Supporting Efficient Global Moves on Sequences in Constraint-based Local Search Engines

Renaud De Landtsheer, Gustavo Ospina, Yoann Guyot, Fabian Germeau, Christophe Ponsard

Abstract

Constraint-Based Local Search (CBLS) is an approach for quickly building local search solvers based on a declarative modelling framework for specifying input variables, constraints and objective function. An underlying engine can efficiently update the optimization model to reflect any change to the input variables, enabling fast exploration of neighbourhoods as performed by local search procedures. This approach suffers from a weakness when moves involve modifying the value of a large set of input variables in a structured fashion. In routing optimization, if one implements the optimization model by means of integer variables, a two-opt move that flip a portion of route requires modifying the value of many variables. The constraint on this problems are then notified about many updates, but they need to infer that these updates constitute a flip, and waste a lot of time. This paper presents this multi-variable limitation, discusses approaches to mitigate it, and proposes an efficient implementation of a variable type that represents sequences of integers to avoid it. The proposed implementation offers good complexities for updating and querying the value of sequences of integers and some mechanisms to enable the use of state-of-the art incremental global constraints.

References

  1. Abdulla, P. A., Atig, M. F., Chen, Y.-F., Holík, L., Rezine, A., Rümmer, P., and Stenman, J. (2015). Norn: An SMT Solver for String Constraints, pages 462-469. Springer International Publishing, Cham.
  2. Benoist, T., Estellon, B., Gardi, F., Megel, R., and Nouioua, K. (2011). Localsolver 1.x: a black-box local-search solver for 0-1 programming. 4OR, 9(3):299 - 316.
  3. Björdal, G. (2016). String variables for constraint-based local search. Master's thesis, UPPSALA university.
  4. Croes, G. A. (1958). A method for solving traveling salesman problems. Operations Research, 6:791-812.
  5. De Landtsheer, R., Guyot, Y., Ospina, G., and Ponsard, C. (2015). Combining neighborhoods into local search strategies. In Proceedings of MIC'2015.
  6. De Landtsheer, R. and Ponsard, C. (2013). Oscar.cbls : an open source framework for constraint-based local search. In Proceedings of ORBEL'27.
  7. De Moura, L. and Bjørner, N. (2008). Z3: An efficient SMT solver. In Proc. of the Theory and Practice of Software, 14th Int. Conf.on Tools and Algorithms for the Construction and Analysis of Systems, TACAS'08/ETAPS'08.
  8. Di Gaspero, L. and Schaerf, A. (2003). EASYLOCAL++: an object-oriented framework for the flexible design of local-search algorithms. Software: Practice and Experience, 33(8):733-765.
  9. Fu, X., Powell, M. C., Bantegui, M., and Li, C.-C. (2013). Simple linear string constraints. Formal Aspects of Computing, 25(6):847-891.
  10. Ganesh, V., Kiez?un, A., Artzi, S., Guo, P. J., Hooimeijer, P., and Ernst, M. (2011). HAMPI: A String Solver for Testing, Analysis and Vulnerability Detection, pages 1-19. Springer Berlin Heidelberg, Berlin, Heidelberg.
  11. Glover, F. and Kochenberger, G. (2003). Handbook of Metaheuristics. International Series in Operations Research & Management Science. Springer US.
  12. Mladenovic, N., Uros?evic, D., and Hanafi, S. (2013). Variable neighborhood search for the travelling deliveryman problem. 4OR, 11(1):57-73.
  13. Newton, M. A. H., Pham, D. N., Sattar, A., and Maher, M. (2011). Kangaroo: an efficient constraint-based local search system using lazy propagation. In Proceedings of CP'11, pages 645-659.
  14. OscaR Team (2012). OscaR: Operational research in Scala. Available under the LGPL licence from https://bitbucket.org/oscarlib/oscar.
  15. Pralet, C. and Verfaillie, G. (2013). Dynamic online planning and scheduling using a static invariant-based evaluation model. In ICAPS.
  16. Savelsbergh, M. W. P. and Sol, M. (1995). The general pickup and delivery problem. Transportation Science, 29:17-29.
  17. Schrijver, A. (2005). On the history of combinatorial optimization (till 1960). In K. Aardal, G. N. and Weismantel, R., editors, Discrete Optimization, volume 12 of Handbooks in Operations Research and Management Science, pages 1 - 68. Elsevier.
  18. Scott, J., Flener, P., and Pearson, J. (2015). Constraint solving with bounded string variables. In Michel, L., editor, CP-AI-OR 2015, volume 9075 of LNCS, pages 373-390. Springer.
  19. Van Hentenryck, P. and Michel, L. (2005). Control abstractions for local search. Constraints, 10(2):137-157.
  20. Van Hentenryck, P. and Michel, L. (2009). Constraint-based Local Search. MIT Press.
Download


Paper Citation


in Harvard Style

De Landtsheer R., Ospina G., Guyot Y., Germeau F. and Ponsard C. (2017). Supporting Efficient Global Moves on Sequences in Constraint-based Local Search Engines . In Proceedings of the 6th International Conference on Operations Research and Enterprise Systems - Volume 1: ICORES, ISBN 978-989-758-218-9, pages 171-180. DOI: 10.5220/0006201901710180


in Bibtex Style

@conference{icores17,
author={Renaud De Landtsheer and Gustavo Ospina and Yoann Guyot and Fabian Germeau and Christophe Ponsard},
title={Supporting Efficient Global Moves on Sequences in Constraint-based Local Search Engines},
booktitle={Proceedings of the 6th International Conference on Operations Research and Enterprise Systems - Volume 1: ICORES,},
year={2017},
pages={171-180},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006201901710180},
isbn={978-989-758-218-9},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 6th International Conference on Operations Research and Enterprise Systems - Volume 1: ICORES,
TI - Supporting Efficient Global Moves on Sequences in Constraint-based Local Search Engines
SN - 978-989-758-218-9
AU - De Landtsheer R.
AU - Ospina G.
AU - Guyot Y.
AU - Germeau F.
AU - Ponsard C.
PY - 2017
SP - 171
EP - 180
DO - 10.5220/0006201901710180