Strategic Capacity Expansion of a Multi-item Process with Technology Mixture under Demand Uncertainty: An Aggregate Robust MILP Approach

Jorge Weston, Pablo Escalona, Alejandro Angulo, Raúl Stegmaier

Abstract

This paper analyzes the optimal capacity expansion strategy in terms of machine requirement, labor force, and work shifts when the demand is deterministic and uncertain in the planning horizon. The use of machines of different technologies are considered in the capacity expansion strategy to satisfy the demand in each period. Previous work that considered the work shift as a decision variable presented an intractable nonlinear mix-integer problem. In this paper we reformulate the problem as a MILP and propose a robust approach when demand is uncertain, arriving at a tractable formulation. Computational results show that our deterministic model can find the optimal solution in reasonable computational times, and for the uncertain model we obtain good quality solutions within a maximum optimal gap of $10^{-4}$. For the tested instances, when the robust model is applied with a confidence level of 99\%, the upper limit of the total cost is, on average, 1.5 times the total cost of the deterministic model.

References

  1. Asl, F. M. and Ulsoy, A. G. (2003). Stochastic optimal capacity management in reconfigurable manufacturing systems. CIRP Annals-Manufacturing Technology, 52(1):371-374.
  2. Barahona, F., Bermon, S., Gunluk, O., and Hood, S. (2005). Robust capacity planning in semiconductor manufacturing. Naval Research Logistics, 52(5):459-468.
  3. Ben-Tal, A., El Ghaoui, L., and Nemirovski, A. (2009). Robust optimization. Princeton University Press.
  4. Bertsimas, D. and Sim, M. (2004). The price of robustness. Operations Research, 52(1):35-53.
  5. Bertsimas, D. and Thiele, A. (2006). Robust and datadriven optimization: Modern decision-making under uncertainty. INFORMS Tutorials in Operations Research: Models, Methods, and Applications for Innovative Decision Making.
  6. Bihlmaier, R., Koberstein, A., and Obst, R. (2009). Modeling and optimizing of strategic and tactical production planning in the automotive industry under uncertainty. OR spectrum, 31(2):311-336.
  7. Cheng, L., Subrahmanian, E., and Westerberg, A. W. (2004). Multi-objective decisions on capacity planning and production-inventory control under uncertainty. Industrial & engineering chemistry research, 43(9):2192-2208.
  8. Chien, C.-F., Wu, C.-H., and Chiang, Y.-S. (2012). Coordinated capacity migration and expansion planning for semiconductor manufacturing under demand uncertainties. International Journal of Production Economics, 135(2):860-869.
  9. Christie, R. M. and Wu, S. D. (2002). Semiconductor capacity planning: stochastic modelingand computational studies. IIE Transactions, 34(2):131-143.
  10. Escalona, P. and Ramírez, D. (2012). Expansi ón de capacidad para un proceso, m últiples ítems y mezcla de tecnologías. In 41 Jornadas Argentinas de Informatica.
  11. Fleischmann, B., Ferber, S., and Henrich, P. (2006). Strategic planning of bmw's global production network. Interfaces, 36(3):194-208.
  12. Geng, N., Jiang, Z., and Chen, F. (2009). Stochastic programming based capacity planning for semiconductor wafer fab with uncertain demand and capacity. European Journal of Operational Research, 198(3):899- 908.
  13. Guigues, V. (2009). Robust production management. Optimization and Engineering, 10(4):505-532.
  14. Hood, S. J., Bermon, S., and Barahona, F. (2003). Capacity planning under demand uncertainty for semiconductor manufacturing. Semiconductor Manufacturing, IEEE Transactions on, 16(2):273-280.
  15. Julka, N., Baines, T., Tjahjono, B., Lendermann, P., and Vitanov, V. (2007). A review of multi-factor capacity expansion models for manufacturing plants: Searching for a holistic decision aid. International Journal of Production Economics, 106(2):607-621.
  16. Karabuk, S. and Wu, S. D. (2003). Coordinating strategic capacity planning in the semiconductor industry. Operations Research, 51(6):839-849.
  17. Levis, A. A. and Papageorgiou, L. G. (2004). A hierarchical solution approach for multi-site capacity planning under uncertainty in the pharmaceutical industry. Computers & Chemical Engineering, 28(5):707-725.
  18. Li, C., Liu, F., Cao, H., and Wang, Q. (2009). A stochastic dynamic programming based model for uncertain production planning of re-manufacturing system. International Journal of Production Research, 47(13):3657-3668.
  19. Lin, J. T., Chen, T.-L., and Chu, H.-C. (2014). A stochastic dynamic programming approach for multi-site capacity planning in tft-lcd manufacturing under demand uncertainty. International Journal of Production Economics, 148:21-36.
  20. Lorca, A., Sun, X. A., Litvinov, E., and Zheng, T. (2016). Multistage adaptive robust optimization for the unit commitment problem. Operations Research, 64(1):32-51.
  21. Luss, H. (1982). Operations research and capacity expansion problems: A survey. Operations research, 30(5):907-947.
  22. Martínez-Costa, C., Mas-Machuca, M., Benedito, E., and Corominas, A. (2014). A review of mathematical programming models for strategic capacity planning in manufacturing. International Journal of Production Economics, 153:66-85.
  23. Miller, D. M. and Davis, R. P. (1977). The machine requirements problem. The International Journal of Production Research, 15(2):219-231.
  24. Pflug, G. C. (2000). Some remarks on the value-at-risk and the conditional value-at-risk. In Probabilistic constrained optimization, pages 272-281. Springer.
  25. Pimentel, B. S., Mateus, G. R., and Almeida, F. A. (2013). Stochastic capacity planning and dynamic network design. International Journal of Production Economics, 145(1):139-149.
  26. Pratikakis, N. E., Realff, M. J., and Lee, J. H. (2010). Strategic capacity decision-making in a stochastic manufacturing environment using real-time approximate dynamic programming. Naval Research Logistics (NRL), 57(3):211-224.
  27. Rajagopalan, S., Singh, M. R., and Morton, T. E. (1998). Capacity expansion and replacement in growing markets with uncertain technological breakthroughs. Management Science, 44(1):12-30.
  28. Rastogi, A. P., Fowler, J. W., Carlyle, W. M., Araz, O. M., Maltz, A., and B üke, B. (2011). Supply network capacity planning for semiconductor manufacturing with uncertain demand and correlation in demand considerations. International Journal of Production Economics, 134(2):322-332.
  29. Rockafellar, R. T. and Uryasev, S. (2000). Optimization of conditional value-at-risk. Journal of risk, 2:21-42.
  30. Rockafellar, R. T., Uryasev, S., and Zabarankin, M. (2006). Optimality conditions in portfolio analysis with general deviation measures. Mathematical Programming, 108(2-3):515-540.
  31. Sahinidis, N. V. (2004). Optimization under uncertainty: state-of-the-art and opportunities. Computers & Chemical Engineering, 28(6):971-983.
  32. Shapiro, A. (2009). On a time consistency concept in risk averse multistage stochastic programming. Operations Research Letters, 37(3):143-147.
  33. Stephan, H. A., Gschwind, T., and Minner, S. (2010). Manufacturing capacity planning and the value of multistage stochastic programming under markovian demand. Flexible services and manufacturing journal, 22(3-4):143-162.
  34. Swaminathan, J. M. (2000). Tool capacity planning for semiconductor fabrication facilities under demand uncertainty. European Journal of Operational Research, 120(3):545-558.
  35. Van Mieghem, J. A. (2003). Commissioned paper: Capacity management, investment, and hedging: Review and recent developments. Manufacturing & Service Operations Management, 5(4):269-302.
  36. Wu, C.-H. and Chuang, Y.-T. (2010). An innovative approach for strategic capacity portfolio planning under uncertainties. European Journal of Operational Research, 207(2):1002-1013.
  37. Wu, S. D., Erkoc, M., and Karabuk, S. (2005). Managing capacity in the high-tech industry: A review of literature. The Engineering Economist, 50(2):125-158.
Download


Paper Citation


in Harvard Style

Weston J., Escalona P., Angulo A. and Stegmaier R. (2017). Strategic Capacity Expansion of a Multi-item Process with Technology Mixture under Demand Uncertainty: An Aggregate Robust MILP Approach . In Proceedings of the 6th International Conference on Operations Research and Enterprise Systems - Volume 1: ICORES, ISBN 978-989-758-218-9, pages 181-191. DOI: 10.5220/0006202201810191


in Bibtex Style

@conference{icores17,
author={Jorge Weston and Pablo Escalona and Alejandro Angulo and Raúl Stegmaier},
title={Strategic Capacity Expansion of a Multi-item Process with Technology Mixture under Demand Uncertainty: An Aggregate Robust MILP Approach},
booktitle={Proceedings of the 6th International Conference on Operations Research and Enterprise Systems - Volume 1: ICORES,},
year={2017},
pages={181-191},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006202201810191},
isbn={978-989-758-218-9},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 6th International Conference on Operations Research and Enterprise Systems - Volume 1: ICORES,
TI - Strategic Capacity Expansion of a Multi-item Process with Technology Mixture under Demand Uncertainty: An Aggregate Robust MILP Approach
SN - 978-989-758-218-9
AU - Weston J.
AU - Escalona P.
AU - Angulo A.
AU - Stegmaier R.
PY - 2017
SP - 181
EP - 191
DO - 10.5220/0006202201810191