A Virtual Glove System for the Hand Rehabilitation based on Two Orthogonal LEAP Motion Controllers

Giuseppe Placidi, Luigi Cinque, Andrea Petracca, Matteo Polsinelli, Matteo Spezialetti

Abstract

Hand rehabilitation therapy is fundamental in the recovery process for patients suffering from post-stroke or post-surgery impairments. Traditional approaches require the presence of therapist during the sessions, involving high costs and subjective measurements of the patients’ abilities and progresses. Recently, several alternative approaches have been proposed. Mechanical devices are often expensive, cumbersome and patient specific, while virtual devices are not subject to this limitations, but, especially if based on a single sensor, could suffer from occlusions. In this paper a novel multi-sensor approach, based on the simultaneous use of two LEAP motion controllers, is proposed. The hardware and software design is illustrated and the measurements error induced by the mutual infrared interference is discussed. Finally, a calibration procedure, a tracking model prototype based on the sensors turnover and preliminary experimental results are presented.

References

  1. Arya, K. N., Pandian, S., Verma, R., and Garg, R. K. (2011). Movement therapy induced neural reorganization and motor recovery in stroke: a review. Journal of bodywork and movement therapies, 15(4):528-537.
  2. Avola, D., Spezialetti, M., and Placidi, G. (2013). Design of an efficient framework for fast prototyping of customized human-computer interfaces and virtual environments for rehabilitation. Computer Methods and Programs in Biomedicine, 110(3):490-502.
  3. Bachmann, D., Weichert, F., and Rinkenauer, G. (2015). Evaluation of the leap motion controller as a new contact-free pointing device. Sensors, 15(1):214.
  4. Besl, P. J. and McKay, N. D. (1992). A Method for Registration of 3-D Shapes. IEEE Trans. Pattern Anal. Mach. Intell., 14(2):239-256.
  5. Burgar, C. G., Lum, P. S., Shor, P. C., and Van Der Loos, H. F. M. (2000). Development of robots for rehabilitation therapy: The palo alto va/stanford experience. Journal of Rehabilitation Research and Development, 37(6):663-673.
  6. Charles, D., Pedlow, K., McDonough, S., Shek, K., and Charles, T. (2014). Close range depth sensing cameras for virtual reality based hand rehabilitation. Journal of Assistive Technologies, 8(3):138-149.
  7. Chaudhary, A., Raheja, J. L., Das, K., and Raheja, S. (2013). Intelligent approaches to interact with machines using hand gesture recognition in natural way: a survey. arXiv preprint arXiv:1303.2292.
  8. Eggert, D. W., Lorusso, A., and Fisher, R. B. (1997). Estimating 3-d rigid body transformations: a comparison of four major algorithms. Machine Vision and Applications, 9(5):272-290.
  9. Franchi, D., Maurizi, A., and Placidi, G. (2009). A numerical hand model for a virtual glove rehabilitation system. In Proc. of the IEEE Med. Meas. & Appl., MeMeA 2009, pages 41-44.
  10. Franchi, D., Maurizi, A., and Placidi, G. (2010). Characterization of a simmechanics model for a virtual glove rehabilitation system. In Computational Modeling of Objects Represented in Images, volume 6026, pages 141-150.
  11. Hallett, M. (2001). Plasticity of the human motor cortex and recovery from stroke. Brain Research Reviews, 36(2):169-174.
  12. http://developer.leapmotion.com (Accessed: 2016). Leap motion developers.
  13. http://nodejs.org (Accessed: 2016). Node.js.
  14. http://www.leapmotion.com (Accessed: 2016). Leap motion inc.
  15. Kahn, L. E., Lum, P. S., Rymer, W. Z., and Reinkensmeyer, D. J. (2006). Robot-assisted movement training for the stroke-impaired arm: Does it matter what the robot does? Journal of rehabilitation research and development, 43(5):619.
  16. Kopp, B., Kunkel, A., Münickel, W., Villringer, K., Taub, E., and Flor, H. (1999). Plasticity in the motor system related to therapy-induced improvement of movement after stroke. Neuroreport, 10(4):807-810.
  17. Liepert, J., Bauder, H., Miltner, W. H. R., Taub, E., and Weiller, C. (2000). Treatment-induced cortical reorganization after stroke in humans. Stroke, 31(6):1210- 1216.
  18. Lloréns, R., Noé, E., Colomer, C., and Alcan˜iz, M. (2015). Effectiveness, usability, and cost-benefit of a virtual reality-based telerehabilitation program for balance recovery after stroke: A randomized controlled trial. Archives of physical medicine and rehabilitation, 96(3):418-425.
  19. Lum, P. S., Godfrey, S. B., Brokaw, E. B., Holley, R. J., and Nichols, D. (2012). Robotic approaches for rehabilitation of hand function after stroke. American Journal of Physical Medicine & Rehabilitation, 91(11):S242- S254.
  20. Maciejasz, P., Eschweiler, J., Gerlach-Hahn, K., JansenTroy, A., and Leonhardt, S. (2014). A survey on robotic devices for upper limb rehabilitation. J. Neuroeng. Rehabil, 11(1):10-1186.
  21. Petracca, A., Carrieri, M., Avola, D., Basso Moro, S., Brigadoi, S., Lancia, S., Spezialetti, M., Ferrari, M., Quaresima, V., and Placidi, G. (2015). A virtual ball task driven by forearm movements for neurorehabilitation. In Virtual Rehabilitation Proceedings (ICVR), 2015 International Conference on, pages 162-163.
  22. Placidi, G. (2007). A smart virtual glove for the hand telerehabilitation. Computers in Biology and Medicine, 37(8):1100-1107.
  23. Placidi, G., Avola, D., Ferrari, M., Iacoviello, D., Petracca, A., Quaresima, V., and Spezialetti, M. (2014). A lowcost real time virtual system for postural stability assessment at home. Computer methods and programs in biomedicine, 117(2):322-333.
  24. Placidi, G., Avola, D., Iacoviello, D., and Cinque, L. (2013). Overall design and implementation of the virtual glove. Computers in biology and medicine, 43(11):1927-1940.
  25. Placidi, G., Franchi, D., Marsili, L., and Gallo, P. (2007). Development of an auxiliary system for the execution of vascular catheter interventions with a reduced radiological risk; system description and first experimental results. Computer Methods and Programs in Biomedicine, 88(2):144-151.
  26. Placidi, G., Petracca, A., Pagnani, N., Spezialetti, M., and Iacoviello, D. (2015). A virtual system for postural stability assessment based on a tof camera and a mirror. In Proceedings of the 3rd 2015 Workshop on ICTs for Improving Patients Rehabilitation Research Techniques, pages 77-80.
  27. Polsinelli, M. (2015). Implementation of a virtual glove for rehabilitation through the use of leap motion controllers. Master's thesis, University of L'Aquila.
  28. Rusàk, Z., Antonya, C., and Horvàth, I. (2011). Methodology for controlling contact forces in interactive grasping simulation. International Journal of Virtual Reality, 10(2):1.
  29. Sabata, B. and Aggarwal, J. K. (1991). Estimation of motion from a pair of range images: A review. CVGIP: Image Understanding, 54(3):309 - 324.
  30. Weichert, F., Bachmann, D., Rudak, B., and Fisseler, D. (2013). Analysis of the accuracy and robustness of the Leap Motion controller. Sensors, 13(5):6380-6393.
  31. Zimmerli, L., Jacky, M., Lünenburger, L., Riener, R., and Bolliger, M. (2013). Increasing patient engagement during virtual reality-based motor rehabilitation. Archives of physical medicine and rehabilitation, 94(9):1737-1746.
Download


Paper Citation


in Harvard Style

Placidi G., Cinque L., Petracca A., Polsinelli M. and Spezialetti M. (2017). A Virtual Glove System for the Hand Rehabilitation based on Two Orthogonal LEAP Motion Controllers . In Proceedings of the 6th International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM, ISBN 978-989-758-222-6, pages 184-192. DOI: 10.5220/0006197801840192


in Bibtex Style

@conference{icpram17,
author={Giuseppe Placidi and Luigi Cinque and Andrea Petracca and Matteo Polsinelli and Matteo Spezialetti},
title={A Virtual Glove System for the Hand Rehabilitation based on Two Orthogonal LEAP Motion Controllers},
booktitle={Proceedings of the 6th International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM,},
year={2017},
pages={184-192},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006197801840192},
isbn={978-989-758-222-6},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 6th International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM,
TI - A Virtual Glove System for the Hand Rehabilitation based on Two Orthogonal LEAP Motion Controllers
SN - 978-989-758-222-6
AU - Placidi G.
AU - Cinque L.
AU - Petracca A.
AU - Polsinelli M.
AU - Spezialetti M.
PY - 2017
SP - 184
EP - 192
DO - 10.5220/0006197801840192