Using Individual Feature Evaluation to Start Feature Subset Selection Methods for Classification

Antonio Arauzo-Azofra, José Molina-Baena, Alfonso Jiménez-Vílchez, María Luque-Rodriguez

Abstract

Using a mechanism that can select the best features in a specific data set improves precision, efficiency and the adaptation capacity in a learning process and thus the resulting model as well. Normally, data sets contain more information than what is needed to generate a certain model. Due to this, many feature selection methods have been developed. Different evaluation functions and measures are applied and a selection of the best features is generated. This contribution proposes the use of individual feature evaluation methods as starting method for search based feature subset selection methods. An in-depth empirical study is carried out comparing traditional feature selection methods with the new started feature selection methods. The results show that the proposal is interesting as time gets reduced and classification accuracy gets improved.

References

  1. Amjady, N. and Daraeepour, A. (2009). Mixed price and load forecasting of electricity markets by a new iterative prediction method. Electric power systems research, 79(9):1329-1336.
  2. Arauzo-Azofra, A., Aznarte, J. L., and Benítez, J. M. (2011). Empirical study of feature selection methods based on individual feature evaluation for classification problems. Expert Systems with Applications, 38(7):8170 - 8177.
  3. Arauzo-Azofra, A., Benitez, J. M., and Castro, J. L. (2008). Consistency measures for feature selection. Journal of Intelligent Information Systems, 30(3):273-292.
  4. Blum, A. L. and Langley, P. (1997). Selection of relevant features and examples in machine learning. Artificial Intelligence, 97(1-2):245-271.
  5. Dems?ar, J., Curk, T., Erjavec, A., C?rt Gorup, Hoc?evar, T., Milutinovic?, M., Moz?ina, M., Polajnar, M., Toplak, M., Staric?, A., S?tajdohar, M., Umek, L., Z?agar, L., Z?bontar, J., Z?itnik, M., and Zupan, B. (2013). Orange: Data mining toolbox in python. Journal of Machine Learning Research, 14:2349-2353.
  6. Duda, R. O., Hart, P. E., and Stork, D. G. (2000). Pattern Classification (2Nd Edition) . Wiley-Interscience.
  7. Kohavi, R. (1994). Feature Subset Selection as Search with Probabilistic Estimates.
  8. Kohavi, R. and John, G. H. (1997). Wrappers for feature subset selection. Artificial Intelligence , 97:273-324.
  9. Kononenko, I. (1994). Estimating attributes: Analysis and extensions of relief. In Proceedings of the European Conference on Machine Learning on Machine Learning, ECML-94, pages 171-182, Secaucus, NJ, USA. Springer-Verlag New York, Inc.
  10. Liu, H. and Yu, L. (2005). Toward integrating feature selection algorithms for classification and clustering. IEEE Trans. on Knowl. and Data Eng., 17(4):491-502.
  11. Newman, C. B. D. and Merz, C. (1998). UCI repository of machine learning databases.
  12. Polat, K. and Günes, S. (2009). A new feature selection method on classification of medical datasets: Kernel f-score feature selection. Expert Syst. Appl., 36(7):10367-10373.
  13. Schiffner, J., Bischl, B., Lang, M., Richter, J., Jones, Z. M., Probst, P., Pfisterer, F., Gallo, M., Kirchhoff, D., Kühn, T., Thomas, J., and Kotthoff, L. (2016). mlr Tutorial. ArXiv e-prints.
  14. Tang, J., Alelyani, S., and Liu, H. (2014). Feature Selection for Classification: A Review. InData Classification, Chapman & Hall/CRC Data Mining and Knowledge Discovery Series, pages 37-64. Chapman and Hall/CRC.
  15. Thangavel, K. and Pethalakshmi, A. (2009). Dimensionality reduction based on rough set theory: A review. Applied Soft Computing, 9(1):1 - 12.
  16. Vergara, J. R. and Estévez, P. A. (2015). A review of feature selection methods based on mutual information. CoRR, abs/1509.07577.
Download


Paper Citation


in Harvard Style

Arauzo-Azofra A., Molina-Baena J., Jiménez-Vílchez A. and Luque-Rodriguez M. (2017). Using Individual Feature Evaluation to Start Feature Subset Selection Methods for Classification . In Proceedings of the 9th International Conference on Agents and Artificial Intelligence - Volume 2: ICAART, ISBN 978-989-758-220-2, pages 607-614. DOI: 10.5220/0006204406070614


in Bibtex Style

@conference{icaart17,
author={Antonio Arauzo-Azofra and José Molina-Baena and Alfonso Jiménez-Vílchez and María Luque-Rodriguez},
title={Using Individual Feature Evaluation to Start Feature Subset Selection Methods for Classification},
booktitle={Proceedings of the 9th International Conference on Agents and Artificial Intelligence - Volume 2: ICAART,},
year={2017},
pages={607-614},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006204406070614},
isbn={978-989-758-220-2},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 9th International Conference on Agents and Artificial Intelligence - Volume 2: ICAART,
TI - Using Individual Feature Evaluation to Start Feature Subset Selection Methods for Classification
SN - 978-989-758-220-2
AU - Arauzo-Azofra A.
AU - Molina-Baena J.
AU - Jiménez-Vílchez A.
AU - Luque-Rodriguez M.
PY - 2017
SP - 607
EP - 614
DO - 10.5220/0006204406070614