
EINCKM: An Enhanced Prototype-based Method for Clustering

Evolving Data Streams in Big Data

Ammar Al Abd Alazeez, Sabah Jassim and Hongbo Du
Department of Applied Computing, The University of Buckingham, Buckingham, U.K.

Keywords: Big Data, Data Stream Clustering, Outliers Detection, Prototype-based Approaches.

Abstract: Data stream clustering is becoming an active research area in big data. It refers to group constantly arriving

new data records in large chunks to enable dynamic analysis/updating of information patterns conveyed by

the existing clusters, the outliers, and the newly arriving data chunk. Prototype-based algorithms for solving

the problem have their promises for simplicity and efficiency. However, existing implementations have

limitations in relation to quality of clusters, ability to discover outliers, and little consideration of possible

new patterns in different chunks. In this paper, a new incremental algorithm called Enhanced Incremental

K-Means (EINCKM) is developed. The algorithm is designed to detect new clusters in an incoming data

chunk, merge new clusters and existing outliers to the currently existing clusters, and generate modified

clusters and outliers ready for the next round. The algorithm applies a heuristic-based method to estimate

the number of clusters (K), a radius-based technique to determine and merge overlapped clusters and a

variance-based mechanism to discover the outliers. The algorithm was evaluated on synthetic and real-life

datasets. The experimental results indicate improved clustering correctness with a comparable time

complexity to existing methods dealing with the same kind of problems.

1 INTRODUCTION

Recent advances in information and networking

technologies have led to a rapidly growing flux of

massive data interaction that has led to the

emergence of Big Data witnessed in almost every

sector of life ranging from the stock market, online

shopping, banking, social media, and healthcare

systems (Liu et al., 2013). Despite numerous

attempts at defining the term, big data fundamentally

refers to a huge volume of data that are generated by

various applications and stored in different sources

and locations. Big data requires frequent updating

and analysis with the aim of the enhanced

competitiveness and improved performance of

organizations (Olshannikova et al., 2014).

Velocity is one of the known characteristics of

big data. It means that data arrive and require

processing at different speeds. While for some

applications, the arrival and processing of data can

be performed in batch analysis style, other analytics

applications require continuous and real-time

analyses of incoming data chunks (Islam, 2013).

Data stream clustering is defined as the grouping of

new data that frequently arrive in chunks with the

objective of gaining understanding about underlying

grouping patterns that may change over time in the

data streams (Yogita and Toshniwal, 2012).

Most existing data stream clustering solutions

follow the path of adapting existing static data

clustering approaches and methods to the dynamic

data stream scenarios, attempting to accommodate

the capability of two-phase processing, i.e. offline-

online or online-offline (Aggarwal et al., 2003)

(Bhatia and Louis, 2004). There are mainly three

schools of thoughts in data stream clustering, i.e.

prototype-based, density-based, and model-based

(Yogita and Toshniwal, 2012; Nguyen et al., 2015;

Silva et al., 2013). Prototype-based algorithms

initially divide data objects into imprecise prototype

clusters and then iteratively refine the prototypes

into final clusters (e.g. K-Means (MacQueen,

1967)). Density-based algorithms look for dense

regions in each of which there is a high

concentration of data points, and then the dense

regions form clusters of similar data objects (e.g.

DBSCAN (Ester et al., 1996)). Model-based

algorithms consider the data points as the results of a

statistical modeling process. Finding clusters of

similar data points is equivalent to finding the

Al Abd Alazeez A., Jassim S. and Du H.
EINCKM: An Enhanced Prototype-based Method for Clustering Evolving Data Streams in Big Data.
DOI: 10.5220/0006196901730183
In Proceedings of the 6th International Conference on Pattern Recognition Applications and Methods (ICPRAM 2017), pages 173-183
ISBN: 978-989-758-222-6
Copyright c© 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

173

distributions of the statistical model (e.g.

Expectation Maximization (Dempster et al., 1977)).

Prototype-based methods are favored due to their

promises of simplicity, ease of implementation, and

efficiency. However, most, if not all, prototype-

based methods have their limitations, such as

requiring the advanced setting of a number of

clusters (K), lack of capability in discovering

outliers, etc. The aim of our research is to develop

an efficient dynamic clustering solution that

improves existing prototype-based algorithms.

In this paper, a new algorithm called Enhanced

Incremental K-Means (EINCKM) is presented. At

any incremental round, the inputs of the algorithm

consist of a newly arrived data chunk, summary of

the current set of clusters, and a list of outliers from

the previous iteration. The outputs of the algorithm

include the summary of a set of modified clusters

and a new list of outliers. The EINCKM algorithm

applies a simple heuristic-based method to estimate

the number (K) of new clusters to be constructed

from the new chunk. In addition, a radius-based

technique is used to decide how to merge

overlapping new and existing clusters. Moreover,

the algorithm utilizes a variance-based mechanism

to discover the output outliers. The algorithm was

evaluated on both synthetic and real-life datasets.

The experimental results show that the proposed

algorithm improves clustering correctness with a

comparable time complexity to the existing methods

of the same type. The structure of the algorithm is

designed to be modular for easy accommodation of

any further improvements.

The rest of this paper is organized as follows:

Section 2 presents the state of the art of the related

work on data stream clustering algorithms in the

current literature. Section 3 explains the proposed

algorithm. Section 4 presents a systematic evaluation

of the performance of the algorithm and compares it

with a selected number of existing algorithms

through theoretical analysis and practical

experiments using the synthesized and real-life

datasets. A number of further issues regarding the

proposed algorithm will be discussed in Section 5.

Section 6 concludes the work and outlines the

possible future directions of this research.

2 RELATED WORK

2.1 Existing Approaches for Clustering
Data Streams

From a computation point of view, there are two

approaches for data stream mining: incremental-

learning and two-phase-learning (Nguyen et al.,

2015). Both approaches of mining can be adopted

for clustering purposes. Figure 1 illustrates the

principles of the two approaches. In the incremental-

learning approach, a model of clusters continuously

evolves to fit changes made by incoming data

chunks (Guha et al., 2000). On the other hand, the

basic principle of the two-phase-learning approach is

to split the clustering process into two phases. The

first phase summarizes the data points into “pseudo”

clusters, i.e. not finalized clusters. In the second

phase, i.e. whenever a query about the clustering

results is raised, the pseudo-clusters are modified to

produce the finalized clusters (Aggarwal et al., 2003;

Silva et al., 2013).

2.2 Existing Algorithms

Several prototype-based algorithms using the

traditional K-Means clustering principles have been

developed. The Adapt.KM algorithm (Bhatia and

Louis, 2004) first finds K clusters in an initial

dataset using the K-Means method. It then takes the

minimum distance among the centroids of the

clusters as a threshold. When a new data point

arrives, if the distance between the data point and

the centroid of its closest cluster is below the

threshold, the data point is then added to the cluster.

Figure 1: Computational approaches of data stream clustering (Nguyen et al., 2015).

ICPRAM 2017 - 6th International Conference on Pattern Recognition Applications and Methods

174

The cluster centroid, as well as the threshold, are

subsequently updated. If the distance is greater than

the threshold, a new cluster is created for this new

data point and the two closest existing clusters are

merged followed by updating the centroid of the

merged cluster and the threshold. The main

limitation of this algorithm is its merging strategy. If

there are a lot of outliers then clustering results will

become meaningless.

Chakraborty and Nagwani later suggested an

improvement, known as Inc.KM (Chakraborty and

Nagwani, 2011), that uses the average distance

between centroids as the threshold and ignores the

data point with a distance greater than the threshold

as an outlier. The drawback of this algorithm is that

it ignores the outliers which may create a new

cluster(s).

Guha, et al. (Guha et al., 2000) presented the

STREAM algorithm. In the first phase, the algorithm

evenly divides the stream into D chunks of equal

size, finds S clusters in each chunk using the K-

Median algorithm, and the centroids of the S clusters

are weighted by the number of data points in each.

After that, only the weighted centroids of all clusters

are kept and treated as “data points” when a buffer

of size m prototypes is accumulated. In the second

phase, these m prototypes are further clustered into

K cluster representations. The main shortcoming of

STREAM is that it is unable to adapt to the

evolution concept of data, i.e. merge, split, add, and

delete clusters.

2.3 Merging Strategies for Overlapped
Clusters

Merging overlapped clusters that may emerge during

the updating phase is one of the most important steps

in data stream clustering algorithms. It has an effect

on the correctness of the resulting clusters. There

exist three main strategies of merging clusters:

matching, the conditional probability of intersection

area, and cluster radius.

Spiliopoulou et al. (Ntoutsi et al., 2009)

presented MONIC+ (Modeling and Monitoring

Cluster Transitions) framework that computes the

matching between clusters to capture their evolution.

Clusters are only merged if they share at least a half

of their memberships. Oliveira and Gama (Oliveira

and Gama, 2012) produced MEC (Monitoring

Clusters’ Transitions) framework which relies on the

conditional probability and a predefined merging

threshold of 0.5. Conditional probabilities are

computed for every pair clusters obtained at the

consecutive time. The weakness of (Ntoutsi et al.,

2009) and (Oliveira and Gama, 2012) is that

information about the data points must be kept for

each cluster, which is very expensive to maintain.

Zhang et al. (Zhang et al., 1996) presented

BIRCH (Balanced Iterative Reducing and Clustering

using Hierarchies) algorithm. To decide whether to

add a new data point into the previous clusters or

not, BIRCH depends on the radius (i.e. the average

distance from memberships to the centroid of the

cluster). Cao et al. (Cao et al., 2006) produced

Denstream algorithm which relies on the radius ravg,

which is the average distance from the points in a

micro-cluster to the centroid. The radius is then used

to determine the merge of two closest micro-

clusters. Although calculating radius in these two

algorithms gives a very high probability for data

points to belong to a cluster, they may consider

some data points as outliers instead of members.

3 THE PROPOSED ALGORITHM

3.1 The Algorithm Framework

The general framework of the proposed EINCKM

algorithm is depicted in Figure 2. The algorithm

consists of the following main steps. Firstly, the

outliers from the previous iteration are added into

the incoming data chunk (step 1) in order to generate

the K new clusters. The number K of new clusters is

determined by an estimation function (step 2), which

currently uses some heuristic rules to determine the

value of K, but can be improved into a learning

function to learn the best possible number of clusters

for the new chunk. An Enhanced K-Means (EKM)

algorithm is applied to the new data chunk (step 3)

to discover the K new clusters. After that, a merging

strategy is applied to the overlapped new and

existing clusters of the last round using a radius-

based technique to derive a set of modified clusters

(steps 4, 5). Finally, data points that are currently

members of the modified clusters are filtered using a

variance-based mechanism to determine the outliers

among them (step 6).

Figure 3 shows the pseudo-code of the EINCKM

algorithm. The inputs are a data chunk of size M, a

pool of outliers, the minimum number of data points

per cluster, and a set of existing clusters summary.

Each cluster summary is a tuple (N, LS, LSS, µ, R),

where N is a number of data points, LS is the linear

sum of the data points, LSS is the sum of squared

data points, µ is the centroid, R is the radius. The

outputs are K clusters and outliers.

EINCKM: An Enhanced Prototype-based Method for Clustering Evolving Data Streams in Big Data

175

Figure 2: Main steps of the EINCKM algorithm.

EINCKM Algorithm:
Inputs:

 𝐶𝐻 : Data chunk of size 𝑀. Initially CH = {}

 𝐶𝐹: Set of clusters summary (𝑁, 𝐿𝑆, 𝐿𝑆𝑆, 𝜇, 𝑅); //Previous clustering

 summary of T clusters. Initially, CF = {}

 𝑃𝑜: Pool of outliers; //Previous Pool of W outliers. Initially, Po = {}.

 𝑀𝑖𝑛𝑃𝑡𝑠: Minimum number of data points per cluster.

Outputs:

 𝐶𝐹`: Modified 𝐶𝐹;

 𝑃𝑜`: Modified 𝑃𝑜;

Algorithm Steps:

 1. 𝐶𝐻 = 𝐶𝐻 ∪ 𝑃𝑜;
 2. 〈𝐾, 𝐼𝑛𝑖〉 = 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒(𝐶𝐻, 𝐶𝐹); //Estimate K and the initial centroids

 3. 𝑐𝑓 = 𝐸𝐾𝑀(𝐶𝐻, 𝐾, 𝐼𝑛𝑖);//cf is a structure contains cf.member as cluster

 members & cf.summary as cluster summary.

 4. 𝐹𝑜𝑟 𝑖 = 1 𝑡𝑜 𝐾 //Find the cluster summary of new clusters.

 Calculate 𝜇𝑖 𝑎𝑛𝑑 𝜎𝑖 𝑜𝑓 𝑆𝑖; //𝑆𝑖 is a cluster in cf.

 Set 𝑅𝑖 as (2 ∗ 𝜎𝑖) from 𝜇𝑖;

 Calculate cluster summary for 𝑆𝑖 //i.e. N, LS, L SS.

 5. 𝐶𝐹 = 𝑀𝑒𝑟𝑔𝑒(𝐶𝐹, 𝑐𝑓); //Merge overlapping clusters.

 6. 〈𝐶𝐹, 𝑃𝑜〉 = 𝐹𝑖𝑙𝑡𝑒𝑟(𝐶𝐹, 𝑐𝑓, 𝑀𝑖𝑛𝑃𝑡𝑠); //Filter outliers

Figure 3: Pseudo-code of the proposed algorithm.

3.2 Main Functions of the Algorithm

We intend to keep the Estimate function simple and

hence it determines the number of clusters 𝐾 and

initial centroids 𝐼𝑛𝑖 using heuristics (see Figure 4).

For the first iteration, the number of clusters is set to

𝐾 = √𝑁/2 where N is the number of data points in

the new chunk plus the number of outliers in the

previous pool. For the later iterations, 𝐾 is set to the

𝐾 value of the previous iteration (in Section 4.1 we

will explain why we select K in this way). Parameter

𝐼𝑛𝑖 refers to the collection of the initial centroids.

For the first iteration, the initial centroids are

assigned as randomly selected data points in the data

collection, but for later iterations, the centroids of

the clusters of the previous iteration are taken as the

initial centroids for the current round. The EKM

function is an enhanced K-Means method that uses

𝐾 and 𝐼𝑛𝑖 determined by the Estimate function. The

intension is to minimize the nondeterministic results

of clustering caused by different random seeds.

 Estimate Function:
〈𝐾, 𝐼𝑛𝑖〉 = 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒(𝐶𝐻, 𝐶𝐹)

 𝐼𝑓 (𝐾𝑜𝑙𝑑 = ∅) then//𝐾𝑜𝑙𝑑 is the number of clusters in 𝐶𝐹

 {

 𝐾 = 𝑆𝑄𝑅𝑇(size(𝐶𝐻)/2);
 𝐼𝑛𝑖 = 𝑟𝑎𝑛𝑑(𝐾, 𝐶𝐻);
 }

 𝐸𝑙𝑠𝑒

 {

 𝐾 = 𝐾𝑜𝑙𝑑;
 𝐼𝑛𝑖 = { 𝜇𝑖};//𝜇𝑖 in 𝐶𝐹

 }

Figure 4: Pseudo-code for the Estimate Function.

The Merge function (see Figure 5) first creates a

pairwise centroid distance matrix 𝐷 for all clusters.

It then locates a pair of closest clusters with the

minimum distance. If the distance is less than or

equal to the radius of the smaller cluster, then the

two clusters are merged into a single cluster with

updated cluster summary and memberships for the

data points involved. One row and one column of

the matrix 𝐷 need to be updated to modify the

distances of the newly merged cluster with the other

clusters. The process is repeated until this criterion

cannot be satisfied by any pair of clusters in the

matrix 𝐷.

Merge Function:
𝐶𝐹 = 𝑀𝑒𝑟𝑔𝑒(𝐶𝐹, 𝑐𝑓)

 1. 𝐶𝐹 = 𝐶𝐹 ∪ 𝑐𝑓. 𝑠𝑢𝑚𝑚𝑎𝑟𝑦;
 2. Calculate the pairwise distance matrix 𝐷 for distances between

 𝜇𝑖 𝑎𝑛𝑑 𝜇𝑗 in 𝐶𝐹;// (𝑖 ≠ 𝑗)

 3. Repeat

(A) Locate 𝑆𝑖, 𝑆𝑗 in 𝐶𝐹 where𝐷𝑖𝑠𝑡_𝑐𝑚𝑖𝑛(𝜇𝑖, 𝜇𝑗) = 𝑎𝑟𝑔𝑚𝑖𝑛(𝐷)

(B) Find 𝑅𝑚𝑖𝑛 = 𝑎𝑟𝑔𝑚𝑖𝑛(𝑅𝑖, 𝑅𝑗)

(C) 𝐼𝑓 𝐷𝑖𝑠𝑡_𝑐𝑚𝑖𝑛 <= 𝑅𝑚𝑖𝑛 then

 {

 (a) 𝑆𝑖 = 𝑆𝑖 + 𝑆𝑗;// Merging two clusters and reassigned the

 memberships

 (b) Calculate 𝜇𝑖 , 𝜎𝑖 for cluster 𝑆𝑖 in 𝐶𝐹;

 (c) Set 𝑅𝑖 as (2 ∗ 𝜎𝑖) from 𝐶𝑛𝑖

 (d) Modify 𝐷

 (e) Update cluster summary for 𝑆𝑖

 }

 Until no more merge clusters

Figure 5: Pseudo-code for the Merge Function.

Extracting the outliers from the final clusters is

done by calling the Filter function (see Figure 6)

which uses the variance of each cluster and MinPts

threshold to distinguish outliers. It scans the data

points in each final cluster and compares their

distance to the centroid with the radius of that

cluster. If the distance is greater than the radius, the

data point is considered as an outlier.

ICPRAM 2017 - 6th International Conference on Pattern Recognition Applications and Methods

176

Filter Function:
〈𝐶𝐹, 𝑃𝑜〉 = 𝐹𝑖𝑙𝑡𝑒𝑟 (𝐶𝐹, 𝑐𝑓, 𝑀𝑖𝑛𝑃𝑡𝑠)

𝐹𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑠𝑖𝑧𝑒(𝑐𝑓)

 {

 𝐹𝑜𝑟 𝑗 = 1 𝑡𝑜 𝑠𝑖𝑧𝑒(𝑆𝑖)// cf.member

 {

 𝐷 = 𝑑𝑖𝑠𝑡(𝑝(𝑗), 𝜇𝑖);// p is a data point in 𝑆𝑖

 𝐼𝑓 𝐷 > 𝑅𝑖 then 𝑃𝑜 = 𝑃𝑜 ∪ 𝑝(𝑗);
 }

 𝐼𝑓 𝑠𝑖𝑧𝑒 (𝑆𝑖) < 𝑀𝑖𝑛𝑃𝑡𝑠 then 𝑃𝑜 = 𝑃𝑜 ∪ 𝑆𝑖;
 Update cluster summary for 𝑆𝑖

 }

Figure 6: Pseudo-code for the Filter Function.

4 EVALUATION OF EINCKM

4.1 Logical Evaluation

Our evaluation of correctness focuses on the three

main functions of the algorithm. The Estimate

function only approximates the value of K and initial

centroids. Since the number of clusters is normally

smaller than the number of data points, using the

square root of half of the data points as suggested in

(Kodinariya and Makwana, 2013) is sensible as the

initial estimate.

The Merge function depends on the general

characteristics of the normal distribution to calculate

the cluster radius. The cautious merge strategy

ensures that the centroid of the smaller cluster not

only belongs to the big cluster, but also close to the

centroid of the big cluster. The Filter function

extracts the outliers from the final clusters using

their variance. Using the understanding of the

normal distribution, the function excludes some data

points outside the radius as an outlier, ensuring the

high quality of the clusters.

The number of clusters in each iteration is

affected by the Estimate and Merge functions. It

could be increased or decreased at one round of

clustering. In other words, the number of clusters is

determined after each round of clustering.

Regarding completeness, unlike Inc.KM, the

proposed algorithm does not lose any data point

during the clustering process. If a data point does not

belong to any clusters, it will be kept in the pool as

outliers. If the outliers kept in the pool are

considered belonging to a default cluster, the

proposed algorithm is complete.

The time complexity of EINCKM is determined

by the time complexity of its main functions. First,

the time complexity of EKM algorithm is estimated

as O(NKI) where N is the total number of data points

in a chunk plus the outliers in the input pool, K is the

number of clusters, and I is the number of iterations

until the clusters converge. The estimated time

complexity of the Merge function is O((T+k)2)

where T is the number of clusters of previous

iteration and k is the number of clusters from a new

chunk. The estimated time complexity of Filter

function is O(N) because each data point within the

chunk and the previous pool is determined as a

cluster member or an outlier. Therefore, the time

complexity of EINCKM is estimated as

O(M(NKI)+(T+k)2+N), where M is the chunk size.

The time complexity of the Adapt.KM algorithm

is estimated as O(M(NKI+k(k-1)+N(K+1))). The

time complexity of the Inc.KM algorithm is

estimated as O(M(NKI+k(k-1)+NK)). The time

complexity of STREAM is estimated as

O(M(NKI)+2k+N). Comparing the Big O notations

across the different algorithms shows that STREAM

is the fastest among the algorithms. The proposed

EINCKM algorithm time complexity depends on

(T+k)2 whereas the Inc.KM and the Adapt.KM

algorithms depend on MK2 and M(K2+1). Since in

most cases, the number of clusters is much fewer

than the number of data points within a chunk, the

proposed algorithm should be marginally faster than

Inc.KM and Adapt.KM but slower than STREAM.

4.2 Empirical Evaluation

Different approaches to evaluate clustering

algorithm performance exist in the literature

(Kremer et al., 2011). In order to evaluate the

correctness of the proposed algorithm, we have

decided to use the evaluation by the reference

method, i.e. to find if the algorithm can return the

known clusters in a given ground truth. To do so, we

generated three synthetic datasets (DS1, DS2, and

DS3) of 10000, 30000, and 50000 data points

respectively of two dimensions. The DS1 contains

six clusters; DS2 contains fifteen clusters, and DS3

contains thirty clusters. Clusters in each of the three

datasets have different sizes. Each cluster is

generated randomly by following a normal

distribution of a different mean and variance. Figure

7 (a, b, c) shows the scatterplots of the three

datasets. The details of the normal distributions used

for generating the datasets are given in Appendix1.

For real-life dataset, we selected the Network

Intrusion Detection (NID) dataset from the KDD

Cup’99 repository. This dataset contains TCP

connection logs for 14 days of local network traffic

(494,021 data points). Each data point corresponds

to a normal connection or attack. The attacks split

into four main types and 22 more specific classes:

denial-of-service (DOS), unauthorized access from a

EINCKM: An Enhanced Prototype-based Method for Clustering Evolving Data Streams in Big Data

177

remote machine (R2L), unauthorized access to local

user privileges (U2R), and surveillance (PROBING).

We used all 34 continuous attributes as in (Aggarwal

et al., 2003) and (Cao et al., 2006).

(a) Scatterplot of dataset DS1.

(b) Scatterplot for dataset DS2.

(c) Scatterplot for dataset DS3.

Figure 7: Overview of synthesized datasets.

To evaluate correctness, we used three

commonly used evaluators: purity, entropy, and the

sum of squared errors (SSE). Purity was used in

(Cao et al., 2006), entropy in (Karypis and George,

2001), and SSE in (Aggarwal et al., 2003). Purity

refers to the proportion of the data points belonging

to a known cluster that are assigned as members of a

cluster by the algorithm. The higher the proportion

of purity (between [0, 1]) is, the more certain that

the algorithm has found the original clusters and the

better the algorithm is (Silva et al., 2013). Entropy

reflects the number of the data points from different

known clusters in the original dataset that are

assigned to a cluster by the algorithm. The value of

this measure is between [0, 𝐿𝑜𝑔2𝑁] where N is the

number of known clusters involved. The smaller

value of the entropy is, the fewer members of the

known clusters are mixed in the clusters discovered

by the algorithm, and the better the clustering

algorithm is (Nguyen et al., 2015). SSE is a

commonly used cluster quality measure. It evaluates

the compactness of the resulting clusters. Low

scores of SSE indicates better clustering results as

the clusters contain less internal variations (Silva et

al., 2013). The efficiency of an algorithm was

measured by the amount of time in seconds taken for

the algorithm in completing the clustering task.

MATLAB was used to build an implementation

of the EINCKM algorithm and the experiment

framework. For the Adapt.KM and Inc.KM

algorithms, we split a given dataset into two parts:

the dynamic arriving data chunks of a certain size

and the initial dataset before the arrival of the first

dynamic data chunk. We randomly selected (e.g.

DS1) an initial collection of 1000 data points as the

initial dataset and the remaining 9000 were

randomly selected as data points in the dynamic

chunks. Our proposed algorithm does not treat the

initial dataset and later arrived chunks differently,

and hence an empty set of existing clusters and an

empty set of outliers were assumed as the inputs

when the first chunk is processed. For STREAM and

EINCKM algorithms, we randomly selected all the

chunks with size 100 data points. The idea behind

the random selection of the data points is to

investigate the behavior of the algorithms when

there is no control on the sequence of data points,

i.e. we did not select specific data points from

specific groups in the original datasets. No

assumption was made that the initial data chunk

represents the entire data domain. In order to

minimize the effect of random choice of data points,

the experiments were repeated 100 times, and the

average is calculated.

Figure 8 shows the details of comparison results

between the known clusters and the output clusters

from the Inc.KM, Adapt.KM, STREAM, and

EINCKM algorithms respectively. EINCKM has the

highest purity. This is the result of the stringent

merge strategy deployed and the exclusion of some

data points as outliers. Inc.KM also has good purity

by ignoring the outliers, but this strategy denies the

opportunity for some ignored outliers to become

members of some clusters at a later stage. Adapt.KM

has the poorer purity because of its merging strategy,

i.e. combining two closest clusters could belong to

different clusters in the original dataset. STREAM

ICPRAM 2017 - 6th International Conference on Pattern Recognition Applications and Methods

178

has the lowest purity because it selects randomly

initial centroids as one property of K-Median and

this leads to clusters contain data points belong to

different clusters in the original dataset.

Figure 8: The purity measurement.

As shown by Figure 9, Inc.KM has the lowest

entropy because it deletes all the outliers. EINCKM

has the second lowest level because adding the

outliers to the new data chunk may group them into

different clusters comparing with original dataset.

STREAM has the third level because the random

initial centroids could lead to getting output clusters

including some data points from other clusters.

Adapt.KM has the highest level of entropy because

its merging approach is getting output clusters

contain many data points belong to different clusters

in the original dataset.

Figure 9: The entropy measurement.

The EINCKM has the lowest SSE because it

produces compact and more stable clusters as a

result of merging criterion and keeps the outliers

separately (see Figure 10). In.KM has the second

level because it gives us almost balanced clusters.

STREAM has the third level because it presents

different cluster sizes every time. Adapt.KM has the

highest level because it produces bigger clusters

during the merging process.

Figure 10: The SSE measurement.

Test results are shown in Figure 11 (a, b) confirm

the logical analysis on efficiency: the STREAM

algorithm has the minimum execution time followed

by the EINCKM algorithm which in turn is better

than both Inc.KM and Adapt.KM. The pattern is

consistent across the synthesized and the real-life

datasets.

(a) The efficiency measurement for synthesized dataset.

(b) The efficiency measurement for real-life dataset.

Figure 11: The efficiency measurement.

EINCKM: An Enhanced Prototype-based Method for Clustering Evolving Data Streams in Big Data

179

5 DISCUSSIONS

5.1 Adaptive Number of Clusters K by
EINCKM

Our algorithm determines the number of clusters K

automatically whereas the others require a

predefined K. The empirical study results presented

in the previous section compared those algorithms

against the proposed algorithm when they were

using the appropriate K values. However, those

algorithms would have performed much worse if

inappropriate K values were used. Figure 12 (a, b, c)

shows the purity differences of the existing

algorithms from the proposed algorithm when

different K values were chosen. The results clearly

demonstrate that the proposed algorithm outperform

the others.

(a) Different values of K for DS1 dataset.

(b) Different values of K for DS2 dataset.

(c) Different values of K for DS3 dataset.

Figure 12: The purity measurements of the algorithms for

synthesized datasets when different values of K were used.

Figure 13 (a, b, c) shows the differences between

the algorithms for the entropy correctness metric

over the synthesized datasets. We have also tested

the performances on SSE and performances on the

real-life dataset NID, but will not present the results

here due to space constraint. All test results indicate

the same performance gaps between the proposed

algorithm and the existing ones.

(a) Different values of K for DS1 dataset.

(b) Different values of K for DS2 dataset.

(c) Different values of K for DS3 dataset.

Figure 13: The entropy measurements of the algorithms

for synthesized datasets when different values of K were

used.

5.2 Refinements of EINCKM

One advantage of the EINCKM algorithm is its

highly modular structure where the essential

operations of the algorithm, i.e. estimating the value

of K, the K-Means performed on the new data

chunk, the merge operation, and the filter operation,

are designated to functions. This means that we can

continuously improve each function without

changing the structure of the algorithm.

As for the further improvement of each function

within the algorithm, first we do realize that using a

heuristic estimation at the start of the algorithm may

ICPRAM 2017 - 6th International Conference on Pattern Recognition Applications and Methods

180

be too trivial, and may not guarantee optimal results.

We have noted the work presented in (Pio et al.,

2014) that used the principal component analysis

(PCA) to estimate the value of K before the K-

Means clustering is conducted on the newly arrived

data chunk, and consider adopting the method in the

future improved version of the algorithm. Besides,

machine learning solutions may be investigated to

predict a more suitable value for K based on past

clustering history on the previous chunks.

Besides, both the merge strategy and filtering

scheme are currently quite simply in order to limit

the amount of processing time. In fact, both the

merging strategy and the filtering scheme may be

further improved through learning. This is one area

for future research that we intend to investigate.

5.3 Adaptation of EINCKM to Concept
Drift

Concept Drift has been recognized as one major

issue in data stream clustering and classification

(Nguyen et al., 2015). In clustering, concept drift

refers to the evolutionary changes to cluster models

over time. Static data clustering only has one

concept: the global model of clusters whereas data

stream clustering may have multiple concepts that

evolve over time. We identified concept drift at two

levels: the adaptation level and change monitoring

level.

At the adaptation level, our algorithm, by

following the incremental approach of data stream

clustering, always refines the existing model of

clusters in light of the newly arrived data chunk, and

hence always adapts to the changes reflected by new

clusters added into the model or modification to the

existing clusters via merging.

At the change monitoring level, the proposed

algorithm itself does not keep a history trail of the

changed cluster models. In fact, implementation of

the algorithm may use variable parameters to keep a

single copy of the new model of clusters, over-

writing the previous model. However, this problem

can be solved by adding an outer loop in the data

streaming clustering process where the proposed

algorithm can be called when a new chunk arrives,

the refined new model of clusters can be recorded

into a permanent file. Then from time to time, a

monitoring task over the stored versions of the

cluster model can be undertaken to identify the

changes from one version to the next. It can be an

interesting problem to investigate further about how

to mine evolving patterns among the past cluster

models. This task requires developing a new kind of

algorithm for the “second order” discovery.

6 CONCLUSION AND FUTURE

WORK

In this paper, we presented a new algorithm

EINCKM for data stream clustering. The algorithm

emphasizes on simplicity, modularity, and

adaptivity. The key ideas of the algorithm are to

estimate the number of clusters (K) using heuristics,

merge the overlapped clusters using a radius-based

technique based on statistical information, and to

filter outlier using a variance-based mechanism. The

algorithm addressed two significant problems of

prototype-based methods: using a fixed predefined

value of K and produce clusters as well as outliers.

The evaluation on some synthesized datasets and

real dataset has shown that the algorithm produces

correct and good quality clusters with low time

complexity.

Our future work will focus on enhancing the

algorithm. Since the algorithm is modular, those

enhancement efforts can focus on the main functions

within the algorithm. The Estimate function can be

improved with learning capability to more

accurately estimate the value of K for later rounds of

calling the algorithm. A more adaptive strategy

based on learning of mixture models of Gaussians

can be developed for the Merge function, and a

fuzzy and shape based cluster radius could be

embedded into the Filter function to identify real

outliers.

ACKNOWLEDGMENTS

The first author wishes to thank the University of

Mosul and Government of Iraq/Ministry of Higher

Education and Research (MOHESR) for funding

him to conduct this research at the University of

Buckingham.

REFERENCES

Aggarwal, C. , Han, J., Wang, J. and Yu, P., 2003. A

Framework for Clustering Evolving Data Streams.

Proceedings of the 29th VLDB Conference, Germany.

Bhatia, S.K. and Louis, S., 2004. Adaptive K-Means

Clustering. American Association for Artificial Intelli-

gence.

EINCKM: An Enhanced Prototype-based Method for Clustering Evolving Data Streams in Big Data

181

Cao, F., Ester, M., Qian, W. and Zhou, A., 2006. Density-

based clustering over an evolving data stream with

noise. Proceedings of the Sixth SIAM International

Conference on Data Mining, 2006, pp.328–339.

Chakraborty, S. and Nagwani, N.K., 2011. Analysis and

Study of Incremental K-Means. Springer-Verlag

Berlin Heidelberg, pp.338–341.

Dempster, A.P., Laird, N.M. and Rubin, D.B., 1977.

Maximum Likelihood from Incomplete Data via the

EM Algorithm. Journal of the Royal Statistical

Society. Series B (Methodological), 39(1), pp.1–38.

Ester, M., Kriegel, H.-P., Sander, J. and Xu, X., 1996. A

Density-Based Algorithm for Discovering Clusters in

Large Spatial Databases with Noise. the 2nd

International Conference on Know- ledge Discovery

and Data Mining, 2, pp.226–231.

Guha, S., Mishra, N., Motwani, R. and O’Callaghan, L.,

2000. Clustering Data Streams. IEEE FOCS

Conference, pp.359–366.

Islam, M.Z., 2013. A Cloud Based Platform for Big Data

Science. Department of Computer and Information

Science, Linköping University, pp.1–57.

Karypis, Y.Z. and George, 2001. Technical Report

Criterion Functions for Document Clustering:

Experiments and Analysis. , pp.1–30.

Kodinariya, T.M. and Makwana, P.R., 2013. Review on

determining number of Cluster in K-Means Clustering.

International Journal of Advance Research in

Computer Science and Management Studies, 1(6),

pp.2321–7782.

Kremer, H., Kranen, P., Jansen, T., Seidl, T., Bifet, A.,

Holmes, G. and Pfahringer, B., 2011. An effective

evaluation measure for clustering on evolving data

streams. Proceedings of the 17th ACM SIGKDD

International Conference on Knowledge Discovery

and Data Mining - KDD ’11, pp.868–876. Available

at:

http://eprints.pascal-network.org/archive/00008693/.

Liu, C., Ranjan, R., Zhang, X., Yang, C., Georgakopoulos,

D. and Chen, J., 2013. Public Auditing for Big Data

Storage in Cloud Computing - A Survey. 2013 IEEE

16th International Conference on Computational

Science and Engineering, pp.1128–1135. Available at:

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?

arnumber=6755345.

MacQueen, J., 1967. Some Methods for classification and

Analysis of Multivariate Observations. 5th Berkeley

Symposium on Mathematical Statistics and Probability

1967, 1(233), pp.281–297. Available at:

http://projecteuclid.org/euclid.bsmsp/1200512992.

Nguyen, H.L., Woon, Y.K. and Ng, W.K., 2015. A survey

on data stream clustering and classification.

Knowledge and Information Systems, pp.535–569.

Available at: http://dx.doi.org/10.1007/s10115-014-

0808-1.

Ntoutsi, I., Spiliopoulou, M. and Theodoridis, Y., 2009.

Tracing cluster transitions for different cluster types.

Control and Cybernetics, 38(1), pp.239–259.

Oliveira, M. and Gama, J., 2012. A Framework to Monitor

Clusters’ Evolution Applied to Economy and Finance

Problems. Intell. Data Anal. 16, 1, 93-111.

Olshannikova, E., Ometov, A. and Koucheryavy, Y.,

2014. Towards Big Data Visualization for Augmented

Reality. 2014 IEEE 16th Conference on Business

Informatics, pp.33–37. Available at:

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?

arnumber=6904299.

Pio, G., Lanotte, P. F., Ceci, M. and Malerba, D., 2014.

Mining Temporal Evolution of Entities in a Stream of

Textual Documents. Springer International Publishing

Switzerland 2014, pp.50–60.

Silva, J., Faria, E., Barros, R., Hruschka, E. and Carvalho,

A., 2013. Data Stream Clustering : A Survey. ACM

Computing Surveys (CSUR), pp.1–37.

Yogita and Toshniwal, D., 2012. Clustering Techniques

for Streaming Data – A Survey. , pp.951–956.

Zhang, T., Ramakrishnan, R. and Livny, M., 1996.

BIRCH: An Efficient Data Clustering Databases

Method for Very Large Databases. ACM SIGMOD

International Conference on Management of Data, 1,

pp.103–114.

APPENDIX 1

The following tables show the details and specify

the distribution of each of the three synthesized

datasets.

Table 1: Parameters details of DS1.

 K
Mean STD

SZ
 X Y X Y

 K1 5 7 2 2 20000

 K2 16 7 3 3 11000

 K3 5 -7 1.5 1.5 15000

 K4 -5 7 3 3 18000

 K5 -16 7 1 1 5000

 K6 -5 -7 2.5 2.5 31000

Table 2: Parameters details of DS2.

K
Mean STD

SZ
X Y X Y

K1 20 20 2 2 2000

K2 5 40 1.5 1.5 2600

K3 30 19 1.1 1.1 3400

K4 12 40 2.5 2.5 300

K5 25 30 2.4 2.4 3100

K6 -15 37 3.5 3.5 1600

K7 -25 43 1.8 1.8 2100

K8 1 67 1.2 1.2 1500

K9 15 55 2.9 2.9 1700

K10 -2 54 2.3 2.3 4000

K11 -20 55 3.9 3.9 1300

K12 15 75 3.8 3.8 600

K13 20 65 0.9 0.9 500

K14 -7 80 4.1 4.1 2300

K15 -25 75 2.7 2.7 3100

ICPRAM 2017 - 6th International Conference on Pattern Recognition Applications and Methods

182

Table 3: Parameters details of DS3.

K
Mean STD

SZ
X Y X Y

K1 7 7 2.5 2.5 800

K2 30 7 3.5 3.5 110

K3 -11 7 1.9 1.9 3500

K4 -35 7 3.9 3.9 2900

K5 45 7 1.1 1.1 1290

K6 7 30 3.4 3.4 300

K7 32 30 2.2 2.2 5000

K8 -15 30 3.1 3.1 700

K9 -30 30 1.2 1.2 600

K10 50 30 3.3 3.3 1700

K11 -15 60 1.2 1.2 900

K12 45 60 5.9 5.9 2000

K13 10 60 6.4 6.4 1000

K14 -50 60 7.9 7.9 100

K15 75 60 1.7 1.7 4300

K16 1 105 7.5 7.5 4000

K17 25 105 1.3 1.3 1650

K18 -35 105 4.4 4.4 350

K19 -60 105 2.4 2.4 400

K20 60 105 7.7 7.7 1900

K21 5 150 6.4 6.4 5000

K22 30 150 0.9 0.9 1200

K23 -30 150 4.4 4.4 800

K24 -60 150 2.4 2.4 500

K25 60 150 5.5 5.5 800

K26 7 190 3.6 3.6 2500

K27 25 190 0.8 0.8 750

K28 -20 190 4.2 4.2 250

K29 -50 190 2.8 2.8 350

K30 50 190 5.6 5.6 4350

EINCKM: An Enhanced Prototype-based Method for Clustering Evolving Data Streams in Big Data

183

