
The Power of a Model-Driven Approach to Handle Evolving Data
Warehouse Requirements

Said Taktak1, Saleh Alshomrani2, Jamel Feki2 and Gilles Zurfluh3

1University of Sfax, FSEGS Faculty, Miracl Laboratory, Sfax, Tunisia
2Faculty of Computing and IT, University of Jeddah, Jeddah, Saudi Arabia

3University of Toulouse 1 Capitole, IRIT Laboratory, Toulouse, France

Keywords: Data Warehouse, Evolution Modeling, OLAP Requirements, MDA, M2M, M2T.

Abstract: The Data Warehouse (DW) is characterized by complex architecture, specific modeling and design
approaches. It integrates data issued from operational data sources in order to meet decision-makers’ needs
by providing answers for OLAP queries (On-Line Analytical Processing). In practice, both data source
models and decision-makers’ analytical requirements evolve over time and, therefore, lead to changes in the
DW multidimensional model. In this evolving context, we have developed the DWE (Data Warehouse
Evolution) framework. DWE automatically propagates the changes of the data source data-model on the
DW data-model. This paper proposes a model-driven approach for extending DWE in order to consider a
further related evolutionary aspect: The evolution of decision-makers’ needs. It deals with the propagation
of these evolutions on the DW multidimensional model. This approach relies on a classification of evolution
scenarios and a set of transformation rules for the identification of evolution operations to apply on the DW.

1 INTRODUCTION

DW modeling has been considered, for more than
one decade, as a real challenging research topic for
which several approaches are proposed. Three major
categories of approaches for designing a DW
schema (i.e., data-model) are well known in the
literature: Top-down (Kimball and Ross, 2002),
bottom-up (Golfarelli et al., 2001; Rusu et al., 2005),
and mixed (Nabli et al., 2005) approaches.

All these DW design methods rely on a rigid
assumption that the conceptual model of the DW
istime-invariant. However, in practice, this
assumption restricts the evolution of the real world
and, therefore, does not hold most of the time since,
the DW model may evolve due to internal and/or
external factors (e.g., business processes,
organization environment). Furthermore, it is
difficult to determine definitively the DW model at
the design phase; in fact, for sustainability issues, it
is often necessary to undergo changes after its
implementation. These changes are due to two main
reasons: (a) Evolution of analytical needs of
decision-makers: changes in these needs might
require extending the DW model (e.g. adding new
axes or subject of analysis), and (b) Evolution of

data source model (DS) dictated by the evolution of
the organization business processes (e.g., adding or
even deleting conceptual entities). To the best of our
knowledge, we claim that the problem of changes in
the DW model has not been sufficiently addressed
yet neither by the research community nor by the
DW software editors. As well, all evolution
strategies of the literature are at a single modeling
level: schemas before and after changes are conform
to the same meta-model. To the best of our
knowledge, in the DW domain, the evolution of
schemas expressed in different models have not yet
received their full part of investigation.

To alleviate this problem, we proposed in
(Taktak et al., 2015) an MDA (Model Driven
Architecture) approach that automates the
propagation of the evolution of the DS model
towards its associated DW model. In this paper, we
extend our contribution by considering the impacts
of changes of decision-makers’ requirements on the
DW data-model (DW). In this context, we suggest
an approach based on a classification of evolution
scenarios and a set of transformation rules for the
identification of evolution operations to apply on the
DW model.

Taktak S., Alshomrani S., Feki J. and Zurfluh G.
The Power of a Model-Driven Approach to Handle Evolving Data Warehouse Requirements.
DOI: 10.5220/0006209001690181
In Proceedings of the 5th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2017), pages 169-181
ISBN: 978-989-758-210-3
Copyright c© 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

169

This paper is organized as follows. In Section 2,
we give a review of works dealing with the DW
evolution problem. Section 3 describes our MDA-
based approach for the propagation of decisional
requirements evolution towards the
multidimensional DW model; this approach extends
our framework DWE «Data Warehouse Evolution».
Section 4 introduces our classification of evolutions
of plausible decisional requirements. Section 5
details our extension; it presents the process of
identifying DW evolution alternatives according to
our classification; in addition, it develops a set of
algorithms to derive the appropriate changes that
should apply on the DW model. Section 6 describes
the DWE technical implementation including MDA
transformations at two levels: Model-To-Model
(M2M) and Model-To-Text (M2T). The conclusion
section summarizes the paper and enumerates its
perspectives.

2 RELATED WORKS

The DW evolution problem has been the main topic
for several research studies. It is considered from
two main viewpoints: (a) Evolution of business
requirements of decision-makers, and (b) Evolution
of data source model. Hereafter, we review the
approaches for each trend.

2.1 Approaches based on DS Evolution
Model

Organizations’ business processes evolve over time.
This is due to the modification of existing processes
or to the emergence of new processes with new real
world objects. These evolutions affect the data-
model of the information system that feeds the DW.
In turn, the DW cannot be immunized against these
evolutions in its data source; consequently this
evolution deserves to be studied so that it becomes
semi-(automatically) propagated towards the DW
data-model, the DW ETL (Extract Transformed and
Load) process, and stored data. This evolution
problem was addressed from different viewpoints.
We can classify the related works into three main
categories: (i) Evolution of the DW multidimensional
model, (ii) Maintenance of materialized views, and
(iii) Adaptation of the ETL process.

Works addressing views maintenance consider
the DW as a set of materialized views directly built
on, and loaded from, the DS. In this category of
approaches, any change in the DS data-model
requires views maintenance efforts. As a practical

extension, Rundensteiner et al. (1997) and
Bellahsene (2002) proposed approaches for a
dynamic adaptation of materialized views in
response to an evolution of the DS DM. These
approaches maintain not only the schema views, but
also their instances (i.e., data). The main idea of this
contribution is to avoid recalculating views after DS
changes so that a new schema view derives from the
old one. More details on views maintenance in
multidimensional context are available in
(Bellahsene, 2002).

Other research contributions have offered
solutions for adapting the ETL process during the
DS data-model evolution. Among these works,
solutions proposed in (Papastefanatos et al., 2009)
and (El Akkaoui et al., 2011) provide a mechanism
for adapting the ETL tasks to the changes occurred
in the DS data-model. However, this study was
restricted to the ETL process without treating the
impact of the DS evolution on the DW model
(Dimensions, facts, hierarchies …).

To address these shortcomings, the authors of
(Wrembel and Bebel, 2007) defined a formal model
for a multi-version DW. They presented a set of
evolution operations that affect the DW schema and
its instances. These authors have distinguished two
types of DW versions: real version and alternative
version. The DW real version reflects the changes in
the real world environment of the organization
whereas the DW alternative version simulates the
change process; it bases on “What-If” analyses. In
order to validate their approach, they developed the
MVDW (Multi-Version Data Warehouse) prototype
for the maintenance of the DW and the management
of its versions. The major drawback of this solution
is the manual identification of the DW evolution
operations; it mostly requires high expertise of the
DW administrator and then is out of reach of end-
users.

2.2 Approaches based on Business
Requirement Evolution

Let us note that in mixed approaches (Phipps and
Davis, 2002; Nabli et al., 2005), the DW design is
based firstly on the DS model and, secondly, on the
decision-makers requirements. Obviously, we note
that decision-makers needs are not static since they
evolve through time. Therefore, the DW created
based on initial requirements may become obsolete
and not satisfy the new requirements. To overcome
this issue, it is necessary to consider the new
analytical requirements and adapt the DW to
encompass them. Among the research works of this

MODELSWARD 2017 - 5th International Conference on Model-Driven Engineering and Software Development

170

category, the authors in (Favre et al., 2007)
suggested an approach for the customization of
analyses based on "If-Then" rules model; this model
allows the users to integrate their own knowledge in
order to enlarge the analysis alternatives of the DW
by changing its schema. The suggested evolution
operations affect only two components of the DW:
dimensions and hierarchies. The authors have
developed a prototype called WEDriK (Warehouse
Evolution Driven by Knowledge) based on a set of
DW evolution algorithms to create new analytical
axes. The main goal of this work is the analytical
requirements introduced by each user are processed
and transformed into DW evolution operations.
However, the authors assume that users are skilled
enough to intervene properly during this task.
Moreover, note that the proposed changes are
simple: they do not cover all cases that decision-
makers may ask for.

To surmount this problem, Talwar and Gosain
(2012) studied the evolution of complex hierarchies
(multiple alternative hierarchies, dependent and
independent parallel hierarchies). They defined a set
of evolution operations equipped with constraints to
ensure data integrity and schema consistency of the
new DW model. Operations and constraints are
defined in ULD (Uni-Level Description language)
and MDD (Multilevel Dictionary Definition). This
study is an extension of the work of (Thakur and
Gosain, 2011) where the authors presented a
conceptual requirement-oriented framework called
DWEVOLVE for DW evolution. It analyzes the
changes in the requirements specified by
stakeholders as well as developers, and then
incorporates them into the DW by performing
appropriate additions, deletions and updates.
Nevertheless, the authors do not suggest mechanism
for automatic inference of evolution operations from
the decision-makers new needs. In fact, this task is
borne entirely by the DW administrator.

In the same context, authors in (Solodovnikova
et al., 2015) have also investigated the problem of
business requirements evolution. They defined a
formalism for modeling the new needs of decision-
makers and proposed a semi-automatic approach to
adjust and create a new version of the DW model.
However, the evolution operations supported by this
solution are simple and lack precision. For example,
when adding an attribute, the proposed algorithm is
able to identify the dimension to change but not the
role of the new attribute in the dimension: create a
new hierarchy, insert a level into an existing
hierarchy... Details about this operation are really a
heavy task left to a skilled user.

2.3 Discussion

The related works have focused on two
complementary categories of evolutions in DW
systems, namely evolution of the DS model and
evolution of decision-makers’ needs. We have
identified three deficiencies concerning i)
complementarity, ii) complexity of the evolutions,
and iii) automatic propagation of changes.

First, concerning the complementarity, to the
best of our knowledge, no solution has combined the
DS evolution with business requirements evolution.
Indeed, contributions have addressed these two
categories of evolution independently.

Secondly, few works were interested in studying
the DS evolution effects on the multidimensional
model. Moreover, most of these works provide
solutions touching a few isolated aspects and
treating simple evolution cases (i.e., Dimension
evolution, Fact evolution, ETL evolution)

Thirdly, automatic propagation was not a
concern in these works, and when addressed, it was
carried out in a traditional way.

Finally, from the technological side, we note that
all proposed solutions were realized in a
conventional software engineering context;
therefore, implementations are platform-dependent.
Obviously, using the MDA approach (OMG, 2004)
allows benefiting from its multiple advantages.

The objective of this paper is to extend our DWE
(Data Warehouse Evolution Framework) (Taktak et
al., 2015) initially designed to automate the
propagation of changes from DS towards the
multidimensional DW. This extension consists of
enriching DWE to accommodate the evolution of
decision-makers’ needs. This extension should
provide for a complete solution that will cover the
DS evolution and the decision-makers’ requirements
evolution. Our solution is compliant with the Model
Driven Engineering (MDE) methodology that
promotes the semi-automatic propagation of
business requirements towards the multidimensional
DW. Relying on MDE technology in DWE is a
challenging proof. In fact, MDE facilitates the
realization of the proposed extension. Consequently,
our proposed approach inherits benefits from this
technology (i.e. independence from platforms,
reduction of efforts, and improvement of the quality
of result). The strength of MDE is the reuse of
models; we profit from this advantage to reuse the
models of evolution and transformation mechanisms
already implemented in our DWE. Furthermore, we
introduce a new model to define the decision-
makers’ needs evolutions. In the remaining of this

The Power of a Model-Driven Approach to Handle Evolving Data Warehouse Requirements

171

paper, we present our approach that addresses the
DW model evolution problem, and we focus on
evolutions stemming from decision-makers.

3 OVERVIEW OF THE
PROPOSED APPROACH

Our MDA-based approach aims to automate the
propagation of the changes raised by decision-
makers, as new needs, towards the DW
multidimensional model. Figure 1 shows our
approach where the evolution of the DW model is
due either to an evolution of its DS model (Figure 1,
panel A) already treated in (Taktak et al., 2015), or
to an evolution of decision-makers needs (panel B)
which will be the focus of this paper.

Figure 1: Overview of our DW evolution approach.

For this purpose, we define an appropriate evolution
model for the new decision-makers’ needs; this
enables us reusing our DW evolution model (Taktak
et al., 2014) so that we keep the same M2T (Model-
To-Text) transformation rules for code generation.

Our approach bases on three evolution models:
i) DS Evolution Model (DSEM), ii) DW Evolution
Model (DWEV), and iii) Requirements Evolution
Model (REM). Besides, it applies two types of
transformations: M2M and M2T.

-DSEM: This model describes all evolution

operations that may affect the relational DS
elements (table, column...).

-DWEM: It describes all operations that may
affect the multidimensional structures (dimensions,
facts ...). These operations should derive from the
DS evolution model.

-REM: It describes the new needs of decision-
makers in terms of subject and axes of analysis. It
also allows defining the knowledge introduced by
the user (e.g. rules, formulas). This model will
transform into DWEM.

-M2M transformation: Generates the DWEM
from REM. It relies on automatic mapping
between these two models. M2M transformation
rules are implemented in QVT (Query-View-
Transformation) and use a set of meta-models
stored upstream as Ecore files.

-M2T transformation: Generates the code that
performs the DW model alteration; the generated
code results from the DWEM previously generated
by applying a set of transformation rules we have
formalized in MOF2Text. M2T process takes as
input the physical model (PSM) along with the
DW evolution models; it produces SQL script
file(s) for creating or modifying the DW model.
We have defined Acceleo templates for
transforming DWEM operations into an executable
script. This transformation process is valid as well
for the treatment of the DS evolution as for the
treatment of the needs evolution. In fact, this reuse
is feasible because these two transformations start
from the same DWEM evolution model.

In the next section, we classify decision-makers
needs into three classes; this helps us defining the
impact of each class on the DW multidimensional
model as a set of common operations.

4 CLASSIFICATION OF
DECISIONAL REQUIREMENTS
AND EVOLUTION SCENARIOS

The evolution of the decision-makers’ needs leads to
several cases of evolution on the DW model. We
group these evolution cases in three classes namely:
Evolution by derivation, Evolution by
reorganization, and Evolution by extension.
For illustration examples, we refer to the
multidimensional DW and its associated relational
DS modeled described in Figure 2.

MODELSWARD 2017 - 5th International Conference on Model-Driven Engineering and Software Development

172

Figure 2: Data Source model and its DW model.

4.1 Evolution by Derivation

This class of evolutions consists of using elements
of the DW model for which we derive new elements.
The DW administrator should be skilled enough to
provide knowledge to achieve this evolution.
Knowledge expressed as rules or formulae.

4.1.1 Derivation by Rule

For this derivation type, simply we need to define
rule(s) to apply on an element of the DW model in
order to derive a new element to integrate into the
same DW model. The general derivation form of this
could be of the following form:

n = (a)

where n is the derived attribute,  is a user-defined
extraction function, and a is a DW attribute.

The derivation by rule is convenient for complex
codes of entities (i.e., identifiers composed of small
pieces of information), as the French civil identifier
INSEE code (2-digits department code + 3-digits
city code), or a product code including the product
category and sub-category or even the country of
origin. We can easily derive (extract) new data from
these codes. In addition, a Date attribute likely to
generate the day, month, quarter… for a Time
dimension.

As an illustrative example, consider the DW in
Figure 2, and let us assume that a decision-maker
chooses to analyze the sales by Category of
products. The criterion of analysis Category (i.e.,
hierarchic parameter) is not currently present in the
multidimensional model despite it exists implicitly
in the data source. Nevertheless, the decision-maker
knows that the last digit of the product identifier
(Id_Prod) indicates the product category. The

derivation of the category exploits this knowledge as
an extraction rule.

Figure 3: Category created with a new hierarchy.

But, how to deal with the new extracted data
called Category? What is the role of this Category in
the DW model (is it a dimension, parameter within a
new or an existing hierarchy?). Here the insertion of
the Category creates a new hierarchy for the
D_PRODUCT dimension (cf. Figure 3). Logically,
the new hierarchy links the Id_Prod to the Category.

4.1.2 Derivation by Formula

This type of derivation consists of using a formula to
derive a new element to integrate into the DW
model. This derivation expresses as below:

n = F(a)

where n is the derived attribute, F is an arithmetic
function, and a is a DW attribute.

Let us proceed with our running sample DW and
assume that the decision-maker wants to analyze the
amount of Value Added Tax (VAT)of Sales according
to the three dimensions D_PRODUCT,D_TIME and
D_CUSTOMER. The VAT amount is not a measure
in the F_SALE fact; nevertheless, it is derivable by
the following formula:
VAT_Amount = Quantity * Unit price * VAT_Rate

Weak attributes VAT and Unit_Price in the
dimension D_PRODUCT, along with the measure
Quantity in the F_SALE fact are useful for
computing the required measure Amount_VAT for
the F_SALE fact.

4.2 Evolution by Reorganization

The second class of evolution consists of creating
new links between the DW model elements. This is
suitable since it avoids duplicating or recreating
existing elements. The reorganization process affects
mainly the temporal or spatial dimensions; however,
other scenarios could be possible. For example,
assume that the DW contains two facts: F_SALE for
Sales analysis associated with dimensions
D_CUSTOMER and D_PRODUCT (cf., Figure 4,
(1)), and the F_STOCK fact associated with
dimensions D_RETAIL_OUTLET and
D_PRODUCT (cf., Figure 4, (2)). If the decision-

The Power of a Model-Driven Approach to Handle Evolving Data Warehouse Requirements

173

maker chooses to analyze the Sales by
RETAIL_OUTLET and PRODUCT, the F_SALE fact
will then have to be connected to the dimension
D_RETAIL_OUTLET(cf., (Figure 4, (3)).

Figure 4: Reuse of the D_Retail_Outlet dimension.

4.3 Evolution by Extension

The third class of Evolution requires extending the
DW model by new elements extracted from its
associated DS. These evolutions apply when the
current DW model is inadequate to meet the new
requirement either by derivation or by reformulation.
In this case, it is necessary to identify which element
from the DS we should add to the DW.

For example, the decision-maker needs to
analyzing sales according to the products’ providers.
This data is currently absent in the DW but the
Provider table exists in the DS. Besides, we have a
Foreign Key constraint from Product to Provider
indicating the existence of a functional dependency
associating each product to its provider. PRODUCT
feeds the dimension D_PRODUCT of the F_SALE
fact then Provider becomes a hierarchic level
(parameter) in the D_PRODUCT dimension.

These sample evolution examples highlights the
importance of propagating the evolutions of the
decision-makers’ requirements towards the DW.
Two issues arise concerning the DW evolution: 1)
Which modifications to bring to the DW model to
meet the new needs (i.e. creating dimension, fact, or
level), 2) How to accomplish these modifications

efficiently and especially fast; speed is a vital factor
for some decision-making systems.

The trivial solution completely rebuild the DW
starting from the new collection of decision-makers’
needs. This solution is inadequate since the DW
reconstruction is a heavy and complex task, which
requires a lot of time, efforts and high costs. More
accurately, it is not feasible especially in domains
where the evolution frequency is high (Bellatreche
and Wrembel, 2013).

To deal with this problem, we proposed a model
driven approach for propagating changes of the
decision-makers’ requirements towards the DW
model in an almost automatic way, thus avoiding the
need for full reconstruction of the DW. To do so, we
have defined a set of transformation rules to
transform new decision-makers’ requirements into
DW evolution operations. Subsequently, we present
these transformation rules textually (as algorithms)
then we formalize them using QVT.

5 TRANSFORMATION RULES
BY EVOLUTION STRATIGIES

We textually explain the transformation rules for
generating the modifications to apply on the DW
multidimensional model due to the evolution of
decision-makers’ requirements. To do so, we rely on
the evolutions classification introduced in the
previous section for determining the different
evolution cases. These cases are:

- Statico: Nothing to change if the current DW
model allows meeting the new requirement.
Otherwise, we verify if a reorganization of the DW
model is possible.

- Reorganization: Applies when the necessary
elements for the new requirement (i.e., measure or
attribute) already exist in the DW model but their
current role is not adequate. In this case, we
redefine the role of these elements to support the
new requirement.

- Derivation: If a necessary element for the
new requirement does not exist in the DW model,
we verify whether it is derivable from another DW
element. In such a case, the derivation applies
according to knowledge introduced by the DW
administrator (i.e., rule or expression). Otherwise,
if the missing element is derivable from the DS,
we extend the DW model with the derived
element.

- Extension: This alternative is the most
delicate evolution. It consists of expanding the

MODELSWARD 2017 - 5th International Conference on Model-Driven Engineering and Software Development

174

current DW model with new elements to extract
from the DS.

Choosing the evolution alternative to apply to the
DW model (i.e., Reordering, Derivation, and
Extension) relates to the Main algorithm.

Note that these alternatives are usable
independently or in combination.

In the following, we detail these alternatives and
we specify for each case the evolution operations to
apply on the DW multidimensional model. To do
so, we consider the following notation:

- Req: a new requirement
- A: the set of attributes describing Req; A

divides into two subsets A = Aquant∪	Aqual
- Aqual: all qualitative attributes of Req
- Aquant: all quantitative attributes of Req,
- DW: the set of elements of the DW

multidimensional model (i.e., schema)
- DS: the set of elements of the DS model.

The Main algorithm depicts the principle of
defining the evolution strategy. It calls three
algorithms Reorganize (cf., Algorithm 2), Derive
(cf., Algorithm 3) and Extend (cf., Algorithm 4).

Algorithm 1: Main.

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.

Input:
 Req, DW, DS
Begin:
if DW_answer(Req) then
 Null // No changes to do on the DW model
else if A ⊆ DW then
 Reorganize() // see Reorganize algorithm
 else
 for each a ∈ A
 if a ∉ DW and (Rule(a) or Formula(a)) then
 Derive() // see Derive algo
 else if a ∉ DW and a ∈ DS then
 Extend() // see Extend algo
 end if
 end for
 end if
end if
End.

DW_answer(Req)is a Boolean function that returns
True if the DW model can already meet the new
requirement (Req),and False otherwise.

Rule(a) is a Boolean function True if the attribute
a is defined through a rule, and False otherwise.

Formula(a) is a Boolean function True if
attribute a is defined through a formula, and False
otherwise.

5.1 Reorganization

The starting point of the reorganization process (see
algorithm 2) is the identification of the DW model
elements (fact, dimensions) that meet the new
requirement. This is through two functions
Find_Fact and Find_Dimension; they return
respectively the fact containing quantitative
attributes Aquant and dimensions containing
qualitative attributes Aqual. The fact fnew will be
enriched with the set of measures Aquant attributes.
Dimensions containing Aqual attributes are refined by
the function Refine before their link to the new fact.
This function prunes hierarchies by eliminating
unnecessary attributes for the new requirement.

Algorithm 2: Reorganize.

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.

Input:
Aquant , Aqual
Begin:

f = Find_Fact(Aquant)
D= Find_Dimensions(Aqual)
if f ==Then

fnew.M = Aquant
else

fnew= f
end if
for each d ∈ D

dnew= Refine(d)
dnew.f = fnew

Add_Dimension(dnew)
end for
Add_Fact(fnew)

End.

5.2 Derivation

The Derive algorithm describes the derivation
process; it takes as input the attribute to derive as
well as the knowledge given by the DW admin as
rules or formulae. We treat differently qualitative
and quantitative attributes of this class.

If the derived attribute ad is quantitative, and if
there is a fact f related to the dimension that contains
the qualitative attributes of the new requirement,
then ad adds to f as new measure mnew. Otherwise,
we create a new fact fnew for the derived attribute ad.

If the derived attribute ad is a qualitative
attribute, it necessarily belongs to a dimension; its
position generally depends on the asource attribute in
the rules. If asource belongs to a terminal level lt then
anew becomes a terminal level lnew in the same
hierarchy as lt. Otherwise, we create a new hierarchy
hnew that contains ls level and all its predecessors

The Power of a Model-Driven Approach to Handle Evolving Data Warehouse Requirements

175

levels. lnew adds to the new hierarchy as a new
terminal level.

Algorithm 3: Derive.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Input:

ad: a derived Attribute

asource: an attribute of DS model used within a rule or formula

Aquant , Aqual.

Begin:

if ad∈Aquant and formula(ad) then

 f = Find_Fact(Aqual) //find the fact linked to dimensions

 containing Aqual

 if f == then

 fnew.M = fnew.M ad // define the measure of the new fact

 fnew.D = Find_Dimensions(Aqual) //find dimensions

 containing Aqual

 Add_Fact (fnew)

 else

 mnew = ad ; mnew.fact = f

 Add_Measure (mnew)

 end if

else if ad∈Aqual and Rule(ad) then

 ls = Find_Level(asource) // return level containing asource

 if Terminal_Level(ls) then

 lnew.h = ls.h //hierarchy of level lnew is ls hierarchy

 lnew.p = ad // parameter of lnew is the derived attribute ad

 lnew.pred = ls // the predecessor level of lnew is ls

 else

 hnew.d = ls.h.d //dimension of hnew is the dimension of ls

 hnew.L = l1..ls //the levels of hnew are all ls predecessor levels

 Add_ hierarchy (hnew)

 lnew.p = ad ; lnew.pred = ls ; lnew.h = hnew

 end if

 Add_ Level(lnew)

end if

End.

5.3 Extension

The Extend algorithm defines the principle of this
extension, which enriches the DW model with
elements extracted from the DS according to the
new decision-maker requirement. We assume that a
semi-automatic association between attributes of the
new requirement and the DS attributes is provided;
this treatment could use a semantic resource or a
dictionary of the DS attributes. The role of each
element depends on the type (quantitative or
qualitative) of its associated attribute and its
membership table in the DS.

If the attribute to extract ae (ae belongs to a table
t) is qualitative, four situations arise to define the
role of ae in the multidimensional model:

- If table t feeds a level l then it becomes a low
attribute by applying the Add_Attribute evolution
operation.
- If t feeds no levels, and if t is referenced by a table
t’ which feeds a terminal level l’, then ae becomes an
attribute for a new terminal level lnew by applying the
Add_Level evolution operation.
- If t does not feed any level, and if t is a table
referenced by t' and refers to a table t”, t' and t”
respectively feed the two successive levels l’ and l",
ae can then feed a hierarchical level inserted between
the two levels l’ and l".
- If t does not feed any level and if t is referenced by
table t’ which feeds a non-terminal level l’ then ae

creates a new hierarchy hnew by calling the
Add_Hierarchy evolution operation. hnew contains
the level l’ and all its predecessors levels of the
hierarchy of l’. Then, we create a new terminal level
lnew for the new hierarchy hnew.
When the extracted attribute ae is quantitative, if t
(table of ae) feeds a fact f, then ae becomes a
measure of f. Otherwise, we create a new fact with
the new measure ae.

Algorithm 4: Extend.

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.

Input:

DW, DS,

ae : attribute to retrieve from the data source

Begin:

t = Find_Table(ae)// return the table which contains ae

if ae ∈	Aqual then

 l = Load_Level(t) //return the level which is loaded from t

 if l == null then

 t’ = ref(t) // return the table which references table t

 t’’ = IsRef (t) // return the table which is referenced by t

 if t’ not null and t’’ not null then

l’= Load_Level(t’)

l’’ = Load_Level(t’’)

 if l’’.pred == l’ then

 lnew.h = l’.h ; lnew.pred = l’ ; lnew.succ = l’’

 Add_Level(lnew) // add level lnew

 end if

 else if t’ is not null then

l’ = Load_Level (t’)

if Terminal_Level (l’) then // add terminal level

 lnew.p = ae ; lnew.pred = l’ ; lnew.h = l’.h

else // add hierarchy and a new level

 hnew.d = ls.h.d

 hnew.L = l1.. l’ // the level in the new hierarchy

 Add_Hierarchy (hnew)

 lnew.p = ae ; lnew.pred = l’ ; lnew.h = hnew

 Add_Level (lnew)

 end if

 end if

 else

MODELSWARD 2017 - 5th International Conference on Model-Driven Engineering and Software Development

176

27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.

anew.p = l.p

Add_Attribute(anew)

 end if

else

 f = Load_Fact(t)

 if f not null then

 mnew = ae ; mnew.fact = f

 Add_Measure (mnew) // add measure mnew to the fact f

 else

 fnew. M = ae ; Add_Fact(fnew) // add fact fnew

 end if

end if

End.

6 IMPLEMENTATION

To validate our approach, we are currently
improving our software prototype DWE (Data
Warehouse Evolution). DWE© is implemented on
the platform Eclipse Modeling Framework (EMF)
which is a complete environment for MDA
paradigm. Figure 5 shows the overall architecture of
DWE© which offers two features for evolution: i)
Evolution of DW model according to changes
occurred in its DS model, which is developed in
(Taktak et al., 2015); ii) Evolution of the DW model

to meet the new needs of decision-makers. This
paper focuses on this latter feature.
The DW evolution process starts with the modeling
of the new requirements and aims to generate the
requirement evolution model (REM). Next is the
M2M step that transforms the REM into DWEM.
Once the DWEM is generated, thereafter the new
DW model displays graphically; this enables the
DW administrator to observe and study the effects
(i.e., suggested changes) of the DW-evolutions
operations. At this stage, the DW administrator can
validate these changes or adapt them according to
the evolution requirements. Finally, the M2T
process executes; it transforms the DWEM into
script for DW alteration. Next, we detail these steps.

6.1 Modeling Decision-makers
Requirements

This step takes as input the new requirements
expressed as queries, rules or formulae and returns a
Requirements Evolution Model (REM) compliant to
the Meta-Model in (Solodovnikova et al., 2015)
depicted in Figure 6. A new requirement has
quantitative and qualitative attributes, arithmetic
operations (i.e., formulations) and logical
expressions (i.e., rules).

Figure 5: Architecture of the DWE prototype.

The Power of a Model-Driven Approach to Handle Evolving Data Warehouse Requirements

177

Figure 6: Requirements Evolution Meta-Model (Solodovnikova et al., 2015).

6.2 Implementation of M2M
Transformations in QVT

The first aim of our approach is to determine the
evolution operations to apply on the DW model after
the emergence of new analytical needs. Figure 7 lists
transformations potentially applicable to the DW
according to the evolution strategies. Several
evolution situations occur.

Figure 7: DW evolution operations for new requirements.

In this section, due to space constraint, we illustrate
only the definition of transformation rules, which
transform a new requirement into the Add_Fact
evolution operation on the DW.

Each new requirement, defined through a

dedicated model for analytical needs, automatically
converts into evolution operations in the target
model (DW evolution model).

In QVT, a set of relations specify a
transformation between two models. A relation has:

- Two or more domains: Each domain has a
set of elements related to the candidate model;

- Checkonly / Enforce: A domain can be
marked Checkonly or Enforce.

Checkonly (C) checks if there is a match in the
model that satisfies the relation. If the match is not

satisfied then the domain must not be modified.
When a domain is marked Enforce (E) and the
match is not satisfied, then the model must be
modified in order to satisfy the relation:

- Pattern matching: A pattern appears in a
domain and allows the selection of a portion of the
candidate model.

- When: Defines the necessary conditions in
order to verify the relation (i.e. Precondition).

- Where: Defines the conditions that all
elements of the involved model in the relation
must satisfy (i.e. Post-condition).

In a transformation, we find two types of
relations: top-level and non-top-level. The execution
of a transformation causes the execution of many
top-level relations. Non-top-level relations are
invoked from the Where clause of top-level relations
or from other non-top-level relations OMG (2009).

Figure 8: Graphical representation of the QVT relation
Main.

Now, we illustrate the QVT formalization of the
NewRequirement_To_AddFactrule.

We present the relation Main that is the entry
point of the transformation process. It contains
elements of the two following models (cf. Figure 8):

- « rem » model conforms to REMM
(Requirement Evolution Meta-model),

MODELSWARD 2017 - 5th International Conference on Model-Driven Engineering and Software Development

178

- « dwem » model conforms to DWEMM
(DW Evolution Meta-model).

The Domain element of the « rem » model is
marked with « C » (Checkonly); this means when a
transformation occurs in this direction (i.e. the
direction of a checkonly domain) it simply checks if
there is a valid match in the relevant model that
satisfies the relationship. The domain of the « dwem
» model is marked with « E » (Enforce); this means
when a transformation occurs in this direction (i.e.
the direction of the model of an enforced domain), if
the checking fails then the target model « dwem » is
modified to satisfy this relation. The left side of this
relation describes the elements of the source model «
rem », which transforms into elements of the target
model « dwem ». More specifically, a new
requirement from the left « nr: New_Requirement »
transforms into evolution operation(s) for the DW «
dweo: Dw_Evol_Operation» by invoking the
relation
New_Requirement_TO_Dw_Evolution_Operation
(nr, dweo) specified in the where clause.
Consequently, the following relations perform:

- New_Requirement_To_AddDimension,
- New_Requirement_AddLevel,
- New_Requirement_To_AddFact,
- New_Requirement_To_AddMeasure,
- New_Requirement_To_AddParameter, and
- New_Requirement_To_AddAttribute.

Figure 9: QVT relation NewRequirement_To_AddFact.

We focus on the definition of
New_Requirement_TO_Add_Fact relation. Figure 9
describes the relation that transforms a new
requirement « nr » into a DW evolution operation
Add_Fact. Since we are treating the DW evolution

according to the extension strategy, we have
elements from the DS model (« Domain:
Ds_Schema») in the New_Requirement_
TO_Add_Fact relation. In fact, a quantitative
attribute aQuant (in a new requirement nr) which
belongs to a table t of the DS model « dss» may
create a new fact newf in the DW model « dws», if
the table t does not load any fact of the « dws».
Then, the AQuant attribute feeds a measure of the new
fact newf via the relation AttributeQuant_
to_Measure(aQuant,m). The dimensions of newf will
be deducted from the qualitative attributes present in
the new requirement nr using the relation
AttributeQual_To_Dimension (aQual,d).

6.3 Implementing M2T
Transformations

We use Acceleo plugin that implements the
MOFM2T standard of the OMG (OMG, 2009).
Acceleo provides tools for generating codes from
models. This generation of code conforms to a
template-based approach. A template is a text
containing placeholders to fill with information
extracted from the input model. For our running
example, the input model is the DW evolution model
issued from the requirement evolution model (REM).

[comment encoding = UTF-8 /]

[modulegenerate('DWEV_MODELS/META-

MODELS/DW_EV_MM.ecore')]

[templatepublicgenerate(y : dwevm)]

[comment @main /]

[file ('script OMB.txt',false,'UTF-8')]

OMBCONNECT

orcl/orcl@localhost:1522:ORCL

OMBLIST PROJECTS

OMBCC 'MY_PROJECT'

OMBLIST ORACLE_MODULES

OMBCC 'SOURCE'

[for (op :

DW_Evolution_Operation|y.DW_Evolution_Oper

ation)]

<%if (op.evolutionType == 'AddFact') {%>

OMBCREATE CUBE

'[op.fnew.name.trim().toUpper()/]'\

SET PROPERTIES (BUSINESS_NAME,
DESCRIPTION, DEPLOYMENT_OPTIONS)\

Figure 10: Extract from the Acceleo template for the
generation of OMB script.

The Power of a Model-Driven Approach to Handle Evolving Data Warehouse Requirements

179

VALUES ('[op.fnew.name/]_Cube',

'[op.fnew.name/]_Cube', 'Deploy All')

[for (m : measure|op.fnew.measure)]

OMBALTER CUBE

'[op.fnew.name.trim().toUpper()/]' ADD

MEASURE '[m.name/]'\

SET PROPERTIES

DATATYPE,PRECISION,SCALE,BUSINESS_NAME,DE

SCRIPTION)\

VALUES

('NUMBER',10,2,'[op.fnew.name/][m.name/]'

,'[op.fnew.name/][m.name/]')

[/for]<%}%>

#...............................

[/template]

Figure 10: Extract from the Acceleo template for the
generation of OMB script (Cont.).

For M2T transformations, we developed a PSM
(Platform Specific Model) as an Acceleo Template
for generating the code (cf., Figure 10) for the target
platform Oracle Warehouse Builder (OWB). Our
Template generates OMB (Oracle MetaBase) script
that runs under OMB-Plus with an Oracle
JDeveloper or in an OMB-Plus console. The
execution of this template generates the code to
connect to OWB; it modifies the DW data-model.

7 CONCLUSION

In this paper, we have addressed the problem of
evolution in the decision support systems. In
particular, we have studied the effect of the
evolution of decision-makers’ requirements on the
multidimensional DW model. To do so, we have
proposed an extension of our DWE (DW Evolution)
prototype that addresses evolutions coming from
data sources as well as evolutions due to the new
requirements of decision-makers. We have
elaborated a classification of scenarios of possible
evolutions namely reorganization, extension or
diversion. Furthermore, for each of these evolution
classes, we have proposed a process for identifying
DW evolution operations (add fact, add level...). Our
approach takes advantage of the Model-To-Text
transformations implanted in our DWE, which we
reuse to transform these new evolution operations
into OMB executable scripts.

 This work is currently opening up many
perspectives. First, we plan for a case study to

evaluate the efficiency of transformation rules. As a
further step, we intend to study the effect of such
evolutions on the ETL (Extract-Transform-Load)
process, which in turn, must evolve to take into
account the effects of the DW changes on the
existing loading procedures.

REFERENCES

Bellahsene, Z., 2002. Schema Evolution in Data
Warehouses. Knowledge and Information
Systems, 4(3), (pp. 283-304).

Bellatreche, L., Wrembel, R. (2013). Evolution and
Versioning in Semantic Data Integration Systems.
Journal on Data Semantics, (2), (pp. 57-59).

El Akkaoui, Z., Zimànyi, E., Mazón, J. N., Trujillo. J.,
2011. A model-driven framework for ETL process
development. In Proceedings of the ACM 14th
international workshop on Data Warehousing and
OLAP (DOLAP '11), (pp. 45-52). New York, USA.

Favre, C., Bentayeb, F., Boussaid, O., (2007). Dimension
Hierarchies Updates in Data Warehouses: a User-
driven Approach. In 9th International Conference on
Enterprise Information Systems (ICEIS’07), (pp. 206-
211), Madeira, Portugal.

Golfarelli, M., Rizzi, S., Vrdoljak, B., 2001. Data
Warehouse Design from XML Sources. In
proceedings of ACM International Workshop on Data
Warehousing and OLAP (DOLAP’01), (pp. 40-47),
Atlanta, GA, USA.

Kimball, R., Ross, M., 2002. The Data Warehouse Toolkit.
Wiley & Sons. New York, 2nd edition.

Nabli, A., Soussi, A., Feki, J., Ben Abdallah, H., Gargouri,
F., 2005. Towards an Automatic Data Warehouse and
Data Mart Design, 7th International Conference on
Enterprise Information Systems (ICEIS’05), (pp. 226-
231), Miami, USA.

OMG, 2004. Object Management Group: Model Driven
Architecture (MDA).
http://www.omg.org/cgibin/doc?formal/03-06-01.

OMG, 2009. Object Management Group: Meta Object
Facility (MOF) 2.0 Query/View/Transformation,
version 1.1. http://www.omg.org/spec/QVT/1.1/Beta2/

Papastefanatos, G., Vassiliadis, P., Simitsis, A., Sellis, T.
Vassiliou, Y., 2009. Rule based Management of
Schema Changes at ETL Sources. International
Workshop on Managing Evolution of Data
Warehouses (MEDWa’09), (pp. 55-62), Riga, Latvia.

Phipps, C., Davis, K., 2002. Automating data warehouse
conceptual schema design and evaluation. In the 4th
Intern. workshop Design and Management of Data
Warehouses. Canada, 2002, (pp. 23-32).

Rundensteiner, E. A., Nica, A., Lee, A. J., 1997. On
Preserving Views in Evolving Environments. In the 4th
International Workshop Knowledge Representation
Meets Databases (pp.131–141).

MODELSWARD 2017 - 5th International Conference on Model-Driven Engineering and Software Development

180

Rusu, L. I., Rahayu, W., Taniar, D., 2005. A methodology
for Building XML DW. In International Journal of
Data warehousing & Mining, 1(2), (pp.67-92).

Solodovnikova, D., Niedrite, L., Kozmina, N., 2015.
Handling Evolving Data Warehouse Requirements. In
the East European Conference on Advances in
Databases and Information Systems (pp. 334-345).
Springer International Publishing.

Taktak, S., Feki, J., Zurfluh, G., 2014. Toward Evolution
Models for Data Warehouses. 2nd Intern. Conference
on Model-Driven Engineering and Software
Development. Lisbon, Portugal, (pp. 472-479).

Taktak S., Alshomrani S., Feki J., Zurfluh, G., 2015. An
MDA Approach for the Evolution of Data
Warehouses. Intern. Journal of Decision Support
System Technology (IJDSST), 7(3) (pp. 65-89).

Talwar, K., Gosain. A., 2012. Implementing schema
evolution in data warehouse through complex
hierarchy semantics. In the International Journal of
Scientific and Engineering Research 3 (pp.917–922).

Thakur, G., Gosain, A., 2011. DWEVOLVE: A
Requirement Based Framework for DW Evolution. In
SIGSOFT Softw. Eng. Notes 36, 6 (pp. 1-8).

Wrembel, R., Bębel, B., 2007. Metadata Management in a
Multiversion DW. In Journal on data semantics VIII
(pp. 118-157). Springer Berlin Heidelberg.

The Power of a Model-Driven Approach to Handle Evolving Data Warehouse Requirements

181

