-
cerpt from the original regulation text and the chain
of models created for the regulation rules.

5.1 Regulation Text

The original regulation text containing inclusion and
exclusion rules for transactions is shown below.

Meaning of transaction

1. For the purposes of Article 26 of Regulation (EU)
No 600/2014, the conclusion of an acquisition
or disposal of a financial instrument referred to
in Article 26(2) of Regulation (EU) No 600/2014
shall constitute a transaction.

2. An acquisition referred to in paragraph 1 shall in-
clude:

(a) a purchase of a financial instrument;

Towards Automated Generation of Regulation Rule Bases using MDA
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Figure 6: SBVR model of rules.

(b) entering into a derivative contract in a financial
instrument.

3. A disposal referred to in paragraph 1 shall in-
clude:

(a) sale of a financial instrument;
(b) closing out of a derivative contract in a finan-

cial instrument.

..

4. A transaction for the purposes of Article 26 of
Regulation (EU) No 600/2014 shall not include:

(a) a securities financing transaction as defined
in Regulation [Securities Financing Transac-
tions]

(b) a contract arising exclusively for clearing or
settlement purposes;

(c) an acquisition or disposal that is solely a result
of custodial activity;

The next sub-section illustrates the CIM created by
writing the above natural-language regulation rules in
Structured English.

5.2 CIM of Regulation Rules in SE

The inclusion and exclusion rules from the regulation
text are encoded in SBVR SE as below.
Rule Inclusion: It is obligatory that transaction is
included in MiFID reporting if the transaction is an
acquisition or a disposal.
Rule Exclusion: It is obligatory that transaction
is excluded from MiFID reporting if the
transaction is a securities financing transaction
or clearing or settlement contract or an acquisition or
disposal arising from custodial activity.

Here, the keywords It is obligatory that denote the
obligation modality of the rule. The rule is built upon

fact types transaction is included in MiFID report-
ing, transaction is an acquisition, and transaction is
a disposal. Transaction, acquisition, and disposal are
concepts; is included in MiFID reporting is a charac-
teristic of a transaction.

Acquisition and disposal are high-level concepts
defined in terms of other concepts, e.g. purchase
and sale. These definitions are captured as defini-
tional rules as follows Acquisition is a purchase or
entering a derivative contract. Disposal is a sale or
closing a derivative contract.

The next section shows the SBVR model con-
structed from these SE rules.

5.3 PIM of Rules in SBVR

The SBVR model corresponding to the above SE
rules is created using the SBVR editor, and shown
in Figure 6. This PIM of rules is programmatically
translated to a DR-Prolog model of MiFID rules and
from there to MiFID rules in DR-Prolog syntax, illus-
trated in the next sub-section.

5.4 Translated Regulation Rules in
DR-Prolog

The inclusion and exclusion rules in DR-Prolog syn-
tax generated from the SBVR model illustrated in
Figure 6 as per the mapping shown in Table 1 are
shown below.
defeasible (rule inclusion, obligation, includeIn-
MiFIDReporting (TransRef), [reportableTransac-
tion(TransRef)]).
defeasible (rule exclusion, obligation, excludeIn-
MiFIDReporting(TransRef), [exclusionTransac-
tion(TransRef)]).
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Since the antecedent reportableTransaction of the
inclusion rule is a disjunction of acquisition and dis-
posal, the implications or simple DR-Prolog rules
specifying this relation follow.
fact (reportableTransaction(TransRef)) :- fact (acqui-
sition(TransRef)).
fact (reportableTransaction(TransRef)) :- fact (dis-
posal(TransRef)).

Definitional rules get translated as simple DR-
Prolog rules, as
fact (acquisition(TransRef)) :- fact (pur-
chase(TransRef)).
fact (acquisition(TransRef)) :- fact (enteringDeriva-
tiveContractInFI(TransRef)).

The generic SBVR-to-DR-Prolog meta-model
mapping and translator can thus be used to translate
any SBVR model of rules to a rule base in DR-Prolog
in an automated manner.

In the next section, we discuss insights and lessons
learnt in applying our approach.

5.5 Discussion and Lessons Learnt

In the course of development of this architecture and
during its application, we came across several impor-
tant considerations that are discussed here.

In theory, writing SE rules is not hard for do-
main experts, with a little training, given that SE is
a restricted subset of English with well-defined key-
words. However, there are several ways in which
rules can be expressed in SE, with the same meaning,
compounding the risk of making syntactic errors. We
created an SE editor that checks syntax, to get around
this problem. Even so, manual encoding of SE rules,
as well as identifying rule statements to be encoded
from the voluminous NL text of regulations are effort-
intensive tasks. Intelligent assistance in these tasks
to significantly reduce experts’ burden is needed, so
that their time is utilized efficiently. Towards this
end, we are working on automated rule extraction us-
ing natural-language processing and machine learning
techniques. These techniques are semi-automated,
and extract SE rules from NL text of regulations, so
that domain experts can validate them. Availability
of bilingual corpora is important for the accuracy and
success of these techniques. Initially some effort may
need to be expended, to create such corpora.

Manually translating SE rules to SBVR as we
did for the case study is even more cumbersome and
error-prone than coding SE rules, since SBVR syn-
tax is complex. Similar to SE, SBVR also provides
several ways of encoding a rule. We are therefore
working on automating this step. This makes correct-
ness of SE rules all the more important. To avoid er-

rors, the SE-SBVR mapping and translation must be
validated, again using a bilingual corpus. Since the
SBVR model can be built in several ways, we found
that deciding on modeling standards and guidelines
upfront was essential to maintain consistency in the
model. This is necessary even when translation from
SE is automated.

Although automation speeds up the process, do-
main experts’ review can become a bottleneck when
applying the approach in the real world. Other practi-
cal considerations are managing multiple users work-
ing on creating various parts of the model at the same
time, allowing sharing of models, and preventing du-
plication.

OMG’s provision of SE as a controlled natural-
language interface to SBVR is an invaluable feature
that makes it possible for domain experts to interact
with and review the generated model, that would be
hard to do directly with SBVR. Since SE is usable by
domain experts, it provides a way to create the CIM
in OMG’s MDA process. SE is the key link that helps
create a model from natural-language specifications.

OMG’s MDA process gives a method for using
models and model-based techniques effectively for
generating code. The most important consideration in
choice of modeling languages is their expressiveness
with respect to the requirements of the problem con-
text. However, all features needed in the problem con-
text may not be available in each modeling language
chosen for our architecture. Workarounds need to be
implemented by specifying construct-specific trans-
formation rules in the CIM-PIM and PIM-PSM model
mapping to take care of such cases, so that there is
no loss of information. For instance, real-world ap-
plications make use of temporal constructs that can
be modeled in SE. However, temporal constructs are
not directly supported by SBVR and DR-Prolog, but
are encoded using available arithmetic functions and
variables to denote time. On the other hand, Drools
supports temporal constructs, which makes it better
suited as a PSM for real-world business applications.

An important consideration in using model-based
techniques is model validation. In our approach, we
validated the models and transformations manually,
as well as by testing the generated rules using the rule
engine and test bed data. Any discrepancies with ex-
pected results were manually traced back through the
model chain to arrive at the source of the error.

Domain experts validated the SE rules written by
us for our case study application. They validated the
generated rules by examining the results of rule ex-
ecution on their test data comprising a set of actual
transactions from one of their systems. They exam-
ined the rules executed, their success/ failure status,
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Table 2: SBVR to Drools mapping of constructs.

SBVR element Drools construct Drools syntax
Element of guidance Rule rule rule name attribute-list when

antecedent-list then action-list end
Logical formulation Constraint
Implication Rule rule rule name attribute-list when

antecedent-list then action-list end
Conjunction (operands) Conjunction (constraints) condition, condition
Disjunction (operands) Disjunction (constraints) condition or condition
Negation (operand) Negation (constraint) not(condition)
Concept (characteristics) Type (attributes) declare concept name attribute-list
Characteristic of Concept Attribute of Type attribute name : Type
Delimiting characteristic of
Concept

Key attribute of Type @key attribute name : Type

General Concept (Special-
ization of Concept)

Type extends type declare concept name extends con-
cept name

Fact type Attribute within source
Type, of type target Type

declare source-concept-name
target-concept-name : Type

and the data facts output by the compliance engine
in support of the success/ failure result, and verified
these for correctness. The quality of generated rules
depends upon the quality of SE rules input to the
framework. We may need to help domain experts
reviewing SE rules by providing tools for organising
and presenting the rules for easy readability and edit-
ing.

Choice of modeling languages and correct specifi-
cation of mapping and model transformation rules be-
tween layers is a one-time investment in setting up a
model-based automated engineering process. The ini-
tial investment in time and cost as well as the prospect
of change are the principal deterrents to the prolifera-
tion of MDE in practice. Both can be overcome only
by increased usage of MDE, coming up with better
tools, sharing of artefacts such as models and map-
pings, and reporting on experience.

In the next section, we discuss the extensibility of
this architecture for generation onto other rule plat-
forms, using Drools as an example.

6 GENERATION ONTO
MULTIPLE RULE PLATFORMS

The general rule specification in SBVR can be
mapped to another rule PSM, to generate an imple-
mentation on a different rule platform. We now il-
lustrate a mapping of the SBVR meta-model to the
Drools rule language meta-model, with the objective
of demonstrating that rules on the Drools platform
can be generated from the same SBVR PIM of rules.
The implementation of this SBVR-Drools translation

is work in progress.
The Drools rule engine too expects specification

in a structure similar to DR-Prolog, i.e. rules and
facts. The SBVR rule meta-model therefore maps di-
rectly to the Drools rule model. We create an SBVR-
Drools meta-model map, i.e. our PIM-PSM map, il-
lustrated in Table 2. This map can be used to gen-
erate a Drools PSM instance from the SBVR PIM of
rules. Rules in corresponding Drools syntax shown in
Table 2 can then be generated from the Drools PSM
instance, as we did for DR-Prolog.

Drools being a PRS, expects additionally, a proce-
dural specification of rule consequents or actions that
change the system state. We therefore need special
interpretation for the rule actions in Drools. This is
done by defining special transformation rules for op-
erative business rules defined in SBVR to action spec-
ifications for Drools and similar PRS. Consequents of
operative business rules in SBVR are interpreted as
action specifications by extracting the Drools func-
tion name and parameters from the consequent log-
ical formulation and its operands respectively. To be
able to do this, the rule consequent should be modeled
accordingly by the user in the SBVR model.

The same SBVR PIM of rules for a problem do-
main can thus be translated to rule bases on multi-
ple platforms, using the generic PIM-PSM mapping
for each platform. The next section discusses related
work.

7 RELATED WORK

We discuss related work under three heads, viz.
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model-driven rule generation, formal representations
of regulations, and SBVR-related work.

7.1 Model-driven Rule Generation

A model-driven rule generation approach has been
proposed in (Diouf et al., 2007), that suggests using a
combination of MDA and Ontology Definition Meta-
model (ODM) for generating rules. Use of SBVR as
CIM and the authors’ own proprietary general pur-
pose rule language as PIM is proposed, however, the
language or its mapping to SBVR or PSMs was yet to
be worked out.

7.2 Representations of Regulation Rules

Compliance checking approaches in the literature
(Governatori and Rotolo, 2013; Awad et al., 2010;
Governatori et al., 2009; Governatori, 2005) use for-
mal representations of regulation rules. A system for
defeasible logic representation of regulations is pre-
sented in (Dimaresis, 2007) that we use as the compli-
ance engine in our work. In all of these, experts need
to directly code rules in the rule language, high-level
models or specification-based generative methods are
not used.

7.3 SBVR and Fact-oriented Modeling

Several approaches use SBVR for encoding rules,
such as semi-automated approaches to generate
SBVR from natural language descriptions (Bajwa
et al., 2011; Levy and Nazarenko, 2013; Njonko
and Abed, 2012), expression of anti-money launder-
ing rules in SBVR (Abi-Lahoud et al., 2013), pre-
cise capture of legal rules to reveal inconsistencies
(Johnsen and Berre, 2010), but the SBVR models are
not used for automated generation of rule bases in
a rule language. Rules are written in SE and man-
ually translated to rules in a BRMS in (Levy and
Nazarenko, 2013). Requirements for translation from
SBVR to Formal Contract Logic (FCL), a propri-
etary defeasible logic language are defined in (Ka-
mada et al., 2010). The source SBVR and desired
target FCL specification are given, however, the map-
ping or transformation between the two specifications
is not dealt with.

8 CONCLUSION AND FUTURE
WORK

The ideas proposed in MDA have been long been
hailed for their promise of productivity enhancement

and efficient change management, especially for large
systems. MDA has worked well for technical prob-
lem spaces e.g. software development and evolution
through code generation. We explored if this idea can
work for business problem spaces as well e.g. regula-
tory compliance.

Modeling technologies are evolving to be usable
by domain experts who are the real owners of business
requirement model repositories. SBVR and Business
Process Modeling Notation (BPMN) are two cases in
point. We described an approach for generation of
rule bases using SBVR Structured English as a CIM
of rules and the corresponding SBVR model as PIM.
We demonstrated how the SBVR model serves as a
general-purpose PIM for rules, that can be used to
map to various platform-specific rule language meta-
models, even if they have different execution seman-
tics, like DR-Prolog and Drools.

We illustrated automated generation of the rule
implementation in DR-Prolog using the PIM-PSM
mapping. We also illustrated the PIM-PSM mapping
for the Drools platform. Actual generation of rule
implementation in Drools using this mapping is part
of ongoing work, as is automated translation of the
SBVR SE CIM to SBVR PIM.

However, our generators described in this work
are custom-written programs. We plan to implement
specification-based PIM to PSM and PSM to rule
language transformation using QVT and/ or Eclipse
model transformation tools in order to fully exploit
the power of MDA.

We plan to conduct a detailed study of the expres-
sive power and adequacy of SBVR, Drools and DR-
Prolog using a bigger real-world case study, as part of
future work.
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