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Abstract: In documenting software technologies (e.g., web application or modeling or object/relational mapping frame-
works) and specifically when discussing technology usage scenarios, one aims at identifying and classifying
the involved entities (e.g., languages and artifacts); one also aims at relating the entities (e.g., through con-
formance or I/O behavior of program execution). In this paper, we present a logic-based axiomatization (an
emerging ontology) for the underlying types of entities and relationships, thereby formalizing recurring docu-
mentation idioms such as ‘a software system (e.g., a Java application) to use a technology (e.g., a test library)’
or ‘a technology (e.g., a web application framework) to facilitate a certain concept (e.g., the MVC pattern)’.
The axiomatization is illustrated by examples applying to the Eclipse Modeling Framework. The inclusion of
types of entities and relationships is driven and thus validated by a literature survey on megamodeling.

1 INTRODUCTION

Research Context: Linguistic Architecture. This
work should be regarded as feeding into the ‘Software
Engineering Body of Knowledge’1 in the context of
modeling software language and technology usage as
a form of knowledge aggregation in the software en-
gineering field (Ruiz and Hilera, 2006). In previous
work, modeling such usage is seen as a form of meg-
amodeling (Bézivin et al., 2004; Diskin et al., 2013),
subject to models of linguistic architecture (Favre
et al., 2012a)—this term emphasizes languages (‘lin-
guae’) because of the central role of language-typed
artifacts in the (mega-) models.

Research Objective: Technology Documentation.
The broader objective of our research on linguis-
tic architecture is to assist comprehension (i.e., un-
derstanding) of software technologies (e.g., model
transformations, object/relational mappers, or web-
application frameworks). Models of linguistic archi-
tecture correspond to disciplined documentation of
technologies built from conceptual facts conforming
to an appropriate schema. We assume that such a
discipline improves the quality of documentation and
makes it more useful, e.g., when software engineers
study a new technology to be used in a project. The
megamodeling-based approach should be suitable to

1https://www.computer.org/web/swebok

describe or prescribe usage of languages and tech-
nologies in a more precise manner than the common
informal and ad-hoc approach to documentation.

Research Contribution: An Axiomatization. In
this paper, we axiomatize central model elements of
linguistic architecture. In essence, we provide a ref-
erence semantics for conceptual facts to be used in
models. In different terms, we provide a well-defined
vocabulary for documentation as opposed to relying
on an intuitive understanding of the vocabulary. That
is, we axiomatize key relationship types, thereby for-
malizing recurring documentation idioms such as ‘a
software system (e.g., a Java application) to use a
technology (e.g., a test library)’ or ‘a technology (e.g.,
a web application framework) to facilitate a certain
concept (e.g., the MVC pattern)’.

The axiomatization is illustrated systematically
by examples applying to EMF2. The axiomatization
combined with the illustrations feed into an emerging
ontology for Software Languages and Software Tech-
nologies to which we refer as SoLaSoTe3 in the rest
of the paper. The inclusion of types of entities and re-
lationships is driven and thus validated by a literature
survey on megamodeling. That is, the survey justi-
fies the selection of axiomatized model elements and
shows the broader impact of this work. Our work is

2https://www.eclipse.org/modeling/emf/
3http://www.softlang.org/solasote
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Figure 1: Ontology engineering process for SoLaSoTe.

also embedded into a process for ontology engineer-
ing aiming at better understanding usage of software
languages and technologies.

Road-map of the Paper. Sec. 2 summarizes the un-
derlying process for ontology engineering. Sec. 3 sur-
veys research on megamodeling. Sec. 4 develops the
axiomatization. Sec. 5 concludes the paper.

2 ONTOLOGY ENGINEERING

Our work on SoLaSoTe adopts the notion of ontology
engineering (Corcho et al., 2006; Calero et al., 2006;
Oberle et al., 2006; d’Aquin and Gangemi, 2011)
through a process involving three pillars:

Chrestomathy. We have been contributing to
the software chrestomathy ‘101companies’ (or just
‘101’) (Favre et al., 2012b)4 which is a collection
of small software systems that implement a common
feature model while aiming at representing best prac-
tices and options of language usage, technology us-
age, and software design. The systems are docu-
mented on a semantic wiki; the documentation in-
cludes properties of language and technology usage.

MegaL. We have been designing megamodeling
languages for linguistic architecture, most notably
MegaL5 (Favre et al., 2012a). The megamodels de-
clare how ‘digital’ entities (such as files or objects)
and ‘conceptual’ entities (such as languages or pro-
gramming techniques) relate in the context of scenar-
ios of technology and language usage. Such declara-
tions can be verified (Lämmel and Varanovich, 2014).

SoLaSoTe. The ontology provides a framework for
documentation of usage scenarios and actual systems.

4http://101companies.org/
5http://www.softlang.org/megal

The ontology includes reusable facts or general ax-
ioms. There are two aspects: linguistic architecture—
the focus of this paper—and social coding—an exten-
sion for developer roles and corresponding relation-
ships not further discussed in this paper.

University courses, professional education, open-
source development, summer schools, and scholarly
work are used to advance 101, MegaL, or SoLaSoTe.
These three pillars are mutually dependent; see Fig. 1.
Progress at individual pillars and continuous review-
ing help propagating knowledge about technology
and language usage from pillar to pillar.

3 LITERATURE SURVEY

This section presents a survey with regard to the fol-
lowing research question: ‘What kind of entity and
relationship types exist in related work on megamod-
eling?’. Details and datasets are available from So-
LaSoTe’s website (see first page). The presented
overview serves as a justification for the choice of the
core vocabulary in the emerging ontology.

We searched for papers at ‘ACM Digital Li-
brary’ (ACM)6, ‘Springer Link’ (Springer)7 and
‘IEEE Xplore Digital Library’ (IEEE)8 using the
sites’ search engines with the search string ‘”mega
model” OR ”mega-model” OR ”megamodel”’.
While ACM’s and IEEE’s default search settings only
consider structured content (such as title, abstract and
keywords), for Springer, we had to manually check
search results for a match in the abstract, title or key-
words while restricting the results to be in the soft-
ware engineering category ‘SWE’. We did not per-
form snowballing (Wohlin, 2014) to limit the amount
of papers, as the analysis for paper inclusion is rela-
tively laborious.

We screened the identified papers explicitly for
relevance based on the following criteria. We in-
cluded all papers that define types of megamodel el-
ements in a dedicated section, a schematic notation,
or a metamodel. We excluded explicit doubles and
papers that only show language elements that are pre-
sented in a preceding paper.

We classified the entity and relationship types
from the relevant papers. One paper (Favre et al.,
2012a) was chosen to provide an initial set of clas-
sifiers for entity and relationship types. We incremen-
tally updated the set by newly identified classifiers ac-
cording to the typical process of a mapping study (El-
berzhager et al., 2012). Table 1 and Table 2 presents

6http://dl.acm.org/
7http://link.springer.com/
8http://ieeexplore.ieee.org/Xplore/home.jsp
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Table 1: Entity types in relevant papers.
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Table 2: Relationship types in relevant papers.
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the identified classifiers and their coverage by the pa-
pers. The classification’s documentation including a
glossary for the classifiers can be found online.

A few papers contain informal descriptions of ad-
ditional entity types (see column ‘Inf. resources’). We
did not integrate these types, as they would be hard
to validate. A few papers point out abstract relation-
ships without concrete semantics (see column ‘Ab-
stract rel.’) which we did not integrate either. ‘Depen-
dency’ relationships are also not integrated since they
can be expressed more explicitly in terms of ‘Usage’.
The column ‘Others’ states the appearance of entity
and relationship types that are specific to a paper’s
megamodeling domain.

4 AXIOMATIZATION

When developers want to use technologies unknown
to them, it is crucial for them to understand what a
technology has to offer and how it is conceptually
structured. In order to reach a high degree of un-
derstandability and precision for the vocabulary ex-
pressing such conceptual knowledge we present a for-
mal axiomatization. We formulate the axioms here in
predicate logic for ease of reading and brevity; see
SoLaSoTe’s website for mechanized versions.

For each group of axioms, we provide a natural
language description and illustrative examples. The
axiomatization starts with ontological classification in
terms of subtyping as well as domain and range for
relationships. Afterwards, integrity constraints as in-
spired by (Tran and Debruyne, 2012) are stated. We
illustrate the usage of the predicates with scenarios
for EMF9. Similar knowledge can also be gathered
for other technological spaces (Kurtev et al., 2002),
e.g., SQL-Ware or XML-Ware. An ontology based
on the axiomatization may reuse defined vocabulary
from an upper ontology such as DOLCE (Gangemi
et al., 2002) that, e.g., already specifies part-hood.

4.1 Artifacts

Several disjoint subtypes of a root type Entity form the
basis of the core vocabulary. The first such type is Ar-
tifact with digital entities as instances. We distinguish
subtypes of Artifact: files and folders are represented
as instances of the types File and Folder. Files and
folders may not only appear in the local file system
but on a website, subject to the subtype WebResource.
Further, we introduce the subtype Transient for arti-
facts that only exist during program execution. Fi-
nally, we introduce the subtype Fragment for artifacts
that only exist as parts of other artifacts. (A fragment
cannot be a file or folder at the same time.)

Whether something is defined as an instance of
Artifact or one of the subtypes depends on the cho-
sen level of abstraction. A database can either be in a
single file or scattered over a folder. Thus, one may
choose to only define it as an Artifact without choos-
ing a specific subtype. An artifact can have multiple
types. We introduce a set of illustrative artifacts in Ta-
ble 3 to which we will relate in the rest of the paper.
In tables like this, we provide the exemplary entities
or relationships in the left column and an informal de-
scription in the right column.

9http://eclipsesource.com/blogs/tutorials/emf-tutorial/
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Table 3: Exemplary artifacts for EMF.

Artifacts Comments
org.eclipse.emf.ecore This folder implements the metametamodel
org.eclipse.emf.ecore.EObject EObject is the root type of all modeled objects
org.eclipse.emf.ecore.EPackage A type for packages
MyMeta.ecore A metamodel written in Ecore
MyMeta.genmodel A configuration file for code generation
MyMeta.genmodel.ref A fragment referencing the metamodel from which code is generated
metaname A fragment defining a name for the metamodel
MyModel An transient model as a Java Object
MyModel.xmi A model serialized in XMI

Artifact(e)⇒ Entity(e).
File(a)⇒ Artifact(a).
Folder(a)⇒ Artifact(a).
WebResource(a)⇒ Artifact(a).
Transient(a)⇒ Artifact(a).
Fragment(a)⇒ Artifact(a)∧¬(File(a)∨Folder(a)).

4.2 Systems and Technologies

We introduce two basic subtypes representing soft-
ware: System and Technology. A system is a collec-
tion of artifacts supporting some use cases. Technolo-
gies, e.g., frameworks and libraries, provide func-
tionality meant to be reused in different systems—
possibly several times in each system.

System(e)⇒ Entity(e).
Technology(e)⇒ Entity(e).

A technology, system or an artifact can be com-
posed of artifacts. Such a composition relationship
is for example defined in DOLCE as ‘partOf’. If the
composite in a part-of-relationship is a fragment, all
parts have to be fragments as well. Examples for sys-
tems, technologies, fragments, and composition rela-
tionships are provided in Table 4.

Fragment( f )⇒∃a.Artifact(a)∧partOf ( f ,a).
partOf (p,w)∧Fragment(w)⇒ Fragment(p).

4.3 Definition and Implementation

We introduce Specification as an artifact type that
defines functional and non-functional requirements,
which are implemented by a system or technology.
A given specification can be implemented by several
systems or technologies which thus may count as vari-
ants of each other.

Instances of Function represent functions that map
input artifacts to output artifacts. A function is often
defined in a specification and then implemented in a
technology or a system. On a more detailed level, an
artifact contains the code that actually implements the
function.

In our sense, a Language instance is a set of
syntactic entities which may be represented as arti-
facts. Such sets are defined by specifications or im-
plemented by a technology. A specification may be
a grammar or a web document, e.g., the UML su-
perstructure10. A typical example for an implement-
ing technology is a compiler. Further examples for
such definition and implementation relationships can
be found in Table 4.

Specification(a)⇒ Artifact(a).
Function(e)⇒ Entity(e).
Language(e)⇒ Entity(e).
defines(a,e)⇒ Artifact(a)∧Entity(e).
implements(x,y)⇒ (Artifact(x)∨System(x)
∨Technology(x))∧Function(y)
∨Technology(x)∧Language(y).

Language(l)⇒ (∃s.Specification(s)∧defines(s, l))
∨ (∃t.Technology(t)∧ implements(t, l)).

4.4 Membership

Subsets of languages only cover a subset of syntactic
structures accepted by a language, where we do not
consider empty sets. The relationship subsetOf cov-
ers this subset relationship and subsetEqOf addition-
ally extends it by reflexivity.

subsetOf (l, l′)⇒ Language(l)∧Language(l′).
subsetOf (l, l′)⇒¬subsetOf (l′, l).
subsetEqOf (l, l′)⇒ Language(l)∧Language(l′).
subsetEqOf (l, l′)⇔ l = l′ ∨ subsetOf (l, l′).

Further, we use the types Tuple and Sequence to
enable the representation of tuples and sequences of
artifacts in our axiomatization, respectively. The sub-
script relationship ati is used to refer to an artifact in a
tuple or a sequence by an index. We assume that Pair
is a shortcut for tuples of two artifacts.

Tuple(t)⇒ Entity(t).
Sequence(t)⇒ Entity(t).
ati(a, t)⇒ Artifact(a)∧ (Tuple(t)∨Sequence(t)) for i ∈ N.

10http://www.omg.org/spec/UML/2.4.1/Superstructure/
PDF/
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Table 4: Exemplary part-hood, definition and implementation relationships for EMF.

Entities & Relationships Comments
Technology(EMF) Eclipse Modeling Framework
Technology(EMFCore) Covers core functionality for Ecore etc.
partOf(EMFCore,EMF) EMFCore is part of EMF
partOf(org.eclipse.emf.ecore,EMFCore) The ecore package is part of EMFCore
Technology(EMFPersistence) The technology for XMI serialization
partOf(EMFPersistence,EMF) The persistence framework is a part of EMF
System(MyModelProject) An eclipse EMF modeling project
partOf(MyMeta.ecore,MyModelProject) Metamodel is part of the project
partOf(MyMeta.genmodel,MyModelProject) Generation model is part of the project
partOf(metaname,MyMeta.ecore) Metamodel’s name is defined in the Ecore file
partOf(MyMeta.genmodel.ref,model.genmodel) Generation model refers to the metamodel
Language(XML) eXtensible Markup Language
Language(XMI) XML Metadata Interchange format
Specification(XMISpec) The XMI specification by the OMG
defines(XMISpec,XMI) The specification gives a definition for XMI
Language(ECore.XMI) The restricted XMI language for .ecore files
defines(MyMeta.ecore, MyModels.XMI) Metamodel defines the language of instance models
Language(MyModels.XMI) The restricted language for instance models in XMI
Language(JavaObjects) Language for Java objects at runtime
Language(ECore) The language for models in non-serialized form
Function(saveModel) Persists a given transient model in the XMI format
Function(loadModel) Loads a model from a given XMI file
implements(EMFCore,ECore) Core Technology implements ECore language
implements(EMF,ECore.XMI) EMF implements metamodel serialization
implements(EMFPersistence, saveModel) Persistence framework realizes serialization
implements(EMFPersistence, loadModel) Persistence framework realizes deserialization

Table 5: Exemplary relationships on subsetOf and elementOf for EMF.

Relationships Comments
subsetOf(XMI,XML) XMI is a subset of XML based on an OMG standard
subsetOf(Ecore.XMI, XMI) The XMI format for models is a restricted form of XMI
subsetOf(Models.XMI, XMI) The XMI format for instance models is a restricted form of XMI
elementOf(MyMeta.ecore,Ecore.XMI) Metamodel is written in the restricted XMI format.
elementOf(MyModel.xmi, MyModels.XMI) Instance model is written in restricted XMI for instances
elementOf(MyModel,JavaObjects) The transient model is a Java object

An artifact is an element of a Language instance,
if the artifact conforms to the defining specification.
Scenarios on language membership are presented in
Table 5. An artifact uses a language, if there is at least
one part that is an element of the language. Usage can
be similarly defined for systems and technologies.

elementOf (x,y)⇒ Artifact(x)∧Language(y)
∨Pair(x)∧Function(y).

elementOf (a, l)⇐∃s.defines(s, l)∧ conformsTo(a,s).

4.5 Conformance Relationship

An artifact may offer a formal description of a lan-
guage’s syntax and semantics. We introduce conform-
sTo to cover conformance of an artifact with a syntax
definition (a ‘schema’) where syntax should be un-
derstood here in a broad sense. For instance, we also
view types, as defined by type systems, as languages.

In order to make engineers aware of the meaning
of conformance, we axiomatize it as far as possible;
the axiomatization is idealized and incomplete. If the
schema and the instance are composite, for every part
of the instance exists a schema part such that the for-
mer conforms to the latter. Otherwise the instance is
not composite and it is an element of the language de-
fined by the schema part.

Actual conformance deviates from the idealized
axiomatization, if the mapping from schema compos-
ites to instance components or vice versa is not de-
terministic or otherwise unclear. We can further de-
fine logical equivalence for conformity informally as
follows. An instance conforming to a language spec-
ification artifact implies that the schema defines the
instance’s language. Illustrative examples on confor-
mance are presented in Table 6.

conformsTo(a,d)⇒ Artifact(a)∧Artifact(d)
conformsTo(a,a′)⇐ (∀p.partOf (p,a)∧∃p′.partOf (p′,a′)
∧ conformsTo(p, p′))∨∃t.defines(a′, t)∧ elementOf (a, t)
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4.6 Correspondence Relationship

Correspondence expresses that two artifacts of typ-
ically different languages represent the same data.
Correspondence is necessary when talking about
mapping or modeling technologies, such as Hibernate
and EMF.

We axiomatize an idealized correspondence of ar-
tifacts x and y as follows. If the artifacts are compos-
ite, then for each part of x there is a corresponding
part of y and vice versa. Otherwise a value level is
reached and both artifacts (parts) are equal.

correspondsTo(x,y)⇒ Artifact(x)∧Artifact(y)
correspondsTo(x,y)⇐
(∀px.partOf (px,x)⇒∃py.partOf (py,y)
∧ correspondsTo(px, py))
∧ (∀py.partOf (py,y)⇒∃px.partOf (px,x)
∧ correspondsTo(py, px))
∨ (@p.partOf (p,x)∨partOf (p,y))∧ sameAs(x,y)

The axiomatization above does not consider issues
due to even simple forms of ‘impedance mismatch’.
For instance, an artifacts may have parts that do not
correspond to any part on the other side. An arti-
fact may also have a level of composition that is not
present on the other side. Correspondence scenarios
can be found in Table 6.

4.7 Traceability

A trace is a nested sequence that refers to pairs of arti-
facts. For simplicity, we assume here that traces con-
tain artifacts (parts thereof) rather than ‘references’.
Traces help comprehending relationships between ar-
tifacts.

Trace(t)⇒ Sequence(t)
Trace(t)⇒∀i.∃p.ati(p, t)
⇒ Pair(p)∧ (∃a1,a2.at1(a1,p)∧at2(a2,p)
∧Artifact(a1)∧Artifact(a2))

For instance, a trace may represent ‘evidence’ for
conformance or correspondence relationships by pair-
ing up related parts (fragments).

traceOf (t,aa)⇒ Pair(aa)∧∃a1,a2.Artifact(a1)
∧Artifact(a2)∧at1(a1,aa)∧at2(a2,aa)∧Trace(t)

traceOf (t,aa)⇒∃a1,a2.at1(a1,aa)∧at2(a2,aa)
∧ (∀i.∃p.ati(p, t)⇒
(∃b1,b2.partOf (b1,a1)∧partOf (b2,a2)
∧at1(b1,p)∧at2(b2,p)))

4.8 Functions and Applications Thereof

We abstract from implemented operations in terms of
mathematical functions, whose domain and range are
languages. A technology implements functions that
can be reused in many contexts. For example, the
Java Architecture for XML Binding (JAXB) 11 offers
support for these major operations: Converting XML
content into a Java representation and vice versa and
further support for accessing and updating the Java
representation of the XML based content.

Function( f )⇒∃d,r.rangeOf (r, f )∧domainOf (d, f )
domainOf (d, f )⇒ Language(d)∧Function( f )
rangeOf (r, f )⇒ Language(r)∧Function( f )

A function is applied with a pair that consists of
an actual input and output. An input of an applica-
tion pair is valid, if it is an element of the function’s
domain. Further, the pair’s output is valid, if it is an
element of the function’s range.

inputOf (i, p)⇒ Artifact(i)∧Pair(p)
inputOf (i, p)⇒∃d, f .Language(d)∧Function( f )
∧at1(i,p)∧domainOf (d, f )∧ elementOf (i,d)
∧ elementOf (p, f )

outputOf (o, p)⇒ Artifact(o)∧Pair(p)
outputOf (o, p)⇒∃r, f .Language(r)∧Function( f )
∧at2(o,p)∧ rangeOf (r, f )∧ elementOf (o,r)
∧ elementOf (p, f )

At this point, we can clarify that artifacts do not
only manifest as files, folders, and fragments. The
type Transient proxies for artifacts that occur as inter-
mediate results—possibly ‘computed’ by functions.
Examples for transients and function application sce-
narios are given in Table 7.

Transient(t)⇒ Artifact(t)
Transient(t)⇒∃ f , p.Function( f )∧Pair(p)
∧ elementOf (p, f )∧outputOf (t, p)

Based on prior definitions, we extend the axioma-
tization for language membership as follows. An arti-
fact is an element of a language, if there exists a tech-
nology, which implements the language and provides
a function that accepts the artifact.

elementOf (p, f )⇒∃d,r, i,o.domainOf (d, f )∧ rangeOf (r, f )
∧ inputOf (i,p)∧outputOf (o,p)∧ elementOf (i,d)
∧ elementOf (o,r).

elementOf (a, l)⇐∃t.Technology(t)∧ implements(t, l)
∧∃ f .Function( f )∧ implements(t, f )
∧∃p.Pair(p)∧ elementOf (p, f )∧ inputOf (a, p)

11https://jaxb.java.net/
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Table 6: Exemplary correspondence and conformance relationships for EMF.

Relationships Comments
correspondsTo(MyModel,MyModel.xmi) The Java object corresponds to the XMI serialized format
conformsTo(MyModel,MyMeta.ecore) The transient instance model conforms to the ecore model
conformsTo(MyModel.xmi, MyMeta.ecore) The XMI instance model conforms to the ecore model

Table 7: Exemplary scenarios on function application for EMF.

Relationships Comments
domainOf(JavaObjects,saveModel) saveModel takes an instance model as a Java object as input
rangeOf(MyModels.XMI,saveModel) saveModel XMI files conform to the Ecore metamodel as output
Pair(SavePair) An input-output pair for saving a model
elementOf(SavePair,saveModel) The IO pair is a member of the save function
inputOf(MyModel,SavePair) The transient is the input of the pair
outputOf(MyModel.xmi,SavePair) The XMI file is the output

4.9 Facilitation and Usage

We describe another basic subtype, Concept, which
deals with conceptual entities at a higher level of ab-
straction, e.g., design patterns or protocols. These
concepts are practices that are defined in artifacts (i.e.,
more or less formal specifications). Thus, concepts
are a bit like languages. An entity may be said to con-
form to a concept, if it correctly follows the concept’s
definition. We require that one can derive a predicate
from a concept’s definition to decide on such confor-
mance.

Concept(c)⇒ Entity(c)
Concept(c)⇒∃a.Artifact(a)∧defines(a,c)

Next, we introduce the usage relationship which
is related to reuse of technologies and architectures in
software engineering. A technology, system or arti-
fact are used as soon as they are referred to. The us-
ing types are technology, system, and artifact except
that typically we do not expect a technology to use a
system.

A technology, system or artifact can use a lan-
guage. Then, at least a part of the using side has to
be written in this language. Concept usage is similar
to language membership on a more abstract level. A
system can use a concept that is defined by an arti-
fact, e.g., a design pattern, if some parts of it conform
to the concept, as discussed above. We specify the
types admitted to uses relationships in Table 8.

uses(x,y)⇐∃p.partOf (p,x)∧ elementOf (p,y)
uses(x,y)⇐∃s, p.defines(s,y)∧partOf (p,x)
∧ conformsTo(p,s)

A technology facilitates the compliance with a
concept, such as MVC or Restful services, by pro-
viding means to use it. Thus, facilitation implies a
deferred usage. If a system uses the technology in the
correct way, then it also uses the concept. Examples
of facilitation and usage can be found in Table 9.

Table 8: Types involved in uses relations, where the left side
is the user.

L
an

gu
ag

e

Te
ch

no
lo

gy

Sy
st

em

A
rt

ifa
ct

C
on

ce
pt

Language x
Technology x x x x
System x x x x x
Artifact x x x x x
Concept x

facilitates(x,y)⇒ Technology(x)∧Concept(y)
facilitates(x,y)⇒∀s.System(s)
∧ (uses(s,x)⇒ uses(s,y))

5 CONCLUSION

According to Smith et al. (Smith and Welty, 2001),
database and information systems, software engineer-
ing (in particular, domain engineering), and artificial
intelligence create a demand for the application of
ontologies in computer science. In this paper, we
are concerned with software engineering—not with
domain engineering, but with software technologies
used in software development or software systems.

The types of entities and relationships, as axiom-
atized in this paper, are useful in authoring metadata
that describes software technologies in a manner that
software developers may better understand how to use
the technologies and the languages that go with them.
Megamodels written in a language like MegaL (Favre
et al., 2012a) describe specific usage of technologies
in specific systems or patterns thereof. The emerg-
ing ontology SoLaSoTe serves as a knowledge base
to gather general facts from these models and to inte-
grate (to collect) megamodels.

SoLaSoTe complements other ontologies in the
software engineering field. For instance, Solanki et
al. (Solanki et al., 2016) introduce the suite of ontolo-

MODELSWARD 2017 - 5th International Conference on Model-Driven Engineering and Software Development

484



Table 9: Exemplary concepts, facilitation and usage relationships for EMF.

Entities & Relationships Comments
Concept(XMIserialization) XMI serialization is a concept
Concept(SoftwareModeling) Software Modeling is a concept
defines(XMISpec,XMIserialization) The specification describes how to serialize objects in XMI
uses(MyModelsProject,XMIserialization) The project can use the concept of XMI serialization
uses(MyModelsProject,SoftwareModeling) The project contains actual models
facilitates(EMFPersistence, XMIserialization) The EMF persistence framework supports the serialization
facilitates(EMF,SoftwareModeling) EMF supports developers to model software

gies ALIGNED connecting the fields of software
and data engineering. This suite contains software
engineering-specific knowledge, e.g., on the software
lifecycle12 that is regarded as a process and defined
by its activities. Oberle et al. (Oberle et al., 2004;
Oberle et al., 2006) discuss the definition of general
software ontologies resulting in a ‘Core Software On-
tology’, a ‘Core Ontology for Software Components’
and a ‘Core Ontology of Services’13.

Clearly, different ontologies may exist for one do-
main (Corcho et al., 2006). The kind of knowledge
and the ontology’s structure depend on the point of
view. Based on our previous research we had a cer-
tain scope in mind and we matured our point of view
by a literature survey. A more extensive study pos-
sibly with additional research questions is, of course,
an interesting direction for future work.

In developing the emerging SoLaSoTe ontology,
we aim at applying relevant best practices or qual-
ity criteria for ontologies (Corcho et al., 2006). For
each concept, there is informal text meant to make
the axioms more understandable and to motivate the
concepts and their relationships. Extensibility is pro-
vided because new subtypes of given concepts and
more refined relationships can be introduced. We cov-
ered technologies across three different technological
spaces (only EMF is shown in this paper). This makes
us assume that the axiomatization is coherent.

The axiomatization mainly serves as a reference
schema and ‘semantics’ for a vocabulary to be used in
technology documentation. The axioms describe gen-
eral properties of relationships; they are ‘blueprints’
for interpretations (Lämmel and Varanovich, 2014)
(in fact, software analyses) that implement relation-
ships for specific technologies modeled by specific
megamodels. A limited version of the ontology is in
use in the semantic wiki of ‘101’ (Favre et al., 2012b).
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