
Use of Architecture Description to Maintain Consistency in Agile
Processes

Aurélien Chichignoud1, Florian Noyrit2, Laurent Maillet-Contoz1 and François Terrier2
1Software and System Engineering Department, CEA, DILS, Point Courrier n°174, Gif-sur-Yvette, France

2STMicroelectronics, 12 rue Jules Horowitz, Grenoble, France

Keywords: Change Management, Agility, Traceability, Impact Analysis, Model-driven Engineering, Consistency,
Architecture Description.

Abstract: The development of highly complex products requires the maintenance of a huge set of inter-dependent
documents, in various formats, developed concurrently according to agile methods. Unfortunately, no tool or
methodology is available today to systematically maintain consistency between all these documents.
Therefore, according to observations made in STMicroelectronics, when a document changes, stakeholders
must manually propagate the changes to the impacted set of dependent documents. For various reasons, they
may not well propagate the change, or even may not propagate it at all. Related documents thereby diverge
more and more over time. This is a source of bugs that are difficult to identify and fix; potentially jeopardizing
product reliability and quality. This paper proposes a methodology to help stakeholders to systematically
maintain consistency between documents, based on the Architecture Description concept introduced by
ISO42010. First, a model is defined to describe completely correspondences between Architecture
Description Elements of documents. This model is designed to be independent of documents formats, selected
system development lifecycle and the working methods of the industry. Second, these correspondences are
analyzed in case of document modification in order to help stakeholders maintaining corpus consistency. A
tool has been prototyped to evaluate the approach.

1 INTRODUCTION

“Every system has an architecture” (“IEEE
Recommended Practice for Architectural Description
of Software-Intensive Systems,” 2000) and
describing it is the point of the development process.

However, in the context of complex system
engineering, the development is made from various
developers and each of them contributes his/her
expertise on his/her specific activities. Also,
throughout the development process, those various
developers produce documents (as source code,
graphics, database schema, text document, data
sheets, diagrammatic representations, specification or
design models, screenshot) describing the system.
Those documents encode information in various
formalisms with various degrees of formality, from
structured data with formal semantics to completely
unstructured-data. It is the entire set of these
documents that describes the system.

The documents contributing to the architecture
description are not independent from each other

(Mäder et al., 2007). Indeed, the production of new
documents during the development is likely to result
from the refinement or composition of existing ones,
extracting or referencing information from existing
document. In this context, modification of one of
these documents may impact all the system
description, forcing developers to allocate time to
propagate the change. Indeed, editing a document
may introduce inconsistency in the architecture
description (Skaf-Molli et al., 2006).

To address the problem of consistency in complex
architecture description, today’s industrial practice
relies on two (usually complementary) techniques: a
systematic development process and collaborative
development tools (Nentwich, 2005). However,
current development processes hamper agility and
thereby reactivity to change in customers’ needs
which is critical to our industry sector, namely
electronics and semiconductors manufacturing,
where the market moves rapidly (Leachman et al.
(Leachman and Ding, 2007)). Unfortunately, agile
development practices don’t scale well because their

Chichignoud A., Noyrit F., Maillet-Contoz L. and Terrier F.
Use of Architecture Description to Maintain Consistency in Agile Processes.
DOI: 10.5220/0006207804590466
In Proceedings of the 5th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2017), pages 459-466
ISBN: 978-989-758-210-3
Copyright c© 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

459

iterative and parallelized natures imply an
overloading team synchronization that is neither
sustainable nor efficient in our industrial context.
Regarding the tooling, despite the wide range of
collaborative software that exists to share easily
information, there is no general, formal and standard
way to automate the notification and the propagation
of changes in architecture descriptions that use
heterogeneous documents formats.

In this paper we report on the scalability issues of
agile practices in industrial context and we propose a
methodology that addresses this problem by
providing formal means to capture and maintain links
between documents. This methodology is the result
of the collaboration between the CEA LIST and
STMicroelectronics.

The remainder of this paper is as follows: after a
presentation of the key issues for maintaining
consistency in industry in section 2, a presentation of
the related work is given in section 3. In section 4 we
present the proposed approach based on the
ISO42010 standard, and the extension made to adapt
this standard. Then we evaluate the approach in
section 5. Finally we give a conclusion in section 6.

2 KEY ISSUES FOR
MAINTAINING CONSISTENCY

Nowadays, the systems on chip developed by
STMicroelectronics are composed from several
processors, a hundred Intellectual Property block (a
reusable unit of logic or chip layout design), several
tens of million lines of software code and may involve
a hundred of stakeholders. Time to market has
become a stringent constraint to secure the level of
market share for a certain product (Leachman and
Ding, 2007).

By the observation of the working practices in
STMicroelectronics, we identified three key issues
that may become blocking points in the next few
years, if no changes in the design flows and tools are
undertaken:
 Concurrent development is required to

decrease the time to market, but it is the
source of reconciliation issues.

 Various formalisms are required to address
the different development activities, but
imply a heterogeneity that hampers the
consistency maintenance.

 Agility and iterative process are required to
cope with the complexity of the system to
develop and to adapt to specification

changes, but will require appropriate change
propagation to maintain consistency.

2.1 Change Propagation in Distributed
Teams and Document
Heterogeneity

Distribution of the work to parallelize the
development is a rational practice in industry sectors
where time to market is crucial. However, this
distribution will create conflicts and thereby
reconciliation problems when some data are
replicated among teams. Indeed, each replica will
diverge. Unfortunately, reconciling implies that the
changes can be propagated. However, today available
means to reconcile conflicting changes don’t handle
cases where the data to reconcile has been
transformed in a different formalism.

This situation leaves the consistency maintenance
to “human-based synchronization”. However, human
shows, by nature, a non-deterministic and unreliable
character that will, even with willingness and care, do
mistakes in propagating changes in the architecture
description. Ultimately, a lot of propagations are done
using informal means: phone calls, emails, meetings
or discussion over coffee. If propagation is not done
instantly, inconsistency may not impact instantly the
work of each team. If the conflict resolution is done
late, the efforts to find the source of misalignment and
to reconcile the conflict is a huge loss of time and
sometimes it is not even addressable.

In addition, in large development teams, each
engineer has a limited view on the global workflow.
This limited vision of the workflow causes
impossibility for the engineer who modifies a
document to evaluate the extent of its impact on other
documents that describe the system, and so, it is quite
impossible for him/her to inform all the impacted
stakeholders.

The heterogeneity of document formats adds a
difficulty for propagating change (Bézivin et al.,
2014). Not all documents have tractable formalization
and translations between formats are not always
computer doable because they intrinsically rely on the
human intellect. Also, this heterogeneity and
intractable formats often hamper or even prevent the
definition of fine-grain traceability links.

2.2 Iterative and Agile Development
Processes

Requirements are likely to evolve often and quickly.
In our industry sector where reactivity is a key

MODELSWARD 2017 - 5th International Conference on Model-Driven Engineering and Software Development

460

success factor, we cannot ignore changes in clients’
needs and it is improbable that all requirements were
perfectly captured at the very beginning. Thus,
adopting agile development practices (Beck et al.,
2001) is required in order to be more reactive. Agile
methods allow to adopt an iterative, incremental and
adaptive development between customer and
developer, and to react faster to a change in the
specifications. For those reasons, in real industrial
context, only iterative and agile development
processes can help in coping with the complexity of
the system to design and to be reactive to
specification changes.

Unfortunately regular agile methods that basically
address the consistency maintenance thanks to
frequent team meetings to synchronize, don’t scale to
large distributed industrial teams because such
synchronization meetings are often physically
impossible (Turk et al., 2014).

The lack of systematic communication between
distributed teams and of formal traceability links
between documents paves the way to inconsistency.
Moreover, in our particular context of system on chip
development, this inconsistency and reconciliation
issue may become a blocking point. Indeed, when a
chip is physically produced, it is nearly impossible to
modify it. So before the effective production, we need
to be sure that all documents (as specification,
simulation, and chip models) are aligned, and that no
inconsistency or ambiguity can be source of error for
the chip production.

3 RELATED WORK

Despite these problems, industries must still go
ahead. To overcome some of the aforementioned
problems, collaborative tools are used. In this part we
will discuss some of the tools used today to work
collaboratively and limit inconsistencies.

3.1 Collaborative Development Tools

Version Control System (as Subversion, CVS, Git or
Mercurial) is widely adopted to store a set of files and
the chronology of modifications made. These tools
effectively manage different versions of source file
for distributed teams. However, these tools are not
really suited to handle other file format than text files.
Furthermore, these tools do not allow to propagate
changes. The repository does not know the
architecture of the system being designed and
therefore are unable to know the impact of a change.

Other kinds of tools may be used to maintain

consistency in the corpus of documents, such as the
requirement management tools (as DOORS (Avanthi
and Sreenivasan, 2010), REQTIFY (Systèmes, 2013),
IRqA). These tools allow engineers to describe
requirements in natural language and to record
dependency as links between requirements and
documents (or part of document) that covers the
requirement. However, these tools do not allow the
definition of all dependencies between documents.
Indeed, if two documents share information that is not
defined in requirements, these tools cannot trace it.
Moreover, the fine granularity of document resource
used by these tools prevents dealing with all the
document formats.

3.2 Inconsistency Checking

Several inconsistency management tool has been
developed (Egyed, 2011) (Blanc et al., 2008), which
allow to check inconsistencies incrementally, by
tracing and analyzing the change applied to a model.
Unfortunately, these methods are working just for
models. In industrial flows, we need to deal with a lot
of different documents. Some of these documents are
models, but large amounts are unstructured
documents. For instance, it can be a text document to
present requirements. These unstructured documents
are not treated by these methods. Moreover, these
methods of inconsistency checking are rule-based and
these rules must be written by human. To be very
efficient all inconsistency cases must be considered,
requiring a great deal of time to define the consistency
rules. As tests or documentation, the creation of
inconsistency rules is often neglected by developers,
who do not take the time to define clearly the rules.
Due to this negligence, the consistency is neither
really applied, nor really efficient.

4 PROPOSED APPROACH

No tool allow to effectively manage the issues
previously defined (concurrent development, agility,
heterogeneity of formats). Managing all formats at a
fine grain is impossible and architecture description
ignorance makes impossible the systematic
propagation of changes. Our proposal is to make
repository architecture aware with a two-fold
contribution:
 Provide means to capture and maintain

correspondences between architecture description
elements in a way that is compatible with iterative
and agile development practices.

 Exploit the captured correspondences to maintain

Use of Architecture Description to Maintain Consistency in Agile Processes

461

systematically the consistency.
However, the capture of links between documents

cannot be done by adding a step in the workflow with
a dissociated tool. This approach would require too
much time and personal investment from the
stakeholders who may see this as a time loss. The set
of links may be rarely updated, as documentation and
tests for instance. Dejours (Dejours et al., 1994) states
that when new working methods are installed,
workers have a change resistance, compelling to fight
for the old working methods. To avoid this change
resistance, the creation of links must be inserted in the
usual working methods: the creation of links is done
when a stakeholder commits his/her work to the
repository.

Furthermore, these links must be usable by
everyone, formal and independent of the document
format. To meet these criteria, we rely on the
ISO42010 standard (“ISO/IEC/IEEE Systems and
software engineering – Architecture description,”
2011), the Architecture Description standard.

In this section, we present the main parts of the
ISO42010 standard that are of interest for and that are
used by our approach, then we present the developed
extensions in order to specialize the standard to the
context.

4.1 ISO/IEC/IEEE 42010 –
Architecture Description Standard

The standard ISO/IEC/IEEE 42010:2011, System and
software engineering – Architecture description
defines clearly the key concepts necessary to the
system architecture description. Moreover, the
concepts of a view highlight the reality of industry:
each stakeholder has a view on the developed system.
This view is expressed in a language that allows the
stakeholder to express his/her idea.

In addition, this standard acknowledges the
consistency problem identified in industry. Indeed, it
states that having an architecture description totally
consistent is sometimes infeasible or unreachable for
reasons of time, effort or insufficient information, but
encourages registering all known inconsistencies and
proposes the concept of correspondence.

4.2 Extension

The ISO/IEC/IEEE 42010 standard defines a general
Architecture Description meta-model. We extended
this meta-model to specialize it to our use field. More
specifically, we use and extend the Architecture View,
Architecture Model, Correspondence and
Stakeholder concepts defined in the standard. The

extensions are separated in three packages:
document, correspondence, and traceability
information.

4.2.1 Document Package

The document meta-model package (Figure 1)
frames the document creation and use.

Figure 1: Document package.

We extended the definition of Architecture View by
creating Artefact View, which is composed of exactly
one or more Artefact and as much Artefact Version as
version of the document. The Artefact represents any
document, regardless of the format, content (text,
picture, binary data…) or structure. Artefact Version
represents a specific version of document. It contains
two attributes: a string “repo” corresponding to the
URL of the repository where is stored the version of
the artefact and a string “transaction” to identify the
transaction in the repository that created this version
of the document. Each time a document is modified a
corresponding Artefact Version is created and added
to the Artefact View. Artefact is the tip of the iceberg
and represents a generic document, while Artefact
Version is specific to a version of document.

4.2.2 Correspondence Package

The correspondence meta-model package
(Figure 2) frames the creation and use of
correspondences. We defined two kinds of
correspondence:
 Ownership Correspondence
 Transformation Correspondence.

The Ownership Correspondence links the
stakeholders involved in the creation and
development of a document to this document
(represented by an Artefact). We chose to follow the
approach stated in (Girba et al., 2005). The owner of
a document is the originator of this document, but the
evolution is not necessary done by the owner, these
stakeholders involved in the development of the
document are registered as contributors in such a way
that the owner has always the priority to modify and
realign the document.

iso42010

document

1..*

1..*

1..*

Architecture View

Artefact View
version: long

Architecture Model

Artefact
version: long

ArtefactVersion
transaction: String
repo: String

MODELSWARD 2017 - 5th International Conference on Model-Driven Engineering and Software Development

462

The Transformation Correspondence represents
any transformations that are done for passing from a
document to another. Generally, each new document
created is made from the refinement or composition
of pre-existing documents by extracting or
referencing information. Therefore, the tasks done to
create new documents can be seen as a transformation
from a source (i.e. the pre-existing document), to a
target (i.e. the newly created document).

The Transformation Correspondence links one or
more sources to one or more targets and identifies a
stakeholder who made the transformation.
Furthermore, the Transformation Correspondence
can store various information used to describe the
transformation. For instance, the level of automation
of a transformation that identifies if the
transformation is done by a human or generated from
a program (as using ATL or QVT), or a timestamp
that we use to calculate the average time spent to align
a document. If a document doesn’t share information
with other documents (or if there is no other
document), the meta-information of the document are
registered, and will be used later on the development
for creating a Transformation Correspondence as a
source of transformation.

The creation of correspondence must be inserted
in the usual working methods in order to avoid the
change resistance. Usually, when a document is
created or modified, a stakeholder commits this
newly document in a repository. The proposed
approach hooks this commit and extracts meta-
information about the documents involved. These
meta-information are used to create the related
artefacts. These artefacts are added to the architecture
description. The stakeholder is then requested to
identify which documents (sources of the
transformation) have been used to create or modify
the new documents (targets of the transformation).

A Transformation Correspondence works as a
publish-subscribe pattern (Birman and Joseph, 1987;
Cleland-Huang et al., 2003). When a stakeholder
defines a correspondence, he/she needs to declare

which documents are used to create the new
document, by defining the source and the target of the
correspondence. When a document is changed, it
becomes a publisher and sends a message to any
known stakeholder who owns a document linked with
the changed document. The stakeholder is then
informed that a document used to create his/her
document has been modified and the stakeholder is
required to check if the modification impacts his/her
document. Moreover, if the level of automation has
been fulfilled by the stakeholder, we can propose to
launch the program generating the targets of the
transformation. The ultimate goal is to automate the
change propagation as much as possible.

4.2.3 Traceability Information Package

The traceability information package (Figure 3)
frames the monitoring of traceability information.

Figure 3: Traceability information package.

Artefact contains State, which represents the
current state of a generic document. This State may
be of four kinds: Not Impacted, Updated, Not
Updated and Degraded. A State is always linked to a
Modified Artefact, which means that a state of an
Artefact Version is dependent of another specific
Artefact Version.

The Not Impacted state means that a document is
currently consistent to the other document that are
linked to it through Transformation Correspondence.
The modification of the other document doesn’t
impact the current document.

The Updated state means that a document is
currently updated compared to the other document
that are linked to it through Transformation
Correspondence.

The Not Updated state is a transitional state which
means that a document linked to the current document
has been modified. In this case, the Not Updated state
identify through a Modified Artefact which document
has been modified with which Transformation
Correspondence. The Modified Artefact registers also
the author of the change and a timestamp.

The Degraded state means that a Transformation
Correspondence has been intentionally broken by a

document

iso4201

correspondenc

stakeholder

1

1

owne 0..
contributo

targetsources
1..*1..*

TransformationCorrespondence
automation: String
timestamp: long

ArtefactVersionArtefact

OwnershipCorrespondence

artefac

1

Correspondence Stakeholder

Figure 2: Correspondence package.

document

traceability information

state

correspondence
1..*

1 1 dueTo
1

TransformationCorrespondence

State
status: StatusKind

ModifiedArtefact
author: String
date: long

ArtefactVersion

relatedTo

<<enumeration>>
StatusKind

Not Impacted
Not updated
Updated
Degraded

Use of Architecture Description to Maintain Consistency in Agile Processes

463

stakeholder. The two (or more) Artefact Version
initially involved in the Transformation
Correspondence are not linked anymore. Whatever
the actual rationale, in this case the consistency of the
architecture description is intentionally degraded, but
this information is logged to say why and when the
architecture description has become inconsistent. In
the industry this flexibility to make trade-offs
between consistency and delivery while tracing the
decision is crucial.

Figure 4 shows the working of the different States
on Transformation Correspondence and Artefact.
FileA.pdf and FileB.txt are linked by a
correspondence (vertical arrow).

Figure 4: Change propagation options: 1/ not impacted, 2/
updates document, 3/ degradation of the process.

Case 1: The first case shows the reaction to a
modification that does not impact the second
document. FileB.txt is modified and switch from the
version 1.0 to the version 1.1 (horizontal arrow). The
owner of FileA.pdf is informed of the change and can
be checked if FileA needs to be modified. FileA is not
impacted by FileB change; so both are still consistent,
and a correspondence is automatically created
between FileA version 1.0 and FileB version 1.1. The
correspondence between FileA version 1.0 and FileB
version 1.0 is also kept; both are always consistent.

Case 2: The second case shows the update of a
document for maintaining the consistency. FileB.txt
switches from version 1.0 to version 1.1. The owner
of FileA.pdf is informed of the change and sees that
the document needs to be modified to avoid
inconsistency with FileB. Accordingly, FileA is
updated to the version 1.1. A correspondence is
created between FileB version 1.1 and FileA version
1.1. Contrary to the case one, there is no
correspondence between version 1.0 and version 1.1.

Case 3: The third case shows the degradation of
the process. FileB.txt switches from version 1.0 to
version 1.1. FileA.pdf owner is informed of the
change and decides to degrade the process. In this
case, all new versions of the two documents are
independent. If FileA changes, FileB owner is not
informed of the change. These two documents are not
linked anymore. The correspondence between FileA
version 1.0 and FileB version 1.0 is kept; these two
documents stay consistent.

The Architecture Description is so updated and
maintained during all the system lifecycle according
to the action done by stakeholder in response to
document changes.

5 EVALUATION

The proposed approach has been implemented in a
tool named APPE (for Aided Propagation & Process
Emergence). In order to evaluate the approach, we
conducted an empirical evaluation, following the
guidelines expressed in (Kitchenham, 2004). This
evaluation is based on a realistic STMicroelectronics
use case, which represents the development of an
Intellectual Property block (or IP block), involving
five teams (architects, software engineers, low level
hardware designers, high level hardware designers
and technical writers), and so five different views on
the system.

The first aim of this empirical evaluation is to
investigate if stakeholders detect and correct more
inconsistencies using APPE tool than using standard
propagation methods. Our intuition is that developers
identify more inconsistencies by using APPE tool
than standard propagation methods because they
obtain more information about the change and the
potentially impacted document.

The second aim is to investigate whether
stakeholders spend less time to correct
inconsistencies using APPE tool than using standard
propagation method. APPE uses previously created
correspondence to send notification to stakeholders.
These notifications contain a list of potentially
impacted documents. Thus, our expectation is that the
help provided to stakeholders with the notifications
help them to detect faster which documents are really
impacted by a change.

5.1 Experiment Design

18 subjects were selected for the experiment. Subjects
have been selected to have computer engineering
background and various level of knowledge in the
System on Chip development. Finally subjects
haven’t been trained to use APPE. All subjects were
exposed to two tests: with and without APPE. Each
treatment involved a number of inconsistencies added
in a set of documents. For the first test, subjects had
access to information and notifications provided by
APPE during change detection. For the second test,
the subjects had access only to the commit comment
describing which part of the document was changed.
For each test, the subjects were responsible of a set of

fileA.pdf
version 1.0

fileB.txt
version 1.0

fileB.txt
version 1.1

fileA.pdf
version 1.0

fileA.pdf
version 1.1

fileB.txt
version 1.0

fileB.txt
version 1.1

fileA.pdf
version 1.0

fileA.pdf
version 1.1

fileB.txt
version 1.0

fileB.txt
version 1.1

Case 3:Case 2: Case 1:

MODELSWARD 2017 - 5th International Conference on Model-Driven Engineering and Software Development

464

twelve documents related to each other in various
formats. Every two minutes, we modified a
document, thus adding inconsistencies in the corpus
of documents. The subjects were asked to make
change in impacted document to keep all documents
consistent. For both tests we made nine document
changes, involving a total of 63 inconsistencies to
correct. The subjects were also encouraged to commit
their modification as soon as they felt that the
propagation is finished, within two minutes.

5.2 Variable and Quantification

These two tests are intended to measure the
contribution of APPE firstly at the inconsistency
detection and correction, and secondly at the time to
fully propagate a change. Thus, we extracted two
variables for each of two tests:
 Detection/Correction: This variable measures

the percentage of inconsistency detected and
corrected by the subjects.

 Effort: This variable is the average time in
second spent to correct one inconsistency.

5.3 Experimental Results

In this part, we describe the results of the evaluation
for the two variables, on a descriptive analysis
(Table 1) and on a statistical analysis (Table 2).

Table 1: Descriptive statistics for measures.

Variable Test Mn St Dev diff

Correction
w/ APPE 0.8 0.13

5.5%
w/o APPE 0.76 0.11

Effort
w/ APPE 18 1.02

3.7%
w/o APPE 18.7 0.92

w/: With Mn: Mean
w/o: Without St Dev: standard deviation

Table 2: Statistical tests for measures.

Shapiro

Wilk
Student

Variable Test Wobs t p-value

Correction
w/ APPE 0.955

3.72 0.00171
w/o APPE 0.957

Effort
w/ APPE 0.95

3.73 0.00166
w/o APPE 0.958

With 17 degree of freedom, a significance level of α=0.05,
Wcrit=0.897

5.3.1 Detection and Correction Rate with
and without APPE

The first research question investigates if
stakeholders using APPE tool detect and correct more
inconsistencies than using standard propagation
methods. Since the Shapiro-Wilk normality test
indicates that the data are normally distributed
(Wobs>Wcrit), the paired Student t-test is applied. The
collected t-statistic is 3.72 with a p-value 0.00171.
This small p-value (<0.05) indicates that the first null
hypothesis (Detection/Correction rate with APPE =
Detection/Correction rate without APPE) can be
rejected. Therefore, according to the descriptive
statistics and the statistical tests, there is strong
evidence that stakeholders detect and correct more
inconsistencies (by about 5.5 percent) by using APPE
than standard propagation methods.

5.3.2 Effort Rate with and without APPE

The second research question investigates whether
stakeholders invest less time to detect and correct
inconsistencies by using APPE tool than using
standard propagation method. Since the Shapiro-Wilk
normality test indicates that the data are normally
distributed (Wobs>Wcrit), the paired Student t-test is
applied. The collected t-statistic is 3.73 with the p-
value 0.00166. This small p-value (<0.05) indicates
that the second null hypothesis (Effort rate with
APPE = Effort rate without APPE) can be rejected.
Therefore, according to the descriptive statistics and
the statistical tests, there is strong evidence that
stakeholders detect and correct inconsistencies
quicker (by about 3.77 percent) by using APPE tools
than standard propagation methods.

6 CONCLUSIONS

In this paper, we have presented a methodology for
maintaining consistency between documents in the
context of Agile development processes. It is based
on a precise definition of correspondence between
documents. The definition of correspondence does
not address the content of documents; it stays at an
upper level, and used meta-information about the
document (as name, location, owner, contributors
…). This general description allows dealing with
every formats of documents.

To know which stakeholders need to be informed,
we propose a formal approach for describing the links
between the documents. This approach extends the

Use of Architecture Description to Maintain Consistency in Agile Processes

465

ISO42010 standard to allow stakeholders to create
correspondences.

This paper also reports an investigation about the
impact of the proposed approach on the inconsistency
detection rate and the effort to correct inconsistency.
We observed that stakeholders detect and correct
more inconsistencies by using the approach than
using the usual propagation methods (6.7% more
inconsistencies). Moreover, we observed that
stakeholders correct inconsistencies faster by using
the approach than the usual propagation methods. The
average time spent to correct inconsistency is 3.7%
lower. This evaluation neither include the time spent
at the end of a project to realigned inconsistent
documents, nor iterations between team needed for
this task. Even if the difference between the average
times spent with and without our approach is low, we
believe that correct more inconsistencies during the
development of a system using our approach can
indirectly reduce the time spent for realign
documents. For instance, when integrating
subcomponents into a component, the memory space
occupied by each subcomponent is identified in a
section of the specification called the "address map".
The integration follows this address map. However,
the architect may modify this address map and forgets
to inform the downstream developers. Without this
information developers try to access incorrect
memory spaces. Debugging these inconsistencies can
cause several weeks of delay to find and understand
the origin of the error. The use of APPE would
prevent this inconsistency upstream, the indirect
benefit being the time not spent by the debugging.

The next steps are to generalize the prototype
developed and to evaluate the scalability on a
STMicroelectronics project in production.

REFERENCES

Avanthi, R., Sreenivasan, P., 2010. Managing requirements
across analysis and design phases using IBM rational
system architect & IBM rational DOORS. Technical
report, IBM.

Beck, K., Beedle, M., Van Bennekum, A., Cockburn, A.,
Cunningham, W., Fowler, M., Grenning, J., Highsmith,
J., Hunt, A., Jeffries, R., others, 2001. Manifesto for
agile software development.

Bézivin, J., Paige, R.F., smann, U.A., Rumpe, B., Schmidt,
D., 2014. Manifesto - Model Engineering for Complex
Systems. CoRR abs/1409.6591.

Birman, K., Joseph, T., 1987. Exploiting virtual synchrony
in distributed systems. ACM.

Blanc, X., Mounier, I., Mougenot, A., Mens, T., 2008.
Detecting model inconsistency through operation-

based model construction, in: Software Engineering,
2008. ICSE’08. ACM/IEEE 30th International
Conference on. IEEE, pp. 511–520.

Cleland-Huang, J., Chang, C.K., Christensen, M., 2003.
Event-based traceability for managing evolutionary
change. Softw. Eng. IEEE Trans. On 29, 796–810.

Dejours, C., Dessors, D., Molinier, P., 1994. Comprendre
la résistance au changement. Doc. Médecin Trav. 58,
112–117.

Egyed, A., 2011. Automatically detecting and tracking
inconsistencies in software design models. Softw. Eng.
IEEE Trans. On 37, 188–204.

Girba, T., Kuhn, A., Seeberger, M., Ducasse, S., 2005. How
developers drive software evolution, in: Principles of
Software Evolution, Eighth International Workshop on.
IEEE, pp. 113–122.

IEEE Recommended Practice for Architectural Description
of Software-Intensive Systems, 2000. . IEEE Std 1471-
2000 i-23. doi:10.1109/IEEESTD.2000.91944.

ISO/IEC/IEEE Systems and software engineering –
Architecture description, 2011.
doi:10.1109/IEEESTD.2011.6129467.

Kitchenham, B., 2004. Procedures for performing
systematic reviews. Keele UK Keele Univ. 33, 1–26.

Leachman, R.C., Ding, S., 2007. Integration of speed
economics into decision-making for manufacturing
management. Int. J. Prod. Econ. 107, 39–55.

Mäder, P., Philippow, I., Riebisch, M., 2007. Customizing
traceability links for the unified process, in:
International Conference on the Quality of Software
Architectures. Springer, pp. 53–71.

Nentwich, C., 2005. Managing the consistency of
distributed documents. University of London.

Skaf-Molli, H., Naja-Jazzar, H., Molli, P., 2006.
Inconsistency of xml documents during cooperative
editing.

Systèmes, D., 2013. Reqtify—Dassault Systèmes.
www.reqtify.com/.

Turk, D., France, R., Rumpe, B., 2014. Limitations of agile
software processes. ArXiv Prepr. ArXiv14096600.

MODELSWARD 2017 - 5th International Conference on Model-Driven Engineering and Software Development

466

