
CloudTL: A New Transformation Language based on Big Data Tools and
the Cloud

Jesús M. Perera Aracil and Diego Sevilla Ruiz
DITEC, University of Murcia, Campus Universitario de Espinardo, 30100, Espinardo, Murcia, Spain

Keywords: MDE, Model-to-model Transformation, Cloud, Ecore.

Abstract: Model Driven Engineering (MDE) faces new challenges as models increase in size. These so called Very
Large Models (VLMs) introduce new challenges, as their size and complexity cause transformation languages
to have long execution times or even not being able to handle them due to memory issues. A new approach
should be proposed to solve these challenges, such as automatic parallelization or making use of big data
technologies, all of which should be transparent to the transformation developer. In this paper we present
CloudTL, a new transformation language whose engine is based on big data tools to deal with VLMs in an
efficient and scalable way, benchmarking it against the de facto standard, ATL.

1 INTRODUCTION

Models are a digital representation of reality, and as
such, their size is constantly increasing. Transfor-
mations are used for manipulating these models, but
nowadays are currently becoming slow or even im-
possible to run because of the huge size of input and
output models.

Big data (Manyika et al., 2011) tools have
been proven to be a solution for manipulating huge
amounts of data in considerable time, by using dis-
tribution across different compute nodes (both phys-
ical and/or virtual machines (VMs)). Thus, one can
think that using them to perform model transforma-
tions might be the way to go for dealing with VLMs.

The challenges that are arising in the Model
Driven Engineering (MDE) ecosystem due to the fact
of models becoming huge and complex can be seen
as a parallelism to what the data analytics is experi-
menting. In fact, it is a logical parallelism since in-
formation is being constantly generated and is getting
more and more complex. Thus, we believe that by us-
ing big data tools, which are already solving the issue
of manipulating inmense ammounts of information,
we could help improve the problems that MDE, and
model transformations in particular, are facing.

The Mondo Project (Kolovos et al., 2015) is a Spe-
cific Targeted Research Project (STREP) of the Sev-
enth Framework Programme for research and tech-
nological development (FP7) aiming to tackle the in-
creasingly important challenge of scalability in MDE

in a comprehensive manner. There has been publica-
tions and tools developed through this project which
have aided to get us closer to a solution of dealing
with VLMs.

As this kind of initiatives and projects indicate,
solving these problems is a real issue for MDE and
it is essential that solutions, tools, frameworks and
new languages are developed so that MDE can con-
tinue and adapt to the needs of Software Engineering
when faced to problems in which the huge magnitude
of data must be handled in an efficient way.

This paper is structured as follows: Section 2
introduces the concepts used in our proposal for
building our distributed transformation language,
CloudTL. Section 3 presents our implementation and
benchmarks it agains ATL, the de facto standard. Sec-
tion 4 discusses related work and Section 5 summa-
rizes conclusions and future work.

2 BACKGROUND

2.1 Apache Storm

Apache Storm is a free and open source distributed
realtime computation system (Apache, 2016c). It is
commonly used as a big data tool to analyse streams
of information and obtain analytics or metadata from
them.

Perera Aracil J. and Sevilla Ruiz D.
CloudTL: A New Transformation Language based on Big Data Tools and the Cloud.
DOI: 10.5220/0006203101370146
In Proceedings of the 5th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2017), pages 137-146
ISBN: 978-989-758-210-3
Copyright c© 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

137

It is based on the idea of flow of information,
called topologies, so that there are producers of in-
fromation, called Spouts, and nodes of computation,
called Bolts, which are interconnected. These inter-
connections are called Streams and are an unbounded
sequence of tuples that is processed and created in
parallel in a distributed fashion. Tuples are a collec-
tion of primitive types (strings, integers. . .), but also
serializers can be defined to use other types.

Streams connect spouts and bolts, as well as bolts
to other bolts, by defining the structure of the tuples
that will be emitted through them. This intercon-
nection of spouts and bolts is called a Storm topol-
ogy, which defines the flow of data from the spouts
to bolts. These streams are also aware of replication
of Storm bolts, so different strategies can be given for
emitting tupples (i.e., broadcast a tuple to all the repli-
cas, emit the tuple to a local target replica if it exists,
using consistent hashing to send tuples to the same
replica. . .). Figure 1 shows a simple Storm topology
from the Storm webpage.

Figure 1: Simple Storm topology.

The execution of a Storm topology requires a
Storm cluster, which is responsible of starting spouts
and bolts, and the streams between them. There are
two types of Storm clusters:
• local: A local cluster runs on a single machine,

in which the Java main method is invoked as if
it were a normal Java program. This is a useful
option when developing and testing topologies.

• distributed: a cluster can be distributed between
different physicial or virtual machines, so that
the workload is shared between them. This
kind of cluster makes use of to keep synchro-
nization and keeping track of living nodes, such
as Nimbus (Keahey and Freeman, 2016) and
ZooKeeper (Apache, 2016d). This is the preferred
option for executing Storm topologies in produc-
tion mode.

2.2 Cloud Ecore

Cloud Ecore (Perera Aracil and Sevilla Ruiz, 2016) is
a distributed Ecore implementation in JSON (JSON,
2016). The authors developed both a specification of
Ecore in JSON and a implementation which served
Ecore models and metamodels using a REST service.
The main characteristic of Cloud Ecore is that it is
URL based for the ids of elements that make a model
(i.e. any model element is identified by a valid URL).

We are using an optimized version of this imple-
mentation, in which EAttributess are part of the
JSON which is returned to the client when asked for a
particular URL. Code Example 1 shows a comparison
to clarify this modification.

// EClass (Original)
// URL: http://www.example.com/repo/0/
// eClassifiers/0
{
"name":"http://www.example.com/repo/0/

eClassifiers/0/name",
"eClass":"http://www.example.com/repo/0/

eClassifiers/0/eClass",
...
}

// EClass (Optimized)
// URL: http://www.example.com/repo/0/
// eClassifiers/0
{
"name":"EClass",
"eClass":"http://www.example.com/repo/0/

eClassifiers/0/eClass",
...
}

Code Example 1: Partial EClass as JSON as both the origi-
nal and the optimized version.

This modification helps reduce the number of
HTTP petitions that are sent to the server, thus be-
coming a faster implementation as well as improving
both the client and server performance.

Other optimization we have introduced is the pag-
ination of lists of elements. Now, lists are paginated
by default, each page containing a fixed number of el-
ements. In this way, the parallelization of lists can be
performed through pages instead of having a vast list
and having to manually partition it.

3 CloudTL

CloudTL aims to be a model-to-model transformation
language ready to handle VLMs in an efficient way,
inspired by the syntax of ATL (Jouault and Kurtev,

MODELSWARD 2017 - 5th International Conference on Model-Driven Engineering and Software Development

138

2006), and using big data tools and distributed com-
putation. Code Example 2 shows a simple transfor-
mation written in CloudTL, which implements a copy
transformation (i.e., it generates as output the same
model as it is given as input) for the metamodel shown
in Figure 2; it consists of a Super metaclass contain-
ing a multi-valued Sub EReference.

Simple

Sub

count: Int

s u b s
0..*

Super

Figure 2: Simple metamodel.

CloudTL contains three main sections which de-
fine a transformation:

• Server section: The server serction of a CloudTL
transformation defines the servers which contain
the Cloud Ecore models and metamodels. These
servers are defined by their IP address and port, as
well as a unique ID to be identified throught the
other sections wherever needed. In the example,
we have defined a server named local which is at
http://<IP>:<Port>.

• Namespace section: The namespace section de-
fines the namespaces, both input and output, of
the transformation. These are defined by a unique
ID, a reference to a server defined in the server
section, as well as a path (URL) to the Cloud
Ecore metamodel. In the example, we define the
A namespace as the input, which is contained in
the local server at the repo/1 path (i.e., the meta-
model will be at http://<IP>:<Port>/repo/1).
Namespace B is the output namespace of the trans-
formation and, since this is a copy transformation,
points to the same path as the input.

• Rule section: The rule section contains the differ-
ent rules that compose a transformation, indicat-
ing both their input and output metaclass. There
is a unique special rule which must be identified
by the init keyword, marking it as the first rule
to be executed whenever the transformation starts.

Rules have a collection of operations that set
the target element EStructuralFeatures from the
source element. There are, currently, three operations
supported by CloudTL:
Initializators of Primitive Types. They set a target
EStructuralFeature to a defined value.

tgt.count = 5;

This operation would set the count feature of tgt to
5 for every execution of the rule.

Copying of Values. If the source and target
EStructuralFeatures are EAttributes, CloudTL
will just copy the value from the source to the target
without invoking other rule. An example would be
tgt.name = src.name;

This operation would copy the name feature from the
src instance to the tgt name feature.
Transformation Invokations. If the source and
target EStructuralFeatures are EReferences,
CloudTL will find a suitable rule (i.e., a rule which
transforms an instance from the source feature value
to the target one) and invoke it. The operation
tgt.subs = src.subs;

would imply that CloudTL must find a rule which
transforms a Sub to Sub, and invoke it, transforming
all the instances of the source subs collection.

transformation SimpleCopy {
servers {

local@ <IP>:<Port >
}

namespaces {
in A as local@repo/1
out B as local@repo/1

}

init super2super {
from src is A::Super
to tgt is B::Super {

tgt.subs = src.subs;
}

}

sub2sub {
from src is A::Sub
to tgt is B::Sub {

tgt.count = src.count;
}

}
}

Code Example 2: CloudTL SimpleCopy transformation.

CloudTL is created as a Xtext framework (Foun-
dation, 2016), and thus it compiles to standard Java
code, which can be invoked or utilize any Java library
available. It also generates an Eclipse editor and pow-
erful aids when developing a transformation, such as
auto-completion, by querying the Cloud Ecore meta-
model.

3.1 Compilation to Java

We have used Apache Storm as the backend for the
engine of our language, so what the Xtext compiler

CloudTL: A New Transformation Language based on Big Data Tools and the Cloud

139

does is create a customized Spout and several Bolts,
as well as some helper classes which aid in the trans-
formation process. The generation tries to extract as
much information as possible from the Cloud Ecore
input and output metamodels and making it static (i.e.,
not needing to query it again when running the trans-
formation), so that there is as little network traffic
as possible when the transformation executes. Cloud
Ecore (Perera Aracil and Sevilla Ruiz, 2016) demon-
strated that network traffic is one of the most impor-
tant factors that degrade the performance of its dis-
tributed mechanism, and thus, we try to minimize it
as much as possible.

The Storm topology is created by analizing the
transformation rules and their data dependencies be-
tween them. For example, if the definition of rule
A transforms a target EReference from a source
one, this would be done by invoking rule B. In
out copy transformation, this could be seen in the
super2super rule: transforming the EReference
subs for the target metamodel is done by invoking
a rule which can transform a source Sub element to
a target one (i.e., invoking the sub2sub rule over the
subs collection of the source Super element).

Each rule of the transformation will generate a
bolt, which will be responsible for generating its tar-
get model element form the source element. The bolt
will be responsible for contacting the Cloud Ecore
server and HTTP get the URL representing the source
element, which will be a JSON Object containing
all the EStructuralFeatures. Rules are composed
of transformation operations, which will be com-
piled as emit statements to other bolts, depending on
the source and target EStructuralFeatures that are
transforming.

• Mono-valued EAttributes: will consist of
adding the value to the target JSON Object as a
new JSON pair.

• Multi-valued EAttributes: will consist of an
emit statement to a helper bolt which will iterate
over the collection and generate the target collec-
tion.

• Mono-valued EReferences: will consist of an
emit statement to the bolt which is responsible
for the transformation of the EClass of the source
EReference to the target one.

• Multi-valued EReferences: will consist of an
emit statement to a helper bot which will iterate
over the collection and emit each element to the
corresponding transformation bolt, as if it was a
mono-valued EReference, and will generate it as
a target collection.

The Storm topology created by the transformation

SimpleCopy can be seen in Figure 3. As mentioned
before, SimpleCopySpout is created, responsible for
invoking the first rule of the transformation with both
the input model URL and the output model URL.

Data dependencies are extracted and analized
from the transformation text, so a valid topology can
be created. If the language detects that it cannot solve
a data dependencie (i.e., we have forgotten to include
the sub2sub rule or we have used the incorrect input
and output metaclasses), it will generate an editor er-
ror (i.e., marking the data dependency in red) so it can
be fixed.

These data dependencies are EReferences to
other model elements, so transforming these are done
by invoking another transformation rule. This rule
is found by matching the source and target elements
EClasses to the input and output metaclasses of a
rule. In code, this is generated as two different pieces
of code in the generated Java code:

• A stream from a bolt to another (representing the
dependency of a rule to another). This is gener-
ated in the Launcher class, where the Storm topol-
ogy is configured.

• A emit statement in the execute method of a bolt
to send information to another bolt (representing
the execution of a particular model element).

If the EReference is multi-valued, it takes into
account that it is paginated, so two additional
helper bolts are generated in order to deal with
the pagination and the invokation of each element
of each page. In our example, since the subs
EReference is multivalued, the generation will cre-
ate two new bolts Super2superSubsPages, which
is in charge of iterating over the pagination, and
Super2superSubsElements, which will emit of
each Sub element to the corresponding transforma-
tion bolt (i.e., in our transformation to Sub2sub). On
the other hand, if the EReference is mono-valued, no
helper bolts will be generated, and the emit statement
will directly invoke another bolt (i.e., transformation
rule).

A Launcher class is generated in which the bolts
and spout are configured to build the Storm topology.
This class contains the main method. A Spout will
be generated which is in charge of invoking the initial
rule of a transformation, sending it the root input ele-
ment and defining where the root output element must
be created.

Other helper bolts are also generated to aid in
the transformation process, such as the TraceBolt,
which is responsible for tracking target elements
transformed from source elements (i.e., similar to a
TraceLink in the ATL engine). The PosterBolt

MODELSWARD 2017 - 5th International Conference on Model-Driven Engineering and Software Development

140

Super2superSubsElementsSuper2superSubsPages

TraceBolt PosterBolt

Sub2subSuper2superSimpleCopySpout

Figure 3: SimpleCopy Storm Topology.

is in charge of making the HTTP post calls in or-
der to create the target model at a specified URL,
sending the transformed JSON element. Each of the
bolts generated from transformation rules will have a
stream connecting them to both the TraceBolt and
the PosterBolt, so that they can query elements al-
ready created or post the result of their execution (i.e.,
the target element created by executing it).

TraceBolt is special with respect to its gener-
ation, since elements will be sent to these bolts by
hashing the source element, and so, this bolt is a dis-
tributed data structure. If it is queried for an element
which has not yet been transformed, it will behave in
a way inspired by Koan (Sánchez Cuadrado and Per-
era Aracil, 2014) and the use of continuations: the
TraceBolt will keep the information of “pending”
queries and serve them whenever it is available in the
future.

Finally, the generator will create a SBT (Light-
bend, 2016) build file so that the transformation can
be compiled, imported to Eclipse or packaged into a
single jar file to be uploaded and executed in a Storm
cluster.

3.2 Execution

The execution of a CloudTL transformation is done
by compiling and packaging the generated Java code
to a jar file and uploading it to a Storm cluster,
although executing it as a regular Java program is
present, we recommend using the distributed cluster,
so that parallelism and replication can be achieved.

The Storm cluster will then deploy this as a regular
Storm topology, distributing the transformation rules
(bolts) throughout the cluster. Then, when all the
bolts are ready, Storm will execute the spout, which
will trigger the start of the transformation process.
This is simply emitting a tuple with the source URL

from the root element of the input model and the tar-
get URL where the output element should be stored.
Each rule will produce a JSON Object following our
optimized Cloud Ecore specification and uploading it
to its target URL. It will emit a message to TraceBolt
indicating that a source element has been transformed
to a target element in this rule, thus, providing this in-
formation to be queried in the future for other rules.
Then, each element will be filled with the necessary
information for it to be a valid Ecore JSON represen-
tation (i.e., filling in its EClass reference, which is
extracted from the transformation definition, and all
the other EReferences defined for EObject). Finally,
the final JSON Object will be sent to a PosterBolt
to be posted to the specified target URL.

The creation of the JSON Object depends on
the type of EStructuralFeature of the target and
source element. If a it is a mono-valued EAttribute,
the source attribute will be directly copied into the
resulting JSON Object, as well as if it is a initializa-
tion. A mono-valued EReference will be created as
a pointer to the URL of the target feature of the rule
that transforms those features. Code Example 3 il-
lustrates with our running example how our language
will transform some EStructuralFeatures.

The TraceBolt is needed whenever a rule needs
to transform a mono-valued EReference whose
containment feature is false. This means that
CloudTL must not execute any rule to transform it,
since it will be transformed through another rule.
Thus, the TraceBolt must be queried in order to ob-
tain the URL in which that element has been trans-
formed. In case the rule in charge of transforming it
has not been executed yet, it will be marked in the bolt
so that whenever it enters the trace, it can be

CloudTL: A New Transformation Language based on Big Data Tools and the Cloud

141

init super2super {
from src is IN::Super
to tgt is OUT::Super {

// This is a multi -valued
EReference

// Thus it will be transformed by
// invoking a rule which can

transform
// a Sub source instance into a

Sub
// target instance (which is what
// the sub2sub rule does)
tgt.subs = src.subs;

}
}

sub2sub {
from src is IN::Sub
to tgt is OUT::Sub {

// This is a mono -valued
EAttribute

// Thus , it will be transformed
by

// copying the value of src.count
// into the resulting JSON Object
// in a new JSON pair.
tgt.count = src.count;

}
}

Code Example 3: CloudTL Example.

3.3 Benchmarks

A series of benchmarks have been executed in or-
der to test the performance of our implementation
against ATL EMFTVM (Wagelaar et al., 2011) en-
gine. We have implemented in ATL the same trans-
formation shown in Section 3, which can be seen
in Code Example 4. As it can be seen, both trans-
formation seem identical, with some syntax differ-
ences. We have conducted ATL benchmarks by gen-
erating a Java launcher using the “ATL Plugin” wiz-
ard provided with the language in Eclipse and fol-
lowing the indications in (IBM, 2008a) and (IBM,
2008b). CloudTL benchmarks have been conducted
by modifying manually the generated Spout to in-
dicate the ellapsed seconds since the topology emit-
ted the first tuple. Since there is no Storm bench-
mark solution (Apache, 2015), we have executed the
SimpleCopy CloudTL transformation once, with one
task and 1 hint parallelism as configuration for the
Storm topology. We have used 3 virtual machines cre-
ating a Storm cluster:
• VM 1: responsible for the MongoDB (Mon-

goDB, 2016) database, Cloud Ecore server and
ZooKeeper, Nimbus and Storm UI servers.

• VM 2 and 3: Storm supervisors (working nodes).

-- @path MM=/SimpleCopyATL/
models/Simple.ecore

-- @path MM1=/SimpleCopyATL/
models/Simple.ecore

module SimpleCopy;
create OUT: MM1 from IN: MM;

rule super2super {
from src: MM!Super
to tgt: MM1!Super (

subs <- src.subs
)

}

rule sub2sub {
from src: MM!Sub
to tgt: MM1!Sub (

count <- src.count
)

}

Code Example 4: ATL SimpleCopy transformation.

Our client PC setup is the following:

• Intel i7 3770K 3.90GHz

• 16 GB RAM

• 10 Mbps downstream internet connection

• 600 Kbps upstream internet connection

• Windows 10 Pro 64 bit

• Eclipse 4.5.2 Mars

• JDK 1.8.0 111

This PC has been used for the execution of the
ATL benchmark as well as the host for the VMs used
for CloudTL.

Our VMs setup is the following:

• Single core virtualized Intel i7 3770K 3.50GHz

• 2 GB RAM

• 10 Mbps downstream internet connection

• 600 Kbps upstream internet connection

• Ubuntu Linux 16.04 LTS (Xenial Xerus)

• Kernel 4.4

• JDK 1.8.0 91

We will be usign the same metamodel shown Fig-
ure 2 as the input and output metamodel that will be
used in this example. We have created 9 different
models of different sizes, from 10000 to 90000 ele-
ments, in steps of 10000.

MODELSWARD 2017 - 5th International Conference on Model-Driven Engineering and Software Development

142

The results can be seen in Table 1 and graphically
in Figure 5 for ATL execution times and Figure 4 for
CloudTL execution times.

x

x

x

x

x

x

x

x

x

20000 40000 60000 80000

50
10

0
15

0
20

0
25

0
30

0
35

0

CloudTL mean time

Elements

T
im

e
(s

ec
s)

Figure 4: CloudTL Benchmarks.

The regression equation for the CloudTL bench-
mark is fcloudtl(x) = 4.076e−03x + 16.34 and R2 =
0.9983. As shown, the algorithm complexity for
CloudTL is linear (O(n)).

x
x

x

x

x

x

x

x

x

20000 40000 60000 80000

0
5

10
15

20

ATL mean time

Elements

T
im

e
(s

ec
s)

Figure 5: ATL Benchmarks.

The regression equation for the ATL benchmark
is fatl(x) = 2.745e−09x2 − 3.738e−05x+ 0.5302 and
R2 = 0.9954 . As shown, the algorithm complexity
is quadratic (O(n2)), as it is expected due to the im-
plementation of two passes of ATL (see (Jouault and
Kurtev, 2006) Section 3.5).

If we equalize both regression functions, we can
speculate that CloudTL is slower than ATL until the
model size reaches around 706042.5 elements. Thus,
we have created a second set of benchmarks in which
the model have 10 times more elements, so that we
can demonstrate that CloudTL is faster whenever
the input model has a certain number of elements.
The new 9 models used in this second benchmark
range from 100000 to 900000 elements, by steps of
100000. The results of this second set of tests can

Table 1: ATL and CloudTL execution times (in seconds).

Model Elements ATL CloudTL
10000 0.272 51.313
20000 0.877 102.795
30000 2.028 136.216
40000 3.672 188.648
50000 5.779 224.044
60000 7.579 253.035
70000 11.42 290.471
80000 14.906 352.694
90000 19.641 382.055

be graphically seen in Figure 6 for ATL and Figure
7 for CloudTL, including the first set of benchmarks,
demonstrating that all tests follow the same algorithm
complexity.

xxxxxxxxxx
x

x

x

x

x

x

x

x

0 200000 400000 600000 800000

0
10

00
20

00
30

00
40

00
50

00

ATL mean time

Elements

T
im

e
(s

ec
s)

Figure 6: ATL Benchmarks (set 2).

The regression formula for ATL, tak-
ing into account the new benchmarks, is
fatl(x) = 7.687e−09x2 − 9.591e−04x + 32.28
and R2 = 0.9973.

The regression formula for CloudTL, taking
into account the new benchmarks, is fcloudtl(x) =
3.220e−03x + 46.8 and R2 = 0.9959. Equalizing
these new functions, we can deduce that CloudTL is
faster than ATL when the input model has more than
547110.6 elements. The data collected in this bench-
mark can be seen in Table 2.

We have demonstrated that CloudTL is faster than
ATL when dealing with models with a high number
of elements, while it is slower when the number of el-
ements is low due to the fact that we have to distribute
and contact through the net the Storm cluster. Figure 8
shows all 4 benchmarks in a single graph, demonstrat-
ing how ATL outperforms CloudTL for input models
with less than 500000 elements and how it quickly de-
grades for bigger input models, due to the fact that its
transformation algorithm is quadratic in complexity.

It can be clearly seen how CloudTL will keep on

CloudTL: A New Transformation Language based on Big Data Tools and the Cloud

143

xx
xx

xxx
xxx

x

x
x

x

x

x

x

x

0 200000 400000 600000 800000

0
50

0
10

00
15

00
20

00
25

00
30

00

CloudTL mean time

Elements

T
im

e
(s

ec
s)

Figure 7: CloudTL Benchmarks (set 2).

xxxxxxxxxx
x

x

x

x

x

x

x

x

0 200000 400000 600000 800000

0
10

00
20

00
30

00
40

00
50

00

xxxx
xxxx

xx
x

x
x

x
x

x

x
x

ATL vs CloudTL

Elements

T
im

e
(s

ec
s)

Figure 8: ATL vs CLoudTL Benchmarks.

Table 2: ATL and CloudTL execution times (in seconds).

Model Elements ATL CloudTL
100000 28.478 407.981
200000 176.084 651.932
300000 446.32 1047.269
400000 908.668 1216.150
500000 1396.361 1600.266
600000 2056.816 1821.210
700000 3213.287 2344.460
800000 4423.49 2694.124
900000 5243.931 3019.100

getting a better time execution than ATL for even big-
ger models, since the difference in execution time for
two different algorithms (O(n2) and O(n)) gets bigger
and bigger.

4 RELATED WORK

Mondo Project (Kolovos et al., 2015) aims to tackle
the increasingly important challenge of scalability

in MDE in a comprehensive manner. They have
supported different projects and investigations which
brings us closer to being able to handle VLMs in an
efficient way.

Parallel ATL (Tisi et al., 2013) show an ATL en-
gine implementation and compiler which parallelizes
transformations using new opcodes for the ATL vir-
tual machine. They have demonstrated a speedup of
up to 2.5 in execution time with respect to the stan-
dard ATL engine using a CPU with 4 physical cores.

ATL-MR (Benelallam et al., 2015a) (Benelallam
et al., 2015b), supported by the Mondo Project, show
an implementation of ATL using Map Reduce and
Hadoop using VMs. On some experiment, using up
to 8 different VMs, the improvement shown has been
up to 6 times faster than the default EMFTVM im-
plementation. It is not mentioned whether they have
achieved a better algorithm complexity or not, but we
suppose the base ATL algorithm is used, and thus it is
still O(n2).

Koan (Sánchez Cuadrado and Perera Aracil, 2014)
is a transformation language that uses continuations
in order to simulate the parallelism of execution of
rules, and analyses data dependencies between rules
to schedule automatically the execution of rules so
that they can be resolved in a optimal way. If it de-
tects a cycle, continuations will be used in order to
keep running the transformation and try to create the
needed element.

A roadmap (Clasen et al., 2012) has been pro-
posed for the transformation of VLMs, in which they
discuss the importance of distributing models and
strategies for partitioning them.

CPU+GPU heterogeneous architectures (Fekete
and Mezei, 2016) are being studied in order to build a
transformation tool using OpenCL (Group, 2016).

5 CONCLUSION AND FUTURE
WORK

In this paper we have presented a new model-to-
model transformation language that uses Big Data
technologies as its core building element. Our lan-
guage demonstrates that these new technologies can
be used in MDE in order to achieve faster execu-
tion times of transformations when input models are
VLM. We have shown that our transformation lan-
guage not only improves time execution when han-
dling large models, but also improving the algorithm
complexity of the transformation language.

Algorithm complexity is an important parameter
to take into account when dealing with large inputs
of data, such as when transforming VLMs. This can

MODELSWARD 2017 - 5th International Conference on Model-Driven Engineering and Software Development

144

actually make it difficult or even impossible to exe-
cute successfully a transformation or any handling of
the model. Thus, improving it should be a priority
for the next transformation languages, implementa-
tions and improvements to be able to keep using MDE
for the future. We have empirically demonstrated that
our implementation improves the de facto standard
whenever a model of a defined size is used as input
for a transformation.

CloudTL has demonstrated that whenever creat-
ing a new transformation language or tool, attention
must be payed to the algorithm complexity of the en-
gine that implements it, since it becomes an important
issue when dealing with VLMs.

As for future work, we believe that there is still
much work to do and by using big data tools, it opens
up a whole new way of studying and creating model
transformations.

We plan on studying using other big data tools
such as Apache Spark (Apache, 2016b) or Apache
Flink (Apache, 2016a) for the back-end of our the
transformation language, as they are tools or have
subprojects for big data streaming analysis which
could be adapted to our language.

New types of rules could make the development of
transformation in CloudTL easier, since they would
allow for a more ways of interacting and scheduling
the transformation. We plan on adding a type of rule
based on lazy rules from ATL, which are rules that
get executed only when explicitly invoked.

We are also studying the implementation of
CloudTL cluster by using Amazon EC2. This way,
the optimization of the virtual machines needed for a
given trasnformation could be done elastically and ef-
ficiently, as well as this would help to reduce the net-
work overhead when two bolts are in different virtual
machines.

We plan to enrich the library with useful opera-
tions for the base types (String, Int. . .) so that we
can have better statements in our transformation lan-
guages by enabling the programmer with better type
support (i.e. concatenation of strings, addition of in-
tegers. . .).

We would like to expand the transformation lan-
guage and add filters for the input elements, so that
rules are executed if and only if the input element
passes the filter. We are considering to incorporate
a mechanism to auto-detect the init ruled based on the
EClasses of the root metamodels from the input and
ouput.

Having our language handle as input not only
Cloud Ecore models, but also other types of structured
data is interesting, since it would allow to bring into
MDE and modeling databases and projects that have

not considered it. This would require that CloudTL
could infer the structure (i.e., build an internal meta-
model from the structured data) using tools such
as JSONDiscoverer (Cánovas Izquierdo and Cabot,
2016) as a previous step to the generation of Storm
and Java code.

REFERENCES

Apache (2015). Jira for storm. https://issues.apache.org/
jira/browse/STORM-642.

Apache (2016a). Flink. http://flink.apache.org/.
Apache (2016b). Spark. http://spark.apache.org/.
Apache (2016c). Storm. http://storm.apache.org/.
Apache (2016d). Zookeeper. https://zookeeper.apache.org/.
Benelallam, A., Gómez, A., and Tisi, M. (2015a). ATL-

MR: model transformation on MapReduce. In Pro-
ceedings of the 2nd International Workshop on Soft-
ware Engineering for Parallel Systems - SEPS 2015.
Association for Computing Machinery (ACM).

Benelallam, A., Gómez, A., Tisi, M., and Cabot, J.
(2015b). Distributed Model-to-Model Transformation
with ATL on MapReduce. In Proceedings of 2015
ACM SIGPLAN International Conference on Soft-
ware Language Engineering (SLE 2015), Pittsburgh,
United States.

Cánovas Izquierdo, J. L. and Cabot, J. (2016). JSONDis-
coverer: Visualizing the schema lurking behind JSON
documents. Knowledge-Based Systems, 103:52–55.

Clasen, C., Didonet Del Fabro, M., and Tisi, M. (2012).
Transforming Very Large Models in the Cloud: a Re-
search Roadmap. In First International Workshop
on Model-Driven Engineering on and for the Cloud,
Copenhagen, Denmark. Springer.

Fekete, T. and Mezei, G. (2016). Towards a model trans-
formation tool on the top of the OpenCL framework.
In Proceedings of the 4th International Conference
on Model-Driven Engineering and Software Develop-
ment, pages 355–360. Scitepress.

Foundation, E. (2016). Xtext. http://www.eclipse.org/
Xtext/.

Group, K. (2016). Opencl. https://www.khronos.org/
opencl/.

IBM (2008a). Robust java benchmarking, part 1: Issues.
http://www.ibm.com/developerworks/java/library/
j-benchmark1/index.html.

IBM (2008b). Robust java benchmarking, part 2: Statistics
and solutions. https://www.ibm.com/developerworks/
java/library/j-benchmark2/.

Jouault, F. and Kurtev, I. (2006). Transforming models with
ATL. In Satellite Events at the MoDELS 2005 Con-
ference, pages 128–138. Springer Science + Business
Media.

JSON (2016). Json. http://json.org/.
Keahey, K. and Freeman, T. (2016). Nimbus. http://

www.nimbusproject.org/.

CloudTL: A New Transformation Language based on Big Data Tools and the Cloud

145

Kolovos, D. S., Rose, L. M., Paige, R. F., Guerra, E.,
Cuadrado, J. S., de Lara, J., Ráth, I., Varró, D., Sunyé,
G., and Tisi, M. (2015). MONDO: scalable modelling
and model management on the cloud. In Proceedings
of the Projects Showcase, part of the Software Tech-
nologies: Applications and Foundations 2015 federa-
tion of conferences (STAF 2015), L’Aquila, Italy, July
22, 2015., pages 44–53.

Lightbend (2016). Sbt. http://www.scala-sbt.org/.
Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R.,

Roxburgh, C., and Byers, A. H. (2011). Big data: The
next frontier for innovation, competition, and produc-
tivity.

MongoDB (2016). Mongodb website. https://
www.mongodb.org/.

Perera Aracil, J. M. and Sevilla Ruiz, D. (2016). To-
wards distributed ecore models. In Proceedings of the
4th International Conference on Model-Driven Engi-
neering and Software Development, pages 209–216.
Scitepress.

Sánchez Cuadrado, J. and Perera Aracil, J. M. (2014).
Scheduling model-to-model transformations with
continuations. Softw., Pract. Exper., 44(11):1351–
1378.

Tisi, M., Martinez, S., and Choura, H. (2013). Parallel Ex-
ecution of ATL Transformation Rules. In MoDELS,
pages 656–672, Miami, United States.

Wagelaar, D., Tisi, M., Cabot, J., and Jouault, F. (2011). To-
wards a general composition semantics for rule-based
model transformation. In Model Driven Engineer-
ing Languages and Systems, pages 623–637. Springer
Science + Business Media.

MODELSWARD 2017 - 5th International Conference on Model-Driven Engineering and Software Development

146

