A Knowledge Driven Policy Framework for Internet of Things*

Emre Goynugur', Geeth de Mel?, Murat Sensoy!, Kartik Talamadupula® and Seraphin Calo®
L Computer Science, Ozyegin University, Istanbul, Turkey
2Daresbury Laboratory, IBM Research , Warrington, U.K.
3T, J. Watson Research Center, IBM Research, Yorktown Heights, NY, U.S.A.

Keywords: Internet of Things, IoT, Semantic Web, OWL-QL, Policy, Conflict Resolution.

Abstract: With the proliferation of technology, connected and interconnected devices (henceforth referred to as IoT) are
fast becoming a viable option to automate the day-to-day interactions of users with their environment—be it
manufacturing or home-care automation. However, with the explosion of IoT deployments we have observed
in recent years, manually managing the interactions between humans-to-devices—and especially devices-to-
devices—is an impractical task, if not an impossible task. This is because devices have their own obligations
and prohibitions in context, and humans are not equip to maintain a bird’s-eye-view of the interaction space.
Motivated by this observation, in this paper, we propose an end-to-end framework that (a) automatically dis-
covers devices, and their associated services and capabilities w.r.t. an ontology; (b) supports representation
of high-level—and expressive—user policies to govern the devices and services in the environment; (c) pro-
vides efficient procedures to refine and reason about policies to automate the management of interactions;
and (d) delegates similar capable devices to fulfill the interactions, when conflicts occur. We then present our

initial work in instrumenting the framework and discuss its details.

1 INTRODUCTION

According to the vision of Smarter Planet initia-
tive, efficient networks which are made up with
low-cost devices are going to augment and enhance
the day-to-day interactions of humans and organisa-
tions (Palmisano, 2008). With the proliferation of
technology, and the internet connected and intercon-
nected devices—collectively referred to as Internet of
Things (IoT)—this is fast becoming a reality; accord-
ing to Gartner?, by 2020, there will be over 20 billion
interconnected devices, and they will transform the
lives of people and organisations alike by augmenting
their experiences in environments.

In order for the above systems to function effec-
tively, it is mandatory that an IoT-enabled system
supports functionality for devices—especially the ser-
vices support (or exposed) by those devices—to inter-
act with each other in an efficient manner (Jara et al.,
2014; Bak et al., 2015). For example, a weather app
may use a location service coupled with a geo co-

*Dr. Sensoy thanks to the Scientific and Technological
Research Council of Turkey (TUBITAK) for its support un-
der grant 113E238.

Zhttp://www.gartner.com/newsroom/id/3165317

Goynugur E., De Mel G., Sensoy M., Talamadupula K. and Calo S.
A Knowledge Driven Policy Framework for Internet of Things.
DOI: 10.5220/0006200402070216

located temperature sensor service to provide a lo-
calised view of the environment to a user. In order to
simplify the discussion, in this work, we will abstract
devices to specific services provided by them—for
example, a television could be abstracted to a thing
that provides display and audio services. However,
this yields to the problem of managing complex ser-
vice interactions. Though human cognition is good at
solving complex tasks, obtaining a bird’s-eye-view of
a network formed by these services is not feasible for
humans. Furthermore, the complexity of the problem
is exacerbated when the numbers of devices increases
as the number of services provided by them increases
too, thus even more services and interactions to gov-
ern. Therefore, any scalable solution to govern in-
teractions in IoT should provide ways to seamlessly
integrate new devices—hence new services—and ex-
pose them to the interactions space.

It is also important to note that when such ser-
vices are used by humans—or other participating
services—their interactions occur under varying con-
straints. This is due to a variety of reasons: (a) ser-
vices have their own obligations and prohibitions in
context; (b) services are owned and managed by dif-
ferent users and organisations, thus multiple con-

207

In Proceedings of the 9th International Conference on Agents and Artificial Intelligence (ICAART 2017), pages 207-216

ISBN: 978-989-758-220-2

Copyright (© 2017 by SCITEPRESS — Science and Technology Publications, Lda. All rights reserved

ICAART 2017 - 9th International Conference on Agents and Artificial Intelligence

straints could be placed on a single service; (c) dy-
namism in the environment, and the changes in pref-
erences and goals could abruptly change constraints;
and (d) constraints placed on a service could affect the
functionality of another service.

In traditional systems, policies are typically used
to govern such interactions, but in the IoT arena, we
need expressive policy languages and efficient rea-
soning procedures that can (a) define high-level poli-
cies and refine them to device- and service- level poli-
cies in context; (b) detect policy violations and con-
flicts automatically; (c¢) automatically propose reso-
lutions to conflicts when discovered; and (d) scale
well in dynamic networks in terms of policy refine-
ment, conflict detection and resolution with minimal
human intervention. There is a multitude of pol-
icy frameworks—some with rich policy representa-
tions (Sensoy et al., 2012), and some targeting per-
vasive environments (Kagal et al., 2003). However,
they are either not scalable or expressive enough
with respect to the cost of execution—or reasoning
about constraints—to be effective in IoT environ-
ments. The flexibility and the power of a policy man-
agement framework is to a large degree determined
by the expressiveness and computational efficiency
of its policy representation (Uszok et al., 2003). i.e.
OWL-POLAR (Sensoy et al., 2012) uses OWL-DL,
in which worst-case complexity of consistency check-
ing and conjunctive query answering is NEXPTIME-
complete (Baader et al., 2002).

Inspired by these observations, we present a
framework that could be used to build IoT applica-
tions at scale which adhere to a set of governing rules
set by the users and the environments in which they
are deployed. To achieve this goal our framework first
provides facilities to devices to advertise their capa-
bilities on the network, and make them discoverable.
Our framework then utilises an effective knowledge-
based approach to represent high-level policies, effi-
cient and scalable mechanisms to refine those policies
to service level policies, automatic mechanisms to de-
tect conflicts when enforcing service level policies,
and state-of-the-art mechanisms to automatically re-
solve such conflicts. Specifically, the policy language
is based on OWL-QL (Fikes et al., 2004), which sup-
ports efficient and scalable query re-writing mecha-
nism for reasoning so that conflicts could be detected
in polynomial time (i.e., PTime), and space-wise in
many cases LogSpace or even AC, for some specific
classes of problems, and a planner-based set of tech-
niques to resolve conflicts automatically using a poly-
nomial amount of space (i.e., PSpace).

The rest of the paper is structured as follows: In
Section 2 we provide an illustrative scenario, and use

208

it to ground our discussions throughout the paper. In
Section 3, we provide preliminaries to the proposed
policy language, and in Section 4 we formalise our
policy representation and present the policy manage-
ment framework. In Section 5 we discuss the imple-
mentation of the framework with respect to the illus-
trative scenario. We discuss related work briefly and
sketch the future directions for our research in Sec-
tion 6, and conclude the document in Section 7 by
providing final remarks.

2 ILLUSTRATIVE SCENARIO

Let us assume that a smart home is equipped with
an intelligent doorbell amongst its many devices. A
doorbell is typically tasked with notifying the house-
hold inhabitance when new events occur—e.g., when
the doorbell is pressed, it could make a noise or send a
message to a handheld device. Let us also assume that
in association with the smart home hub is an interac-
tive interface in which occupants of the house can en-
force such conditions on the devices in context. Now,
let us assume that the occupants have enforced a col-
lection of such policies on the doorbell and a couple
of such policy examples are notify when the doorbell
is pressed by an audio alarm, and if not responded
in 15 minutes, send a message to the registered mo-
bile phone. We, now assume that the dynamics of the
household have changed and there is a baby in the
house. Now the occupants of the house place an extra
policy on the smart hub to state that no device should
make noise when the baby is sleeping —this is due to
the current sleeping pattern of the baby which is mon-
itored by another sensor. When this policy gets re-
fined and applied to the doorbell, we have a conflict—
i.e., the doorbell is obliged to make a noise, but what
happens if the baby is sleeping?

Though simple—yet intuitive—the above sce-
nario advocates for the need to have a policy frame-
work that is agile enough to address the ever changing
policy needs of the users, while providing efficient
reasoning mechanisms quickly find conflicts and re-
solve them. In order to model such environments,
we need effective domain modelling languages, and
in the next section, we introduce one such language.

3 PRELIMINARIES

In this section, we introduce the language constructs
to ground our policy representation.

3.1 Background: OWL-QL

Typically, languages grounded on expressive seman-
tics focus on providing support for modelling com-
plex relations and descriptions. As descriptions be-
come more complex, the reasoning task becomes
more complex too, thus requiring more computing
power. Therefore, not all languages are suitable for
IoT applications, which must handle very large vol-
umes of instance data, ideally, with low power con-
sumption. As stated in (Motik et al., 2008) OWL 2 QL
(OWL-QL) specifically targets such applications, in
which query answering is the most important reason-
ing task. In OWL-QL, sound and complete conjunc-
tive query answering can be performed in LogSpace
with respect to the size of the data (i.e., assertions),
and polynomial time algorithms can be used to imple-
ment the ontology consistency and class expression
subsumption reasoning problems (Motik et al., 2008).
This made OWL-QL the perfect semantic language to
base our policy language.

OWL-QL includes most of the main features of
other ontology languages; however, it compromises
some expressiveness to gain performance. Since the
OWL 2 profiles are defined as syntactic restrictions
without changing the basic semantic assumptions, in
the OWL 2 QL profile, it was chosen not to include
any construct that interferes with the Unique Name
Assumption (UNA)—i.e., with the absence of the
UNA, it would have had higher reasoning and query
answering complexities. However, this also brings
restrictions to OWL-QL such as no cardinality re-
strictions nor functionality constraints (Artale et al.,
2009). For example, it is not possible to make a state-
ment like a room can only have one temperature.

OWL-QL depends on the Description Logic
DL-Liteg (Artale et al., 2009). The complexity of log-
ical entailment in most of the Description Logics is
EXPTIME (Baader et al., 2002). Calvanese et al. (Cal-
vanese et al., 2007b) proposed DL-Liteg, which can
express most features in UML class diagrams with
a low reasoning overhead—i.e., data complexity of
ACy for ABox reasoning. It is for this reason that
we base our policy framework on DL-Liteg (to be re-
ferred to as DL-Lite in the rest of the paper); below
we provide a brief formalisation of DL-Lite to ground
the subsequent presentation of our model.

3.2 Representation and Semantics

A DL-Lite knowledge base X = (7, 4) consists of
a TBox 7 and an ABox 4. Axioms of the follow-
ing forms compose X: (a) class inclusion axioms:
BLC C e T where Bisabasicclass B:=A | 3R | 3R,

A Knowledge Driven Policy Framework for Internet of Things

C is a general class C:=B | =B | C;MCy, A is a
named class, R is a named property, and R~ is the
inverse of R; (b) role inclusion axioms: R; T P € ‘T
where P := R; | —R;; and (¢) individual axioms:
B(a),R(a,b) € 4 where a and b are named individ-
uals. Description Logics have a well-defined model-
theoretic semantics, which are provided in terms of
interpretations. An interpretation I is a pair (A,-1),
where A is a non-empty set of objects and -/ is an
interpretation function, which maps each class C to
a subset C! C A and each property R to a subset
RT C AT x AL

3.3 QL-based Policy Language

In this work we present our OWL-QL based policy
language so that the policy reasoning framework can
exploit OWL-QL’s efficient and powerful query an-
swering mechanisms (Fikes et al., 2004). We recall
that an OWL-QL ontology consists of a TBox and an
ABox. Concepts, properties, and axioms that describe
relationships between concepts form the TBox of an
ontology. We note that an ABox may be very large
and volatile, while a TBox is small and static; OWL-
QL allows ABox to be stored in a relational database
and is organised based on the schema defined by the
TBox. Each class in TBox is represented as a table,
whose entries are the instances of the class. Similarly,
each object or datatype property in TBox is repre-
sented as a table, whose entries are (subject,ob ject)
or {subject,data) pairs, respectively.

Table 1: An example TBox for an OWL-QL ontology.

An OWL-QL TBox

Sleeping C State

Awake C State

Awake T —Sleeping

Baby C Person

SoundNotification T Sound M Notification
TextNotification C Notification

Speaker C Device

Doorbell = Device

JplaySound T Device

PortableDevice T Device

MobilePhone C PortableDevice
JhasSpeaker T IplaySound
MediaPlayer C 3playSound

TV C ShasSpeaker M 3hasDisplay
MakeSound T Action 3playSound
Notify C Action

NotifyWithSound T MakeSound M Notify
Baby C Person

SomeoneAtDoor C Event

We borrow syntax and semantics from the
DL-Lite (Calvanese et al., 2007a) family to illustrate

209

ICAART 2017 - 9th International Conference on Agents and Artificial Intelligence

our TBox. For example, the statement: Computer C
ElectronicDevice means that Computer class is a
subclass of ElectronicDevice; and the statement
ElectronicDevice M 3playSound represents devices
that can play sound. On the other hand, an ABox is a
collection of extensional knowledge about individual
objects, such as whether an object is an instance of a
concept, or two objects are connected by a role (Cal-
vanese et al., 2007a). In Description Logic, roles are
binary relations between two individual objects—e.g.
livesIn(John,NewYork). 1In this statement, livesin
is the role that connects John and NewYork; exam-
ple TBox and ABox of an OWL-QL ontology, which
could be used to illustrate our scenario, are depicted
in Table 1 and 2.

Table 2: Example ABox.

Baby(John)
Person(Bob)
Doorbell(dbell)
Flar(f1r)
)

)

)

)

inFlat(Bob, [t
Sleeping(John

SomeoneAtDoor(el
producedBy(el,dbell

XL || W[N]~

In the next section, we discuss the use of such an
ontology to present policies in an [oT environment.

4 POLICY FRAMEWORK

In this section, we provide an overview of our pol-
icy framework. Specifically, we provide a formalism
in which we ground our policy representation, and a
framework that brings instances of such policies with
OWL-QL reasoning to detect possible conflicts.

4.1 Policy Representation

Adhering to the policy formalism given in (Sensoy
et al., 2012), we represent our policies by a tuple (o,
N,x:p,a:0,e,c) where

1. o is the activation condition of the policy;

2. N is either obligation (O) or prohibition(P);

3. yx 1is the policy addressee and p represents its roles;
4

. a: @ 1is the description of the regulated action; a is
the action instance variable and ¢ describes a;

5. e is the expiration condition; and
6. c is the policy’s violation cost.

P, O, @, and e are expressed using a conjunction of
concepts and properties from the underlying OWL-
QL ontology—i.e., they are of the form C(x) or

210

P(x,y), where C is a concept, P is either an object
or datatype property, and x and y are either variables
or individuals from the knowledge base. For example,
using variables b and f, and the conjunction of atoms
Baby(?b) \Sleeping () AinFlat(?b,?f), describes a
setting where there is a sleeping baby in a flat.

Table 3: An example prohibition policy.

2d : Device(d)

P

Baby(?b) A Sleeping(?b) AinFlat(?b,?f) AinFlat(?d,?f)
%a : MakeSound(?a)

Awake(?b)

10.0

alaloelalzlo

Table 3 illustrates a policy that prohibits devices
from making sounds if there is a sleeping baby in the
flat. It is important to note that, though the addressee
of the policy is specified as a device (i.e., Device(?d)),
concepts such as Speaker(?d),PortableDevice(?d),
MobilePhone(?d) are also included automatically
while evaluating the policy by means of role infer-
encing through query re-writing.

4.2 Framework

Below, we propose our policy management frame-
work that consists of three major components; a
knowledge base, a QL reasoner, and a policy rea-
soner. In this section, we describe the components
and discuss how they interact through the illustrative
scenario highlighted in Section 2. Let us assume that
there is a baby named John sleeps in a flat (i.e.,flt).
John is defined as a baby boy in the KB and he has a
wearable sensor that monitors his activities. The flat
has an intelligent doorbell (i.e., dbell) that can cre-
ate events and alert household when someone is at
the door. At the moment, John is sleeping and Bob
presses the button on the doorbell.

4.2.1 Knowledge Base (KB)

It contains instance data—both assertions and data
coming from the sensors—and schema information
related to the domain. For example, the ABox of
our KB may contain the following set of assertions
after the doorbell button is pressed: (a) type asser-
tions such as Baby(John), Person(Bob), Doorbell(dbell),
Flat(flr); (b) instance data such as inFlat(Bob, flt),
Sleeping(John) added by the sleep monitor; and
(c) SomeoneAtDoor(el), producedBy(el,dbell) added by
the doorbell. We use the terms OWL-QL ontology and
knowledge base synonymously in our context.

As the KB gets updated with new information, the
policy reasoner queries the KB to check if a policy is

activated or expired. Since policies are described us-
ing conjunctive ontology predicates, rewriting policy
conditions to backend database queries is straightfor-
ward. We use the below discussed QL reasoner to per-
form consistency checks in a sandbox before actually
updating KB with new information, since maintain-
ing a consistent state of the world is paramount for
reasoning with our OWL-QL ontology.

4.2.2 QL Reasoner

The QL reasoner is used to interpret role descriptions,
activation conditions, action descriptions, and expi-
ration conditions of a policy over the KB. However,
directly querying the knowledge base may not reveal
the inferred information that may be deduced through
the TBox. For this purpose, query rewriting is used to
expand the policy descriptions. Additionally, the KB
must be in a consistent state with respect to the rules
defined by the underlying ontology, since reasoning
on an inconsistent KB might yield false results. Con-
sistency checking is also performed by means of dis-
junctive queries that consist of conditions that may
cause inconsistency based on the axioms in the TBox.
The consistency and re-written queries can be cached
to be re-used, as long as the TBox is not modified.

We have adopted OWL-QL package of Quet-
zal (Quetzal-RDF, 2016) for generating type infer-
ence and consistency check queries. Conjunctive
formulae are converted into SPARQL queries, and
are then fed into the reasoner; the re-written output
queries are then converted into SQL. Quetzal uses
Presto (Rosati and Almatelli, 2010) algorithm to do
query reformulation.

4.2.3 Policy Reasoner

The policy reasoner utilises the above QL reasoner to
keep a track of the normative state of the world—i.e.,
a list of active policies in that state of the world. Once
a policy is rewritten through the QL reasoner, the ex-
panded policy set is then used by the policy reasoner
to create or delete active policy instances, or to detect
conflicts between policies at design time. The policy
reasoner uses activation and expiration conditions to
determine if a policy is activated for a specific set of
instances—e.g., in our scenario, the activation condi-
tion for the policy in Table 3 holds for the binding
{2d = dbell,?b = John,?f = flt}, which is returned by
the QL reasoner. Thus, an activated policy instance is
created with the binding—i.e., an active policy dbell
is prohibited to perform MakeSound action until John
is awake is added to the normative state. The pol-
icy reasoner creates an active instance of a policy for

A Knowledge Driven Policy Framework for Internet of Things

each different binding. Whenever, expiration condi-
tion of an active policy instance holds, it is removed
from the normative state—e.g., the active policy ex-
pires if John wakes up. Furthermore, some policies
can be removed from the normative state when they
are satisfied—e.g. active instance of the policy in Ta-
ble 4 could expire after notifying a resident.

4.3 Query Re-writing

There are multiple algorithms to perform query
rewriting. Any of these could be used in our imple-
mentation, however we use Presto (Rosati and Al-
matelli, 2010) algorithm, which is proven to com-
pute the most efficient queries—i.e., it produces non-
recursive datalog programs. The main ideas of the al-
gorithm are eliminating existential join variables, and
defining views corresponding to the expansion of ba-
sic concepts and roles. In other words, Presto tries
to eliminate redundancies and to reduce the number
of unions in conjunctive queries (UCQs) by reformu-
lating them. Eventually, the remaining complexity of
the generated query is handled by the database sys-
tem. We refer the reader to (Rosati and Almatelli,
2010) for a detailed description of the algorithm to
perform query rewriting.

Presto uses UCQs only in generated views, which
would then replace the expanded concept or role
in the original query. For example, if we had a
query to get devices in a room Q(?x) = Device(?x) A
inRoom(?x,livingRoom), it could generate the view
V = Device(x) V Speaker(?x) V Doorbell(?x) for se-
lecting devices. Then, the original query would be
changed to Q(?x) = V(?x) AinRoom(?x,livingRoom).
Furthermore, to illustrate the elimination of exis-
tential join variables, let us assume we have a
query Q(?x) = Television(?x) A hasSpeaker(?x,7y) A
Speaker(?y). In our example TBox, it is implied that
every television has a display and a speaker and the
query does not require variable ?y. Thus, Presto algo-
rithm re-writes query Q as Q = Television(?x).

4.4 Policy Conflict Detection

When multiple policies get applied to a service, con-
flicts could occur. In our work, three conditions have
to be met for two policies to conflict:

1. policies should be applied to the same policy ad-
dressee (e.g., same device, service, or individual);

2. one policy must oblige an action, while the other
prohibits the same action; and

3. policies are active at the same time in a consistent
world state.

211

ICAART 2017 - 9th International Conference on Agents and Artificial Intelligence

Table 4: An example obligation policy.

2d : Doorbell (x)

o

SomeoneAtDoor(?e) N producedBy(?e, 2x)\
belongsToFlat(7x,?f) A hasResident(?f,?p) N Adult(?p)
?a : NotifyWithSound (?a) A hasTarget(?a,?p)

|z|o

Q
ala |6

4.0

Though it is trivial to figure-out policy conflicts
within a specific state of the world, it is a non-trivial
task to figure out if two policy may ever get into con-
flict at the design time.

In order to demonstrate the complexity in conflict
detection—and to provide a solution—Iet us consider
an obligation policy associated with our scenario. As
shown by Table 4, the doorbell is obliged to notify the
event with sound. In the remainder of the section, we
denote the policies represented in Table 3 and 4 by
pl and p2, respectively. We can easily compute the
fact that the modalities of pl and p2 are in conflict,
and the action description of p1 subsumes that of p2.

We use query freezing for both checking of an ac-
tion description subsuming the other; and to detect if
two policies can be active at the same time. Query
freezing is a commonly used technique in database
optimization(Motik, 2006; Ullman, 1997) to reduce
the query containment problem in query answering.

| Deviee | | sleeping |

e rdfiype

rdf1ype s inFlat [N e N rtype ‘/ A
Doorvell e { ez | { no2 } | Bay

A 4 4 o

belongsToFlat

[A [Y\ hashesident N\ rdtype
{ inae | { inas | { inds ————> Adut

@ A 4 N 4

Figure 1: Sandbox of the world model created for the two
policies pl and p2 by freezing the activation conditions.
(Green: Obligation, Red: Prohibition).

Someone |_[diyPe

AtDoor

In order to prove that pl and p2 are in con-
flict, all we need to do is to show a state of the
world in which both pl and p2 are active for the
same addressee. For this purpose, we first create an
empty ABox (a sandbox), and using query freezing
techniques in (Motik, 2006), this sandbox is pop-
ulated with the instances and relationships that ap-
pear in role and activation conditions of the poli-
cies. We first freeze role and activation conditions
of pl, and populate the sandbox with the following
set of assertions, which are the minimum require-
ments for pl to be active: Device(ind1), Baby(ind2),

212

belongsToFlat(indl,ind5), inFlat(ind2,ind3).

We now freeze the role and activation conditions
for p2. However, while doing so, we do not use a
fresh individual for the policy addressee in p2 since
for two policies to be in conflict, they should have
the same policy addressee. The following assertions
get inserted into the sandbox: {Doorbell(indl),
SomeoneAtDoor(ind4), producedBy(ind4,ind1),
hasResident (ind5,ind6), Adult (ind6)}.

Since the resulting sandbox is consistent, it is ap-
parent that pl and p2 can be active at the same time.
Thus, we can conclude that these policies are in con-
flict. We would have to make an additional check if
pl and p2 had expiration conditions since one of the
policies might expire when the other one becomes ac-
tive. Figure 1 illustrates the final state of the sandbox.

S IMPLEMENTATION

In order to demonstrate the applicability of our frame-
work, we designed and implemented the core of the
proposal and tested it against the illustrated scenario;
below we discuss the details of its architecture and the
implementation.

5.1 Architecture of the Framework

The architecture of the proposed solution is depicted
in Figure 2; it is composed of five main compo-
nents: HyperCat Server, Device Coordinator, Knowl-
edge Base, Policy Reasoner, and Planner. We imple-
mented all these components along with the sensors
and smart devices in our running example.

[Domain and Proolem Fil
\ p
Knowledge | Paolicy
Base | ‘Trigger Reasoner |
= i, \
N
. QL Reasoner | Obligations
Received Data J
N I vy Normative State
ensor Info -
| Hypercat | .
\ / Coordinator Goa—® Planner
4—Plan—
Hypercat data
|
Get Bensor Information
(e.g. temperature SenMI)
Sensors Action commands
and
Devices

Figure 2: System Architecture: Policy-enabled IoT Frame-
work.

5.1.1 HyperCat Server 3

This is responsible for device registration and storing
data that does not frequently change—e.g., capabili-
ties (services) of devices. It is an open, lightweight
JSON-based hypermedia catalogue for IoT devices,
and stores information in triples. When used with an
ontology, we can exploit this structure to exchange
and store semantic information about devices and as-
sociated services. This method could act as a means
for achieving semantic interoperability between het-
erogeneous [oT devices and services alike.

Devices that want to connect to the system have to
register their capabilities through the server; further-
more, sensor devices may also stream collected data
to the server. Our system considers all devices as a
collection of services they provide. As mentioned in
the introduction, a television could be modelled as a
collection of a speaker, a video player, a photo viewer,
a web browser, a notification tool and so forth. In
addition, if a device needs to learn about the current
state of the system, it can retrieve the necessary sen-
sor data from the server. However, HyperCat does not
specify an interface for devices to prioritise real time
events like motion sensor or doorbell signals, thus we
extended the protocol to provide an interface for the
incoming events. Below code illustrates an example
JSON request for a speaker, which only offers one
service, to register itself and its capabilities.

item—metadata": |
{"rel":"rdf-syntax-ns#type", "val":"Speaker"},

{"rel":"rdf-syntax-ns#about", "val":"speakerl"},

{"rel":"canPerformAction","val":"PlaySound"},
("rel":"inRoon", "val":"rooml"}],
items":[{"href":"http://speaker.ip/MakeSound"
p b ’

"i-object-metadata":|
{"rel":"rdf-syntax-ns#type", "val":"PlaySound" },
{"rel":"rdf-syntax-ns#about",

"val":"PlaySoundSpeakerl"}]}]}

5.1.2 Device Coordinator

This component acts as a mediator for devices that do
not have enough computational resources to commu-
nicate with the Hypercat server and make decisions.
It has three roles: (1) pull information from sensors;
(2) compute action plans to achieve goals of devices;
and (3) execute plans by sending action commands
to the devices. Frequently updated data like sensor
readings are stored in SenML (Jennings et al., 2016)
files on the sensor according to HyperCat specifica-
tion. Devices and sensors that are capable of commu-
nicating with HyperCat server push data to the server

3https://bitbucket.org/egoynugur/iotserver

A Knowledge Driven Policy Framework for Internet of Things

directly. However, data from other devices and sen-
sors are polled by the Device Coordinator. It scans
SenML files and finds the latest entry. The below
JSON formatted text could be an output file of a sen-
sor that measures temperature and humidity.

e":[{"n":"TemperatureOut", "v" 5,"a":"celsius","t":26},
{"n":"TemperatureOut", "v" 6,"u":"kelvin", "t":26},
{"n":"HumidityOut", "v":80, "u":"RH", "£":27}],

bn":"http://localhost/out.senml", "bt":1320078429, "ver":1}

In our implementation, all active policy instances
are stored in the Device Coordinator, which performs
policy reasoning on behalf of the devices; individual
devices do not know if they are prohibited or obliged
to perform certain actions—this is a realistic assump-
tion, especially for a swam of dumb devices. When-
ever an obligation is activated, Device Coordinator
runs the planner and executes the generated plan.

5.1.3 Knowledge Base

KB provides the domain descriptions—based on an
ontology—and the initial state of the system to the
planner, so that it can act, when policy conflicts are
detected or an obligation policy gets activated.

51.4 QL Reasoner *

The QL Reasoner is implemented as described in Sec-
tion 4.2.2. For example, when new information is
received from the HyperCat Server—or the Device
Coordinator—the QL reasoner simulates insertion of
the new piece of information using a sandbox; con-
sistency check query is then executed in the sandbox,
and finally the new transaction is committed only if
the world state is consistent. In addition to its de-
scribed functions, the QL Reasoner is also used to
rewrite conditions of planning domain actions which
are used by the planner to verify plans to make sure
they do not cause an inconsistent world states. In this
way, we allow the planner to exploit semantic infor-
mation about the domain. Additionally, the QL Rea-
soner checks for consistency at each step of the gen-
erated plans. It simulates each step as if they were ex-
ecuted by applying their effects to the current world
state in a sandbox. As soon as one step causes incon-
sistency, that plan is discarded. Furthermore, the QL
Reasoner modifies the static domain files by integrat-
ing the query rewrites to the planning process.

“https://bitbucket.org/egoynugur/iotgl

213

ICAART 2017 - 9th International Conference on Agents and Artificial Intelligence

5.1.5 Policy Reasoner

Currently, the policy reasoner reads policies from an
XML file and stores each policy in the memory—
code snippet below shows the XML representation
of the policy in Table 4. Internally, the policy rea-
soner uses the QL reasoner to rewrite policies with
respect to the roles, actions, and conditions. Active
instances of policies are stored in the normative state
and obligations are passed to the Device Coordinator.
Furthermore, Policy Reasoner is used to compute ac-
curate plan costs, as resulting plans may violate exist-
ing policies or new policies may become active during
sub-steps of the plan.

<Policy Name="TestObligation" Addressee="?x"
ty="owlpolar:’Obligation’">

<AddresseeRole>sspn:’Doorbell’ (?x) </AddresseeRole>

<Activation> sspn:’SomeoneAtDoor’ (?e),

sspn:’producedBy’ (?e, ?x), sspn:’Adult’ (?p)

sspn:’belongsToFlat’ (?x, ?f), sspn:’hasResident’ (?f, ?p)

</Activation>

<Action var="?a"> sspn:’NotifyWithSound’ (?a),
sspn:’hasTarget’ (?a, ?p) </Action>

<Expiration></Expiration>

Cost>5.0</Cost> </Policy>

5.1.6 Planner’

Policy conflicts could be avoided by finding alter-
native ways of achieving obligations and delegating
tasks to other devices. We used an artificial intelli-
gence (Al) planner in our application to implement
this approach. We used JSHOP2 as our planner as
it was easy to integrate in to our application and its
external calls allow us to simulate interleaved plan-
ning that requires the execution of non-deterministic
actions such as locate and search actions.

After JSHOP2 receives an obligation from De-
vice Coordinator, it starts planning and generates plan
files. Each atomic action of the resulting plans is first
checked by the QL Reasoner. If the action does not
cause an inconsistency, the policy reasoner checks for
possible violations and updates the normative state
and the plan cost. It is important to note that new poli-
cies may become active or expire during the execution
of a plan. If an action in a plan causes an inconsistent
state of the world, that plan is discarded. Device Co-
ordinator picks the plan with the lowest cost; let us
note that the plan cost does include not only the cost
of actions in the plan but also the cost of policy viola-
tions that will be made while executing the plan.

Shttps://bitbucket.org/egoynugur/iotplanner

214

5.2 Execution of the Demo

We simulated the environment with Java programs
acting as sensors and devices along with an Android
smartphone application behaving as the doorbell. In
addition, the planning domain description has three
actions; locate-people-in-flat, notify-with-visual, and
notify-with-sound. Initial setup includes a locate ser-
vice, two active policies, and two connected devices
(a TV and a speaker) that can perform notify. Finally,
two conflicting policies, which are represented in Ta-
ble 3 and 4, exist in the initial setting.

The workflow starts with sensors sending requests
to HyperCat Server to connect and to register their ca-
pabilities to the system. Then, we send a new event to
the hub with the doorbell application. Once the hub
receives a new doorbell event, an active instance of
the obligation is created by the Policy Reasoner and
forwarded to the Device Coordinator. Ideally, Device
Coordinator should have a priority queue that sorts
obligations based on how urgent they are. We use
their violations costs to prioritize obligations. How-
ever, deadline fields and other metrics could be added
and used to compute policies’ priorities.

Next, we use the planner to find ways of notifying
people in the house without violating no-sound policy.
Within the current setting the planner generates three
plans, which start by locating the people in the apart-
ment. Two plans notify people with sound by using
the speaker or the television. The last plan displays a
visual message on the television. Before making the
final decision, violation cost of the prohibition policy
will be added to the plans making sound. Since the
execution costs of other two plans are considerably
increased, the plan which displays a message will be
selected as the final choice due to its lower cost.

It can be seen from this example that interleaved
planning is essential for the IoT domain. The planner
cannot know if people are in the TV room without
actually locating them. Hence, some actions have to
be executed during planning to locate household first.
To simulate interleaved planning, we created a service
that returns locations of people in the house and it is
called by using JSHOP2’s external call feature.

6 DISCUSSION

The proposed framework is able to perform efficient
reasoning and detect policy conflicts due to the prop-
erties of OWL-QL—i.e., expressiveness of OWL-QL,
and database driven fast consistency checking and
class expression reasoning—when compared to other
languages from OWL family. However, the limita-

tions of expressivity associated with the OWL-QL
introduces limitations in expressing policies—e.g.,
number restrictions and functionality constraints are
not supported by DL-Lite family of languages. For ex-
ample, we cannot state that a room can only have one
temperature in OWL-QL. However, we can use the
numerical reasoning supported by planner software to
overcome some of this limitation.

Additionally, when conflicts are detected, one
could take several approaches to resolve conflicts
automatically—e.g., one could use (a) policy viola-
tion costs—i.e., use violation costs to decide which
policy has precedence over the other one. Also, in-
stead of having predefined violation costs, it is pos-
sible to learn violation costs over time from user
behaviour—e.g., if a user prefers hygiene over com-
fort; (b) user feedback through a reinforcement learn-
ing mechanism to resolve conflicts; or (¢) Al planning
techniques to automatically solve the conflicts.

Our current focus is on using Al planning tech-
niques to automatically resolve policy conflicts. In an
essence, Al planners could also be used to find alter-
native ways of accomplishing a goal—e.g., a conflict
could be avoided instead of trying to resolve it. Ad-
ditionally, in situations in which planner cannot avoid
conflicts, we could apply other planning-based tech-
niques to come-up with conflict resolution strategies.

We have presented a simple planner-based ap-
proach to resolve conflicts automatically. However,
we can enhance the conflict resolution mechanism by
considering user preferences as a heuristic, and re-
formulating policy conflict resolution as a planning
problem. Furthermore, we can consider learning ap-
proaches wherein user preferences are captured as
utility functions and be integrated with the planner
domain. This is important in situation, especially in
IoT enabled environments, where users have different
preferences (e.g. the temperature setting in the room)
and the system wants to come to a consensus among
the users; this is the current focus of the work.

Though our current implementation has all the
necessary backend components and services, intu-
itively authoring policies is a challenging tasks. This
is mainly due to the steep learning curve users must go
through to author policies with respect to ontologies.
System assisted query writing (or generation) is an in-
teresting research problem, but is out of the scope of
this paper. However, we can get inspiration from tech-
niques such as conversational aspects in query gener-
ation with respect to schema information (Hixon and
Passonneau, 2013; Braines et al., 2014), and pragmat-
ically aware query formulation (Viswanathan et al.,
2015), to augment our system to address this issue.
Furthermore, we plan to create an intuitive app which

A Knowledge Driven Policy Framework for Internet of Things

interfaces with the policy authoring framework sup-
ported by Google Now and Apple Siri APIs to provide
a speech interface for policy authoring.

6.1 Policy Frameworks

There are a number of frameworks to represent and
reason about polices: Ponder2 (Twidle et al., 2009),
KAoS (Uszok et al., 2003), Rei (Kagal et al., 2003),
and OWL-POLAR (Sensoy et al., 2012) to name a
few. Ponder2 is a general-purpose object manage-
ment system that can be used to enforce policies on
entities (Twidle et al., 2009). However, it is not an
ontology-based implementation and makes it difficult
to infer policy conflicts. From the Autonomic Com-
puting Systems domains, we find goal-driven self
assembly framework such as Unity (Tesauro et al.,
2004), and approaches that uses Self-Managed Cells
in-conjunction with event buses (Keoh et al., 2007).
These are based on Ponder2 policy language, thus
policy reasoning and analysis are made difficult.
KAoS was the first policy framework to utilise an
ontology-based approach to model and reason about
policies (Uszok et al., 2003); the policies were de-
fined using the concepts and object properties, thus
it is not possible to use variables in policy descrip-
tions. Therefore, KAoS is not expressive enough to
represent policies we need for the IoT arena as we
cannot represent policies such as a speaker can no-
tify a person if they are in the same room. Rei (Ka-
gal et al., 2003) is another effort towards an ontol-
ogy based policy framework, especially for pervasive
environments since the policy language is based on
DL-Lite (Calvanese et al., 2007a). However, for the
reasoning tasks, Rei uses Prolog—especially to spec-
ify relationships such as role-value-maps—which di-
minishes the open-world properties of OWL specifi-
cation. Furthermore, Rei can only determine conflicts
at run time, thus unable to prevent conflicts among
high-level policies that we are interested in apply-
ing in the IoT setting. OWL-POLAR is a knowledge
representation and reasoning framework for policies
based on Description Logics (DL) (Sensoy et al.,
2012). Though the effort is commendable, it is not
tractable for IoT arena as DL-based reasoning is not
efficient nor lightweight enough for IoT applications.

7 CONCLUSION

In this paper, we have proposed a lightweight frame-
work to govern interactions in IoT environments. It
allows users to (a) make their devices—and associ-
ated services—Dbe discoverable in the network; (b) de-

215

ICAART 2017 - 9th International Conference on Agents and Artificial Intelligence

scribe semantically rich policies; and (c) efficiently
refine those policies to device- and service- level
policies by means of efficient reasoning procedures
and conflict detection mechanisms. In order to ad-
dress the performance issues we have seen with other
ontology-based frameworks, we have restricted our
policy representation language to OWL-QL. This is
because, OWL-QL supports efficient reasoning pro-
cedures whilst providing sufficient amount of expres-
siveness for IoT application. We then presented an
implantation of this framework and showed its appli-
cability through a smart home application. Addition-
ally, we demonstrated how our system detects policy
conflicts and uses an Al planner to find alternative
means to achieve the goals so that policy violations
are avoided. Lastly, we discussed the shortcomings
of our work and described the lines of future research
to address those shortcomings.

REFERENCES

Artale, A., Calvanese, D., Kontchakov, R., and Za-
kharyaschev, M. (2009). The dl-lite family and re-
lations. J. Artif. Int. Res., 36(1):1-69.

Baader, F., McGuiness, D. L., Nardi, D., and Patel-
Schneider, P., editors (2002). Description Logic
Handbook: Theory, implementation and applications.
Cambridge University Press.

Bak, P., Melamed, R., Moshkovich, D., Nardi, Y., Ship,
H., and Yaeli, A. (2015). Location and context-based
microservices for mobile and internet of things work-
loads. In 2015 IEEE International Conference on Mo-
bile Services, pages 1-8. IEEE.

Braines, D., Preece, A., de Mel, G., and Pham, T. (2014).
Enabling coist users: D2d at the network edge. In In-
formation Fusion (FUSION), 2014 17th International
Conference on, pages 1-8. IEEE.

Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini,
M., and Rosati, R. (2007a). Tractable reasoning
and efficient query answering in description logics:
The dl-lite family. Journal of Automated reasoning,
39(3):385-4209.

Calvanese, D., Giacomo, G., Lembo, D., Lenzerini, M.,
and Rosati, R. (2007b). Tractable reasoning and ef-
ficient query answering in description logics: The dI-
lite family. J. Autom. Reason., 39(3):385-429.

Fikes, R., Hayes, P., and Horrocks, 1. (2004). Owl-ql?a lan-
guage for deductive query answering on the semantic
web. Web semantics: Science, services and agents on
the World Wide Web, 2(1):19-29.

Hixon, B. and Passonneau, R. J. (2013). Open dialogue
management for relational databases. In HLT-NAACL,
pages 1082-1091.

Jara, A.J., Lopez, P., Fernandez, D., Castillo, J. F., Zamora,
M. A., and Skarmeta, A. F. (2014). Mobile digcovery:
discovering and interacting with the world through the

216

internet of things. Personal and ubiquitous computing,
18(2):323-338.

Jennings, C., Shelby, Z., and Arkko, J. (2016). Me-
dia types for sensor markup language (senml).
https://tools.ietf.org/html/draft-jennings-senml-10.
Accessed: 2016-10-02.

Kagal, L., Finin, T., and Joshi, A. (2003). A Policy Lan-
guage for A Pervasive Computing Environment. In
1EEE 4th International Workshop on Policies for Dis-
tributed Systems and Networks.

Keoh, S. L., Dulay, N., Lupu, E., Twidle, K., Schaeffer-
Filho, A. E., Sloman, M., Heeps, S., Strowes, S., and
Sventek, J. (2007). Self-managed cell: A middle-
ware for managing body-sensor networks. In Proceed-
ings of the 2007 Fourth Annual International Confer-
ence on Mobile and Ubiquitous Systems: Network-
ing&Services (MobiQuitous), MOBIQUITOUS °07,
pages 1-5, Washington, DC, USA. IEEE Computer
Society.

Motik, B. (2006). Reasoning in description logics using
resolution and deductive databases. PhD thesis, Karl-
sruhe Institute of Technology.

Motik, B., Grau, B. C., Horrocks, 1., Wu, Z., Fokoue, A.,
and Lutz, C. (2008). Owl 2 web ontology language:
Profiles. World Wide Web Consortium, Working Draft
WD-owl2-profiles-20081202.

Palmisano, S. J. (2008). A smarter planet: the next leader-
ship agenda. IBM. November, 6.

Quetzal-RDF (2016). Quetzal. https://github.com/Quetzal-
RDF/quetzal. Accessed: 2016-10-02.

Rosati, R. and Almatelli, A. (2010). Improving query an-
swering over dl-lite ontologies.

Sensoy, M., Norman, T., Vasconcelos, W., and Sycara, K.
(2012). Owl-polar: A framework for semantic policy
representation and reasoning. Web Semantics: Sci-
ence, Services and Agents on the World Wide Web,
12(0).

Tesauro, G., Chess, D. M., Walsh, W. E., Das, R., Se-
gal, A., Whalley, 1., Kephart, J. O., and White, S. R.
(2004). A multi-agent systems approach to autonomic
computing. In Proceedings of the Third International
Joint Conference on Autonomous Agents and Multi-
agent Systems - Volume 1, AAMAS *04, pages 464—
471, Washington, DC, USA. IEEE Computer Society.

Twidle, K. P, Dulay, N., Lupu, E., and Sloman, M. (2009).
Ponder2: A policy system for autonomous pervasive
environments. In Calinescu, R., Liberal, F., Marin,
M., Herrero, L. P., Turro, C., and Popescu, M., editors,
ICAS, pages 330-335. IEEE Computer Society.

Ullman, J. D. (1997). Information integration using logical
views. page pages. Springer-Verlag.

Uszok, A., Bradshaw, J. M., Jeffers, R., Suri, N., Hayes,
P, Breedy, M. R., Bunch, L., Johnson, M., Kulka-
i, S., and Lott, J. (2003). Kaos policy and domain
services: Toward a description-logic approach to pol-
icy representation, deconfliction, and enforcement. In
Proceedings of Policy, Como, Italy. AAAL

Viswanathan, A., de Mel, G., and Hendler, J. A. (2015).
Pragmatics and discourse in knowledge graphs.

