
A Technique for Extraction and Analysis of Application Heap 
Objects within Android Runtime (ART) 

Alberto Magno Muniz Soares and Rafael Timóteo de Sousa Jr. 
Eletrical Engineering Department, University of Brasília (UnB), Brasília, Brazil 

alberto.magno@gmail.com, desousa@unb.br 

Keywords: Mobile Device Forensics, Memory Forensics, Memory Analysis, Android. 

Abstract: This paper describes a technique for analysing objects in memory within the execution environment 
Android Runtime (ART) using a volatile memory data extraction. A study of the AOSP (Android Open 
Source Project) source code was necessary to understand the runtime environment used in the modern 
Android operating system, and software tools were developed allowing the location, extraction and 
interpretation of useful data for the forensic context. Built by the authors as extensions for the Volatility 
Framework, these tools help to locate, in a memory extraction from a device compliant with the ARM 
architecture, arbitrary instances of classes and their data properties. 

1 INTRODUCTION 

Personal mobile devices can be used for many 
purposes and so its RAM may contain digital 
evidence for a potential investigation. 

Traditionally, forensics on mobile devices focus 
on the acquisition and analysis of data present in 
non-volatile storage media. Usually, depending on 
the purpose of the investigation or given the 
difficulty with the ephemeral nature of the data, 
volatile memory exams are not performed. On the 
other hand, with the increasing use of encryption and 
the presence of ever more sophisticated malicious 
software, the need to conduct investigations on the 
volatile memory contents of mobile devices has 
become even more important.  

Also, as discussed in (Brezinski and Killalea, 
2002), the forensic community seems to recognize 
that capturing data in memory is required in order to 
comply with the volatility of digital evidence, since 
some information about the system environment are 
never kept statically in secondary storage media. 
Thus, it has become imperative to use techniques to 
analyse data from a volatile memory extraction, 
going further than traditional techniques. 

Android is an operating system based on the 
Linux kernel and is designed especially for mobile 
devices. Currently this system leads the mobile 
operating systems market, with versions for 32-bit 
and 64-bit processors, complying with x86, MIPS 

and, especially, the ARMS architecture. Despite 
being a Linux distribution, it has features that 
require a detailed understanding of the runtime 
environment and the use of specific techniques for 
extraction and memory analysis. 

As published in the Android Open Source 
Project (AOSP), Android OS in version 5.0 contains 
a new runtime environment (Android Runtime - 
ART) operating in most available devices, replacing 
the interpretation mechanism of the former Dalvik 
Virtual Machine (DVM). In place of an 
interpretation engine ART requires compilation of 
every application during installation, a process that 
is called Ahead-Of-Time (AOT). Also, this new 
runtime environment comes with new memory 
management mechanisms. 

The general digital forensics process includes the 
acquisition of data from a source, the analysis of the 
data and extraction of evidence, with the 
preservation and presentation of the evidence 
(Carrier, 2003). In spite of several RAM memory 
data acquisition techniques exist for Android, a 
forensic technique specific for memory analysis and 
extraction of Java objects in the ART runtime 
environment is yet to be established. Thus, the 
central contribution of this paper is to address a 
technique for memory analysis based on the source 
code available from AOSP. This proposed and tested 
technique allows the location and extraction of 
object data of a running application, using the 
content of volatile memory acquired in Android 5.0 
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devices. Another contribution is the development of 
software tools that support the proposed forensic 
technique. 

The remaining of this paper is organized as 
follows. Section 2 describes related work. Section 3 
is an overview of the Android architecture, while 
Section 4 is devoted to ART. In Section 5, the 
proposed forensic technique is described with its 
supporting tools. Section 6 discusses results from the 
experimental evaluation of the proposed technique 
and developed support tools, for RAM acquisitions 
from an emulated device and in real one, and 
Section 7 presents conclusions and possible future 
works.  

2 RELATED WORK 

As discussed in (Wächter and Gruhn, 2015), the 
feasibility of acquisition techniques for forensic 
purposes has limitations related to intrinsic features 
implemented by manufacturers, such as hard 
security mechanisms that prevent access to data. 

Nevertheless, there are different known 
techniques for RAM acquisition in Android, a well-
known one called Linux Memory Extractor - LiME 
(Sylve et al., 2012), which extracts raw data from 
volatile memory of a device ensuring a high 
integrity rate in its results.  

In (Apostolopoulos et al., 2013), a study is 
presented on recovery of credentials from Android 
applications by means of available volatile memory 
extraction techniques. This study shows that even 
without the analysis of applications objects, the 
referred credentials are accessible by direct 
inspection of the extracted data. But the analysis of 
data extracted from real devices and from emulated 
systems showed no large discrepancies in the results. 

As an alternative to bypass hard security barriers, 
a work is presented in (Hilgers et al., 2014) based on 
data extraction of real devices with Android version 
below 4.4, using the technique called Forensic 
Recovery of Scrambled Telephones – FROST. This 
paper holds that, even in case of rebooting and 
unrecoverable data erasure in non-volatile memory, 
which occurs in some devices when they are reset to 
factory state, a situation caused by the bootloader 
unlocking process, it is still possible to analyse the 
remaining data in RAM, including Java objects 
maintained by the old Dalvik runtime, a process that 
is made using plugins of the Volatility Framework 
(http://www.volatilityfoundation.org). 

In (Backes et al., 2016) the compilation process 
and instrumentation solutions for applications within 

ART are presented, highlighting innovations in the 
ART compilation process, including significant 
internal operation details that are useful in 
understanding the difference between the ART and 
the earlier Android runtime versions. 

After careful publications search, we verified 
that forensics studies on ART for Android version 
5.0 or greater are still rare. Then, the analysis of the 
AOSP code and its constant updates is an important 
source of information. 

3 ANDROID ARCHITECTURE 
OVERVIEW 

The Android platform consists of a software stack 
with three main layers: an application layer, one 
layer containing a framework of Java objects and the 
Runtime environment - RT, and a native code Linux 
kernel layer containing hardware abstraction 
libraries (Yaghmour, 2013).  

Regarding the memory management used by the 
RT, as described in (Drake et al., 2014), the Android 
system does not offer a memory swap area, but 
instead it uses paging mechanisms and file mapping. 

Regarding the paging mechanism, page sharing 
is used between processes. Each process is 
instantiated by fork of a pre-existing process called 
Zygote. This process starts during the system 
initialization phase (boot) and loads the code and 
features that are part of the Android framework. This 
allows many pages, allocated to the code and 
resources of the framework, to be shared by all other 
process applications. 

With the mapping mechanism, most of the static 
data (byte-code, resources and possible native code 
libraries) of an application are mapped into the 
memory address space of the application process. 
This allows data sharing between processes and the 
concerned memory pages can be disposed as needed. 
Memory sharing between applications works 
through an asynchronous sharing mechanism called 
Anonymous Shared Memory (Ashmem). Ashmem is 
an additional modification of the Android Linux 
kernel to allow automatic adjustment of the size of 
memory caches and recover areas when the total 
available memory is low (Yaghmour, 2013). Also, 
by means of a memory snapshot, the virtual memory 
area of an application may present the unused 
mapped pages. 

In the boot process, in addition to the preparation 
of the Zygote by the RT process, a service starts 
keeping (for each boot) memory mapping pairs of 
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key-value related to system configuration, 
comprising data properties files and other sources of 
the operational system. Many components of the 
operating system and the Android framework, 
including the execution environment, use these 
values, including those related to the configuration 
of the execution environment (for instance, the size 
of the memory space for the Java object heap and 
parameters of the Garbage Collection - GC). 

With respect to security in AOSP, after 
installation, each application is activated in its own 
virtual memory area, implementing the principle of 
least privilege. Android version 5.0 includes security 
mechanisms that require that all dynamic code liking 
being of relative type (Position-Independent Code - 
PIC), reinforcing the existent mechanism of Address 
Space Layout Randomization (ASLR). 

Despite operating on a Linux kernel, these 
peculiar characteristics of the Android architecture 

with respect to the security mechanisms, memory 
management, and application runtime environment, 
impose the use of specific techniques in the RAM 
extraction and analysis procedures. 

4 ANDROID RUNTIME (ART) 

The runtime module is responsible for managing 
Android applications designed to operate on the 
Android framework layer. One of its responsibilities 
is to provide memory management for application 
execution and access to other system services such 
as Virtual Machine (VM) byte-code compilation and 
loading (in DEX files). This VM is similar to a Java 
Virtual Machine (JVM) and runs as an application 
that in ART keeps the name and uses the same byte-
code of Dalvik, despite of the replacement of the 
corresponding legacy runtime module. 

 

 

Figure 1: Example of a heap structure and mapping maintained by RosAlloc. 
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Previously to running applications, the ART 
initializes a set of classes during the first boot (or 
after system modifications), generating a file that 
contains an executable image with extension "art " 
with all the loaded classes and objects that are part 
of the Android framework. This file, called boot.art, 
is mapped into memory during the Zygote boot 
process, and basically contains natively compiled 
objects who hold address references (pointers) with 
absolute addresses within the image itself and 
references to methods in the code contained in 
framework files (inside the framework file there are 
absolute pointers to the image as well). The overall 
data structure related to the compilation and 
execution in the ART environment is then described 
in the image header, including a field that stores the 
respective offset from the beginning of the file. This 
value changes at every boot so that the image is not 
loaded at the same address (in AOSP version 5.0, the 
base address for the displacement of ASLR was set 
to 0x70000000). 

After the initial preparation, the byte-code of 
each installed application is compiled to native code 
before its first run. The product of this compilation, 
comprising each application byte-code and libraries 
that make up the Android framework, are files in 
Executable and Linking Format - ELF, called OAT 
(specifically boot.oat for the framework). These 
files, compiled to boot the Android framework and 
to install applications, contain three dynamic symbol 
tables called oatdata, oatexec and oatlastword that 
respectively contain the OAT header and DEX files, 
the compiled native code for each method, and the 
last 4 bytes of generated native code functioning as a 
final section marker. 

For memory management, the ART divides the 
virtual memory as follows: a main space for 
application’s Java objects (heap), a space for the 
image objects and classes of the Android 
framework, a space for Zygote’s shared objects, and 
a space for large object (Large Objects Space – 
LOS). The first three are arranged in a continuous 
address space while there is a collection of 
discontinuous addresses for the LOS. In addition to 
these spaces, there are data structures related to 
garbage collection whose types are related to the GC 
and the Java object heap allocation and that can be 
active depending on the GC plan that is working. 
The GC plan is usually set by the manufacturer 
according to the device's intrinsic characteristics and 
according to the plan established by the memory 
allocator. For devices such as common use 
smartphones, without strong memory constraints, 
there is generally a defined plan whose operating 

mode works with the allocator called Runs-Of-Slots-
Allocator (RosAlloc) for mutable objects and with 
Dlmalloc for immutable objects. 

The RosAlloc came up with the ART runtime 
environment, and is the main allocator responsible 
of heap memory space for Java objects. It organizes 
this memory space in rows of slots of the same size. 
These runs are clustered as pages within brackets. 
The first page of a bracket contains a header that 
determines the number of pages this bracket contains 
and the slot’s allocation bitmap. The number of slots 
per page is set according to the size of the bracket, 
the header length and the byte alignment (which 
depends on the target device architecture). Figure 1 
illustrates an example of a heap structure and 
mapping schema. Each slot stores data for one object 
and the first bytes store its parent class address. The 
slot is classified according to the size of the object as 
a means to reduce fragmentation and allow parallel 
GC. Objects with big data (≥ 12 KiB) are spread 
through LOS allocation areas, allowing the kernel to 
conveniently manage address spaces to store this 
data. 

The allocator maintains an allocation map for the 
brackets pages (each page with 4 KiB size) setting in 
this map the type of each page in the allocation 
space. This map is stored in a mapped file in RAM 
(rosalloc page map). For the allocation of the heap 
space, it sets the address to start near the lowest 
virtual address of the process, from 0x12c00000 
bytes (300 MiB). 

Considering this memory layout information, 
drawn from our analysis of the AOSP source code, it 
is possible to establish a strategy for locating objects 
by scanning the bracket's slots inside the heap 
mapped file and decoding the data set for each 
allocated object. This is also possible for a 
recoverable object from a deallocated slot. While 
these are subjects of the present paper, as 
approached in the next section, the analysis of data 
stored in structures related to large objects or 
allocated by native libraries, which have specific 
allocation mechanisms, are considered for future 
work. 

5 OBJECT ANALYSIS 
TECHNIQUE 

As exposed above, in an application’s runtime 
environment there are mapped files in RAM 
containing: information about system properties, 
Android framework, Java object heap, mapping of 
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objects used by the memory allocator, as well as 
class definitions and executables compiled from the 
application's DEX files contained by OAT files. 

From a whole RAM extraction, the technique 
proposed in this paper, as illustrated in Figure 2, is 
aimed at recovering Java objects for data analysis 
from the heap space. This is performed by inspecting 
the mapping maintained by the memory allocator, 
based on the premise that from a volatile memory 
extraction it is possible to recover data pages from 
those files. For Java objects data, according to the 
type of the page (guided by the mapping maintained 
by the allocator file) and the respective page header 
data, it is possible to recover the slots and, with the 
appropriate description of the target object class, 
decode the data.  

Object data decoding can be performed directly 
or from the traversal of the references throughout the 
class hierarchy (similar to a recursive programming 
process) using memory layout information obtained 
by decompilation of the application byte-code or by 
understanding the upper classes information. In 
Figure 3, a generic sequential process for recovering 
an arbitrary string field of the Object X is illustrated. 
From Object X slot (bottom-left in figure), it is 
possible to walk through the parent classes 
references, this way decoding object data using the 
layout of known Android framework classes.  

The Volatility Framework (in version 2.4), 

described in (Ligh et al., 2014), provides tools and 
data structures mappings with support for the Linux 
platform on the ARM 32-bit architecture, allowing 
the retrieval of information, such as process table 
and memory mapping, among others. In this paper, 
the process of data analysis is supported by a set of 
tools that were conjointly developed within the 
Volatility Framework, based on Android AOSP 
source code for ART version 5.0.1_r1 
(https://android.googlesource.com/platform/art/+/an
droid-5.0.1_r1), and on ART related information 
described in (Sabanal, 2014/2015).  

These extensions built for the Volatility 
framework allow retrieval of information on the 
execution environment and the recovery of allocated 
Java objects. For the recovery of the runtime data 
structures, we have created mappings for 
interpretation of data from ART files, OAT, DEX, 
Java framework classes, heap pages structures and 
system properties. Then, for the extraction and 
analysis process, we have built tools for recovery of 
the runtime properties, location of OAT files, data 
decoding from DEX files, extraction of Java objects 
from the heap, and for decoding object data from the 
heap and from the Android framework image. The 
architecture of the Volatility framework and the 
design of these tools allow updating and adding new 
mappings, which facilitate adaptation to other 
architectures or changes in future versions of 
Android. 

 

Figure 2: Analysis technique for heap objects maintained by RosAlloc. 
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Figure 3: Recovery example of an object field. 

The list of references to heap objects used in data 
extraction is constructed by inspecting and decoding 
the slots of the heap pages described in the mapping 
file maintained by the RosAlloc allocator. This list 
contains data objects with the location of the object 
(address, page, bracket, and slot), the parent class, 
class identifiers in DEX, and raw or textual data (of 
type String or char array). 
This technique enables in-depth analysis of the 
extracted data, overcoming the traditional techniques 
of carving, text or other articles search, which lack 
the understanding of the storage structures in 
memory. 

6 EXPERIMENTAL 
EVALUATION 

The experimental evaluation of the proposed 
technique was done for an emulated device and for a 
real one, both representative of a common ART 
environment. A complete RAM memory dump from 
each device was acquired using the technique 
described in (Sylve et al., 2012), while these devices 
were running with active applications, including a 
chat application (WhatsApp v.2.12.510) 

For acquiring memory dumps from both devices, 
it was necessary to use a privileged user access 

(root) and to perform the replacement of the kernel 
code with a newly built compilation configured to 
accept loading kernel modules without validation.  

The privileged user is available by default in the 
emulator, while for the real device it was obtained 
using the rooting tool Kingo 
(http://www.kingoapp.com).  

The source code of the kernels was compiled 
according to the guidelines in the AOSP site.  The 
workstation used for the process of cross-
compilation and analysis consists of the Santoku 
Linux version 0.4, with the installation of the 
Android NDK (Release 8e) and the Volatility 
Framework (version 2.4), as described in their 
project sites. The configuration was based on the 
construction of the experimental setting procedure 
used in (Høgset, 2015). For each memory 
acquisition, the RAM memory data was transferred 
by TCP directly to the analysis workstation. 

6.1 Evaluation with an Emulated 
Device 

The emulated device is an Android Virtual Device 
(AVD) configured with the parameters CPU / ABI: 
ARM (armeabi-v7a), 768 MB RAM, Target: 
Android 5.0.1 (API level 21), build number 
“sdk_phone_armv7-eng 5.0.2 LSY64 1772600 test-
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keys”, hw.device.name Nexus 5 and vm.heapSize  
64 MB. 

6.1.1 Environment Set-up 

The target device used for memory acquisition is the 
Android emulator, available in the development 
tools package Android SDK Tools Revision 23.0.2.  

The source code of the kernel version (3.4.67) 
available for the emulator (goldfish) was obtained 
from the AOSP site. 

6.1.2 Evaluation 

In analyzes of the memory extraction according to 
the proposed technique, it is possible to successfully 
recover common interesting forensic data from ART 
objects, as for instance the user contacts maintained 
by the com.android.contacts application.  

For a deeper evaluation example, we describe 
hereafter in detail how to discover and characterize 
the objects from a running chat application 
(com.whatsapp v. 2.12.510) involving messages 
exchanged with another user in a real device. 

Initially, the extension to the Linux Volatility 
framework that allows retrieving the table of running 
processes is used. Thus, it is possible to locate the 
target process for the analysis which in this case is 
identified by PID 1206. With the developed tool for 
recovery of system properties, environmental data is 
extracted, including the size of the heap for Java 
objects, a value that subsequently is used as a 
parameter in the recovery of target objects: 

 
>python vol.py --
profile=LinuxLinuxGoldfish_3_4_67ARM -f 
memdumpWhatsAppChat.lime 
art_extract_properties_data –p 1206 
 
... 
[dalvik.vm.heapsize]= [64m] 
... 
 

Then, it is possible to retrieve data about the 
application execution environment, such as the 
addresses related with the Android framework 
mapping, using the tool built for this activity and the 
target process handle as a parameter: 

 
 
 
 
 
 
 
 
 
 
 

>python vol.py --
profile=LinuxLinuxGoldfish_3_4_67ARM -f 
memdumpWhatsAppChat.lime art_extract_image_data 
–p 1206 
 
com.whatsapp 
ART image Header 
----------------------- 
image_begin:0x700c7000 
oat_checksum:0xbd5a21c9L 
oat_file_begin:0x70be8000 
oat_data_begin:0x70be9000 
… 
image_roots:0x70bb8840 
… 
   kClassRoots:0x70bb8948 
       0x1 LJava/lang/Class; 0x700c7220L 
       0x2 LJava/lang/Object; 0x700f7240L 
… 
       0x5 LJava/lang/String; 0x700df8f0L 
       0x6 LJava/lang/DexCache; 0x700c74f0L 
… 
       0x8 LJava/lang/reflect/ArtField; 
0x700f7640L 
… 
…      0xc [LJava/lang/reflect/ArtField; 
0x700f74a0L 
       0x1d [C 0x700f6fd8L 
… 

The recovered information present in the image 
header, including the memory offset for the location 
of the mapping framework (0x700c7000), serves as 
the basis for recovering addresses from various 
classes, such as java.lang.String class. With these 
data and the map maintained by the RosAlloc 
allocator, the list of heap objects containing 
references to object data and references to other 
objects is constructed, also using a developed tool. 
The address allocation map (0xb1d70000) is 
recovered by searching the name of the respective 
file in the mapping process. 

With this gathered information, and by means of 
another developed localization tool, it is possible to 
recover OAT files used by the target process, 
including the addresses of each location in the 
addressing process: 

 
>python vol.py --
profile=LinuxLinuxGoldfish_3_4_67ARM -f 
memdumpWhatsAppChat.lime art_find_oat –p 1206 
 
Oat                                    offset_ 
------------------------------------- ---------- 
webview@webview.apk@classes.dex              0xa06dc000L 
com.whatsapp-1@base.apk@classes.dex          0xa5a74000L

With the OAT address, it is possible to recover 
data that enables a static analysis of some 
components, including class identifier indexes and 
application's byte-code. After analyzing the OAT 
decompiled code of the file located in 0xa5a74000L, 
comes the selection of the identifier 
(DEX_CLASSDEF_IDX = 0x1394) for the class of 
objects (com.whatsapp.protocol.l) that indicates the 
storage for the target application messages text data. 

Searching the list of heap objects references, 
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looking for references to the definition of the 
requested class, it is possible to identify the parent 
class java.lang.Class object (described in the 
Android framework image at 0x700c7220L): 

 
>python vol.py --
profile=LinuxLinuxGoldfish_3_4_67ARM -f 
memdumpWhatsAppChat.lime -p 1206 -b 0x700c7000 
art_dump_rosalloc_heap_objects –e 0x12c00000 –m 
0xb1d70000 –s 0x4000000  
 
address       page bracket slot obj class         
------------- ---- ------- ---- ---------------- 
0x1384d2c0L   3149  13    2 *(FOUND)* 0x12c19020  
0x1384e0c0L   3149  13   18 *(FOUND)* 0x12c19020  
0x1384f240L   3149  13   38 *(FOUND)* 0x12c19020  
0x13850820L   3149  13   63 *(FOUND)* 0x12c19020  

Then, using a developed tool for object data 
recovery, it is possible to examine the data for each 
specific object of this class, i.e., data recovery is 
made for the object located in 0x1384d2c0: 

>python vol.py --
profile=LinuxLinuxGoldfish_3_4_67ARM -f 
memdumpWhatsAppChat.lime  -p 1206 -b 0x700c7000 
art_extract_object_data -o 0x1384d2c0 
 
Object Address: 0x1384d2c0 
Class Address: 0x12C19020 
… 
Loaded: 0x700c7220L 
LJava/lang/Class; 
classLoader 0x12c02b20L 
componentType 0x0L 
dexCache 0x12c01610L LJava/lang/DexCache; 
 
directMethods 0x133ff980L 
[LJava/lang/reflect/ArtMethod; 
 
iFields 0x12c04900L 
[LJava/lang/reflect/ArtField; 
.. 
sFields 0x13407500L 
[LJava/lang/reflect/ArtField; 
 
dexClassDefIndex 0x1394L 
dexTypeIndex 0x1810L 
… 

 

Among the recovered data, the address with 
reference to the array of properties 
java.lang.reflect.ArtField[] (at 0x12c04900L) is 
found. With a new search to this address and for this 
type of class, data from the conversation, including 
the message text, is recovered. By tracking through 
references and properties of the recovered objects of 
this class other attributes are identified: text, date, 
peer ID, and other data.  

Figure 4 illustrates the links between some of the 
addresses visited for retrieval of data objects related 
to the target object. It is noteworthy that the 
developed tools also support the reverse process 
which, given a specific object property (e.g. message 
text), reveals references of objects related to the 
concerned chat. 

6.2 Evaluation with a Real Device 

The real device specification was a Samsung Galaxy 
S4 (GT-I9500 non-LTE) with CPU Exynos 5410, 
2 GB RAM, original Android 5.0.1 (API level 21), 
build number LRX22C.I9500UBUHOL1, and 
vm.heapSize 64 MB. 

6.2.1 Environment Set-up 

The cross-compiled kernel source code (version 
3.4.5) was obtained from the manufacturer open 
source release site (http://opensource.samsung.com). 

6.2.2 Evaluation 

Initially, the procedure to locate the target process 
(com.whatsapp) is executed and retrieves data about 
the application execution environment, such as the  
addresses related to the Android framework 
mapping.  

Then, it is interesting to find that the Android 
framework image header in this device is different 
from that in the emulated device, although this real 
system presents the same ART header version 
identification (009).  

In the real device, the header field for the image 
address does not point to a valid absolute address in 
the image segment. This difference suggests that this 
manufacturer Android OS does not correspond to the 
AOSP source code. 

Consequently, the technique proposed in this 
paper cannot be fully used in this case since the 
unknown header demands reverse engineering the 
ART image present in this real device. This 
evaluation result shows a common limitation 
characterizing procedures designed for extraction of 
objects from ever evolving operating systems in 
mobile devices. Moreover, the consequent 
requirement regarding the adaptation of the 
proposed technique to this new situation comes up 
against an important obstacle, since there is no 
available public ART runtime source code provided 
by the concerned manufacturer. 

7 CONCLUSIONS AND FUTURE 
WORK 

This paper presents a technique for object data 
analysis in RAM acquisitions from devices 
compliant to the ARM 32-bit architecture. The work 
includes the study of concepts and structures of the 
ART runtime environment, present in the Android 
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Figura 4: Example of references to objects related with a message text recovery. 

operating system version 5.0 from AOSP. 
Experimental evaluation of the proposed technique 
is performed using software extensions developed 
for the Volatility framework.  

The proposed technique contribution comes from 
its ability to extract and analyse Java objects in ART 
revealing involved memory structures, thus 
overcoming earlier Dalvik analysis (Hilgers et al., 
2014) and other traditional techniques based on 
detecting patterns intrinsic to the artefact 
components. An additional contribution concerns the 
supporting tools developed as Volatility plugins that 
can also be useful as reverse-engineering tools being 
soon available for the forensic community. 

It is noteworthy that the proposed technique and 
the constructed support tools have the flexibility to 
be adapted to other computer architectures 
(including 64-bit), for devices with different 
hardware limitations and to comply with ART 
modifications already identified in the AOSP source 
code of the latest versions of Android (6.0). It is 
relevant that, though it is successful in analysing 
heap objects from ART in an emulated device, the 
technique identifies an implementation of ART in a 

real device that differs from the AOSP version tested 
in an emulated device. 

As future work, the authors intend to carry out 
the experimental validation of the technique with 
data retrieved from other real devices, and to 
associate the technique with similar ones for 
detection and analysis of malwares. 
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