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Abstract: We compare the performance of simple cognitive agents, learning to cross a Cellular Automaton (CA) based 
highway, for two decision formulas used by the agents’ in their decision-making process. We describe the 
main features of the simulation model: CA based highway traffic environment, agents and their decision and 
learning mechanisms. The agents use a type of “observational social learning” strategy, i.e. they observe the 
performance of other agents and they try to mimic what worked for other agents and they try to avoid what 
did not work for the other agents. In the decision-making process of deciding whether to cross the highway 
or to wait, depending on the simulation setup, the agents use one of the two decisions formulas: the first one 
based only on the assessment of the agents crossing decisions (cDF), or the second one based on the 
assessment of the agents crossing and waiting decisions (cwDF). Our simulations show that the performance 
of agents using cwDF is much better than the performance of the agents using cDF in their decision making 
process. We measure the agents’ performance by the numbers of agents: who crossed successfully, who were 
killed and those who are still queuing to cross at simulation end.  

1 INTRODUCTION 

In recent years, we have witnessed the rapid 
development of autonomous robots of various levels 
of complexity and scale, from Google driverless cars 
and drones to swarm robots, microrobots or kilobots. 
Each robot is a complex dynamical systems 
performance of which very often depends on many 
parameters. In some cases, robots must learn to adapt 
to dynamically changing conditions of environment 
in which they operate, e.g. Google driverless car. 
Thus, it is important to study how robots’ learning 
performance and their outcomes may be affected by 
various parameters. Such investigations could be 
carried out through modelling and simulation, where 
autonomous robots are identified with autonomous 
cognitive agents, which are abstractions of 
autonomous entities capable of interacting with each 
other and their environment (Russell and Norvig, 
2014; Poole and MacKworth, 2010; Ferber, 1999; 
Uhrmacher and Weyns, 2009).  

In this work, we investigate the performance of a 
simple learning algorithm based on an observational 
social learning mechanism (Nehavin and 
Dautenhahn, 2007; Bandura 1977; Bandura et al., 

(1961; Hoppitt and Laland, 2013), in which each 
cognitive agent learns from observing the outcomes 
of the actions of cognitive agents that have already 
attempted to carry out a task and imitating the 
successful ones. The principles of the observational 
social learning mechanism have been applied in the 
context of multi-agent learning and to develop new 
optimization algorithms (Montes de Oca and Stutzle, 
2008; Gong et al. 2014; Cheng and Jin, 2015; Liu et 
al., 2016), among others for finding more effective 
optimizers than swarm intelligence algorithms.  

In the presented work, we consider the model of 
cognitive agents learning to cross a Cellular 
Automaton (CA) based highway introduced and 
described in (Lawniczak et al., 2012; Lawniczak et 
al., 2013; Lawniczak et al., 2014). This model is an 
abstraction of the situation in which an autonomous 
agent must learn to decide instantaneously if it is safe 
or not to cross a highway when it encounters an 
incoming vehicle and when the agent can perceive 
only fuzzy categories of the vehicle’s speed and its 
proximity. In the model the agents are born as tabula 
rasa; i.e. a “blank slate” and they do not have a built-
in knowledge base of the environmental conditions 
under which it is safe or not to cross the highway. The 

208
Lawniczak A. and Yu F.
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agents have a built-in template to classify the 
environmental conditions and they have a reasoning 
method to use this classification in deciding whether 
or not to cross the highway. They are capable of 
evaluating if a strategy of crossing the highway has 
been applied successfully or not and they are capable 
of applying this strategy again with small changes to 
a similar but new situation. Thus, they are capable of 
the adoption or rejection of the strategy through their 
observational social learning mechanism. The agents 
build their knowledge base representing the evolution 
of the model dynamics as the simulation progresses.  

In the presented work, we compare agents’ 
performance in learning to cross the highway for two 
decision-making formulas, the original one used in 
(Lawniczak et al., 2012; Lawniczak et al., 2013; 
Lawniczak et al., 2014), which is based only on the 
outcomes of the agents’ crossing decisions, which we 
call cDF, with the new decision-making formula 
introduced in this paper. The new decision-making 
formula considers the assessment of the agents’ 
crossing and waiting decisions and we call it cwDF. 
Our simulations show that the performance of agents 
using cwDF is much better than the performance of 
the agents using cDF in their decision-making 
process. We measure the agents’ performance by the 
numbers of agents: who crossed successfully, who 
were killed and those who are still queuing to cross at 
simulation end. 

The paper is organized as follows: Section 2 
describes the model, introduces the new decision-
making formula and provides mathematical 
formulation of both decision-making formulas; 
Section 3 describes simulation setup and resulting 
data; Section 4 compares the performance of the 
agents using cDF with the performance when they use 
cwDF instead; Section 5 reports our conclusions. 

2 MODEL DESCRIPTION OF 
AGENTS LEARNING TO 
CROSS A CA BASED HIGHWAY 

For completeness of the paper, we review the main 
features of the model introduced in (Lawniczak et al., 
2012; Lawniczak et al., 2014). For the software 
implementation of the model we refer the reader to 
(Lawniczak and Di Stefano, 2014) for details. The 
model was developed under several assumptions 
about the agents that are called “creatures” in papers 
(Lawniczak et al., 2012; Lawniczak et al., 2014; 
Lawniczak and Di Stefano, 2014), their process of 
learning and their environment.  

We assume that the environment is a single lane 
unidirectional highway without any intersection. A 
creature is an autonomous cognitive agent having a 
strong instinct to survive. All creatures/agents are 
initially located on one side of the highway and they 
want to cross the highway without being struck by the 
oncoming vehicles to get to the opposite side of the 
highway.  

We assume that each creature is capable of: (1) 
matching simple patterns; (2) evaluating distances in 
an approximate way; (3) evaluating the velocity of 
moving vehicles in an approximate way; (4) assigning 
a discrete number (i.e., class identifiers) to an 
approximate class; (5) understanding when another 
agent has been successful in crossing the highway; (6) 
repeating the action that has previously resulted in 
success. Each creature is equipped with a simple 
mechanism to evaluate an outcome of crossing of 
each creature that crossed previously. Each creature 
will try to imitate the successful crossings. If 
unsuccessful crossings outnumber the successful 
ones, then under similar circumstances the creature 
may not cross and will wait for better conditions, or 
will try to find a better location for crossing.  

We assume that all creatures, attempting to cross 
the highway at the same crossing point, except the 
first one, have witnessed what have happened to the 
creatures that have previously crossed the highway at 
this crossing point. This allows each crossing point to 
build its own knowledge base during the experiment 
that is available to all creatures at that crossing point.  

In what follows we introduce agents’ new 
decision-making formula, called cwDF, and compare 
the performance of the agents using this decision 
formula with their performance when they use the 
decision-making formula of the works (Lawniczak et 
al., 2012; Lawniczak et al., 2014; Lawniczak and Di 
Stefano, 2014). Additionally, we provide 
mathematical description of both formulas. 

2.1 Highway Model and Agents 

We model the highway traffic by adapting the Nagel-
Schreckenberg Cellular Automaton model and refer 
the reader to (Nagel and Schreckenberg, 1992; 
Lawniczak and Di Stefano, 2008; Lawniczak and Di 
Stefano 2010a; Lawniczak and Di Stefano, 2010b) for 
details. The model consists of four steps that are 
applied simultaneously to all cars: acceleration, safety 
distance adjustment, randomization, and change of 
position. The implementation of the Nagel-
Schreckenberg model for this research requires a 
modification of the Cellular Automata (CA) 
paradigm to make the evolution of the CA not only 
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dependent on the state of the neighbourhood but also 
on the current velocity of each vehicle, (Lawniczak 
and Di Stefano, 2008; Lawniczak and Di Stefano 
2010a; Lawniczak and Di Stefano 2010b).  

As customary in the traffic modelling literature, a 
highway is modelled by large number of adjacent 
cells, where each cell represents a segment of the 
highway of 7.5m in length, (Nagel and 
Schreckenberg, 1992). The cars are generated at the 
starting cell of the highway independently of each 
other with car creation probability (CCP), p, which 
determines car traffic density. When cars are created, 
they are assigned a random speed between zero and 
the maximum allowed speed for cars that is set in the 
configuration file. As some cars may start faster than 
others, to avoid potential collisions, a queue is used 
to hold each newly generated car until it is able to 
actually move into the highway without colliding 
with another car. After a car enters the highway, it 
speeds up until it reaches the allowed maximum 
velocity or until it encounters another car in front of 
itself. To simulate erratic drivers, the model allows a 
random deceleration of cars; i.e. it allows decreasing 
by one, randomly with probability 0.5, the speed of 
each car.  

Agents/creatures are generated in a similar way as 
the cars. They are generated only at the crossing 
points set at the initialization step, and at these 
crossing points, they are generated with the same 
creature creation probability. In the presented 
simulation results we consider only one Crossing 
Point (CP), selected at cell 60 at the initialization 
setup, i.e. we consider the CP located 450m away 
from the beginning of the highway. The location of 
this CP was selected sufficiently far away from the 
beginning of the highway to allow emergence of the 
car traffic profiles for the considered CCP values. 
These profiles may not exit at the beginning of the 
highway due to the potential cars build up in the 
queue when they are entering the highway.  

We assume that creature creation probability is 1, 
i.e. at each time step a creature is generated at the 
crossing point. As creatures are generated, they are 
placed into the queue at the crossing point. When a 
creature is generated two attributes, one of Fear and 
another one of Desire, are assigned independently to 
each creature, each with probability 0.5. Thus, there 
are actually four types of creatures being generated 
each with equal probability of 0.25, a creature with 
(1) Fear & Desire; or (2) no Fear & Desire; or (3) Fear 
& no Desire; or (4) no Fear & no Desire. The 
attributes of Fear and Desire may be interpreted as a 
pair of parameters describing each agent propensity 
to risk taking (Desire) and its aversion to risk taking 

(Fear).  The values of these parameters are set in the 
configuration file. We assume that these values are 
between 0.00 and 1.00. 

All the agents have the same goal of trying to 
cross the highway successfully, i.e. without being hit 
by a vehicle. If an agent is hit, it is killed and it will 
be removed from the simulation immediately. In the 
described model with the single lane highway, each 
creature crosses the highway in two time steps. The 
creature takes one-time step to move onto the 
highway and it takes the next time step to move out 
of the highway onto the other side of the highway.  

Agents attempt to cross the highway having a 
limited information about the environment around 
them. They have a limited horizon of vision and they 
can perceive only fuzzy levels of speed (e.g., slow, 
medium, fast, very fast) and of distance (e.g., close, 
medium, far) of cars within this horizon. The 
distances and speeds that each creature is able to 
perceive are set in the configuration file. If a creature 
at some instance of time does not cross the highway, 
because it has become afraid, creatures will build up 
in the queue until the creature at the top of the queue 
decides to finally cross, or move to a different 
location to attempt to cross from. If the simulation 
setup permits, a creature may move randomly up or 
down along the car traffic stream, i.e. right or left 
along the highway, in each case with probability 1/3, 
to search for a new crossing point to cross from, or it 
may stay at the crossing point with probability 1/3. If 
a creature at the top of a queue moves up or down 
along the car traffic stream to a new location, the 
creature that was behind it moves to the top of the 
queue. 

2.2 Agents’ Knowledge Base 

We call an agent at the top of its queue an active 
creature. Each active creature must decide whether it 
is safe to cross the highway or it is not safe to do so. 
In this case the active creature must decide whether to 
wait at its crossing point for better traffic conditions 
or to move to another crossing point, if the simulation 
setup permits. Thus, each active creature must make 
one of the following two decisions: Crossing 
Decision (CD) or Waiting Decision (WD). If the 
active creature decides to cross, it may either succeed 
or it may be hit. Thus, if the active creature’s decision 
results in successful crossing, we call such decision 
Correct Crossing Decision (CCD), if the crossing 
decision results in hitting/killing the creature, we call 
such decision Incorrect Crossing Decision (ICD). 
Similarly, each waiting decision of the active creature 
can be assessed as: Correct Waiting Decision (CWD), 
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or Incorrect Waiting Decision (IWD). The active 
creature makes CWD in the case when, if it did not 
wait and chose to cross, it would had been hit. The 
active creature makes IWD in the case when, it chose 
to wait but it would had crossed the highway 
successfully. The assessment of each active creature 
decision, i.e. if the decision was CCD, ICD, CWD, or 
IWD, is recorded as a count into the Knowledge-
Based (KB) table of all the creatures waiting at the 
crossing point of the active creature.  

The columns of the Knowledge-Based table, 
organized as a matrix with extra entry, store 
information about qualitative descriptions of velocity 
(e.g., such as slow, medium, fast and very fast) and the 
rows of the KB table store information about 
qualitative descriptions of the distance (e.g., such as 
close, medium, far and out of range). The numerical 
values corresponding to the qualitative descriptions 
of distance and velocity that the creatures may 
perceive are set in the configuration file. Since the 
creatures have limited horizon of vision, the last row 
of the KB table corresponds to creatures’ out of range 
vision, i.e. the situation in which an active creature 
cannot perceive if outside its horizon of vision there 
is a vehicle and if it is, what is its velocity. Thus, in 
the last row of KB table the cells corresponding to 
potentially perceived velocities are all merge 
together. Because of this we call this row the extra 
entry of the matrix associated with the KB table.  

For each time t each entry (including the extra 
entry) of the KB table contains the number of CCDs, 
ICDs, CWDs and IWDs made by the active creatures 
up to time t-1. For example, if the active creature 
successfully crossed the highway at time t, i.e. it made 
the CCD for the perceived (distance, velocity) pair at 
time t, then the score of CCDs for this (distance, 
velocity) pair recorded up to time t-1 is increased by 
one point in the Knowledge-Based table. If the 
creature was struck/killed, then the score of ICDs for 
this (distance, velocity) pair recorded up to time t-1 is 
increased by one point in the Knowledge-Based table. 

The Knowledge-Based table is initialized as 
tabula rasa; i.e. a “blank slate”, represented by 
“(0,0,0,0)” at each table entry for the assumption that 
the creatures can cross for all possible (distance, 
velocity) combinations. At the start of each 
simulation, creatures cross the highway regardless of 
the observed (distance, velocity) combinations until 
the first successful crossing of a creature, or five 
(selected for the presented simulation results) 
consecutive unsuccessful crossings of the creatures, 
whichever comes first.  

After the initialization of the simulation, when a 
new creature arrives at the top of the queue, the 

creature consults the Knowledge-Based table to 
decide if it is safe or not to cross. Its decision is based 
on the implemented intelligence/decision-making 
algorithm, which for a given (distance, velocity) pair 
combines the success ratio of crossing the highway 
for this (distance, velocity) pair with the creature’s 
Fear and/or Desire parameters’ values.  

2.3 Agents’ Decision-Making 
Algorithm 

This section describes the creatures two types of 
decision formulas, which an active creature may use 
in its decision-making process/algorithm, when it is 
deciding whether to cross the highway or to wait. The 
first decision formula is used in the works 
(Lawniczak et al., 2012; Lawniczak at al. 2013; 
Lawniczak et al., 2014). This formula considers only 
the outcomes of creatures crossing decisions, i.e. the 
number of successful creatures and the number of 
killed creatures for each (distance, velocity) pair at 
time t. Since the number of successful creatures is 
equal to the number of correct crossing decisions, and 
the number of killed creatures is equal the number of 
incorrect crossing decisions, we call this formula 
Crossing Based Decision Formula (cDF) and provide 
its mathematical formulation in this paper. 

The works (Lawniczak et al., 2012; Lawniczak at 
al. 2013; Lawniczak et al., 2014; Lawniczak et al., 
2015; Lawniczak, Di Stefano et al. 2016; Lawniczak, 
Ly et al., 2016) show that each population of 
generated creatures at each simulation end is divided 
into three types of creatures: the successful ones, the 
killed ones, and the creatures still queuing to cross the 
highway, with over all very small numbers of killed 
creatures. Thus, at each simulation end there are 
mostly successful and queued creatures, and for some 
values of the model parameters the queued creatures 
outnumber significantly the successful ones. The 
works (Lawniczak et al., 2012; Lawniczak at al. 2013; 
Lawniczak et al., 2014; Lawniczak et al., 2015; 
Lawniczak, Di Stefano et al. 2016; Lawniczak, Ly et 
al., 2016) focus on demonstrating that the creatures’ 
performance could be improved (i.e., the numbers of 
successful creatures could be increased) by passing, 
at the end of a simulation run, the knowledge base 
built by a  generation of creatures to the next one 
within the same highway traffic environment, and/or 
by passing the knowledge base built in one traffic 
environment to the creatures in another traffic 
environment, i.e. the creatures would not start tabula 
rasa their process of learning to cross the highway but 
they would start with some pre-existing knowledge 
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built during previous simulations, except for the first 
generation of creatures.  

In this paper, we investigate if the improvement in 
creatures’ performance could be also achieved by 
incorporating the assessment of creatures’ waiting 
decisions into their decision-making formula, which 
they use to decide whether to cross the highway or to 
wait. In what follow we introduce a new decision-
making formula, called Crossing-and-Waiting Based 
Decision Formula (cwDF), provide its mathematical 
description and compare creatures’ performance 
when they use cwDF with their performance when 
they use cDF instead. 

2.3.1 Crossing based Decision Formula 
(cDF) 

After the initialization phase, at each time step ݐ, each 
active creature (i.e., the one at the top of its queue), 
when deciding whether to cross or to wait carries 
several tasks, namely: (1) it determines if there is a 
car in its horizon of vision. If it is, then it determines 
the (݅௧ distance, ݆௧  velocity) pair of qualitative 
values of the current closest car; (2) it consults the KB 
table associated with its crossing point to get 
information about the number of CCD(t-1) and the 
number of ICD(t-1) for the observed (݅௧ distance, ݆ ௧  
velocity) pair of qualitative values, or for the 
observed out of range situation, which is denoted by 
(0,0) pair of indexes; (3) for the observed values it 
calculates the value of the cDF, i.e. the value  
  ,ሻ, corresponding to the observed (݅௧ distanceݐሺܨܦܿ
݆௧ velocity) pair of qualitative values, or for the 
observed out of range situation (0,0). The expression 
 ሻ is defined below and from now on we assumeݐሺܨܦ
that a pair of ሺ݅, ݆ሻ indexes may take also the value 
(0,0) reserved for the extra entry in the KB table. 

The active creature decides to cross or to wait 
based on the outcome of its calculation of cDF 
respective value. If ܿܨܦሺݐሻ  0, then the active 
creature will cross. If ܿܨܦሺݐሻ ൏ 0, then the active 
creature will wait and additionally it may move to 
another crossing point, if simulation setup permits.  

If the active creature observed ሺ݅, ݆ሻ situation, 
which could be the   ݅௧ distance type and the ݆௧ 
velocity type, or out of range situation (0,0), then the 
,for the ሺ݅	ሻݐሺܨܦܿ ݆ሻ entry of KB table is calculated 
as follows: 

ሻݐሺܨܦܿ ൌ ܴܿܵሺݐሻ  ሻ݁ݎ݅ݏ݁ܦሺݒ െ ,ሻݎܽ݁ܨሺݒ (1) 

where ݒሺ݁ݎ݅ݏ݁ܦሻ and ݒሺݎܽ݁ܨሻ are the values of the 
active creature Fear and Desire attributes/parameters, 
and ܴܿܵሺݐሻ is the Crossing Based Success Ratio 

(cSR) corresponding to the ݆݅௧ entry of the KB table, 
including the out of range entry (0,0).  The ܴܿܵሺݐሻ 
is defined as follows:  
 

ܴܿܵሺݐሻ ൌ
	ሼܦܥܥሺݐ െ 1ሻ െ ݐሺܦܥܫ െ 1ሻሽ ݐ௧௧ሺܦܥܥ െ 1ሻ.⁄        (2) 

 

The terms ܦܥܥሺݐ െ 1ሻ and ܦܥܫሺݐ െ 1ሻ are, 
respectively, the numbers of CCDs and ICDs 
recorded in the ݆݅௧ entry of the KB table at time ݐ. 
The term ܦܥܥ௧௧ሺݐ െ 1ሻ is the sum of CCDs over 
all the entries of the KB table, i.e. it is the total 
number of all CCDs made by active creatures up to 
time ݐ െ 1, which corresponds to the total number of 
successful creatures up to time ݐ െ 1. Recall, that the 
KB table at each time ݐ stores information about 
assessment of various decisions made by creatures up 
to time step ݐ െ 1. Since the decision formula (2) 
considers only the assessment of Crossing Decisions, 
i.e. it considers only the CCDs and ICDs, we call this 
decision formula Crossing Based Decision Formula 
(cDF) to distinguish it from the decision formula 
cwDF introduced in this paper that is based 
additionally on the assessment of the active creatures 
waiting decisions. Recall that each CCD corresponds 
to creature being successful and each ICD 
corresponds to creature being killed. Through this 
identification we recognize that the cDF formula 
defined in (1) has been used in the works (Lawniczak 
et al., 2012; Lawniczak at al. 2013; Lawniczak et al., 
2014; Lawniczak et al., 2015; Lawniczak, Di Stefano 
et al. 2016; Lawniczak, Ly et al., 2016).  

Recall that each creature can be classified per its 
 attributes/parameters. Depending ݎܽ݁ܨ and ݁ݎ݅ݏ݁ܦ
on these attributes we can express cDF explicitly for 
each creature type as Table 1 shows. Thus, an active 
creature, depending what is its type, decides to cross 
only when the outcome of the corresponding  ܿܨܦ 
is greater or equal to 0. Otherwise, the active creature 
will wait, and additionally it may move to another 
crossing point, if the simulation setup allows this.  

Table 1: Expression of cDF depending on an active creature 
attributes of Fear and Desire and their values. 

Type of Creature Decision Formula 
 (ࡲࡰࢉ)

no Desire & no Fear ܴܿܵ 
no Desire & Fear ܴܿܵ െ ሻݎܽ݁ܨሺݒ
Desire & no Fear ܴܿܵ  ሻ݁ݎ݅ݏ݁ܦሺݒ

Desire & Fear ܴܿܵ  ሻ݁ݎ݅ݏ݁ܦሺݒ
െ  ሻݎܽ݁ܨሺݒ
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2.3.2 Crossing-and-Waiting based Decision 
Formula (cwDF) 

The Crossing-and-Waiting Based Decision Formula 
(cwDF) introduced here incorporates not only the 
assessment of the crossing decisions of the active 
creatures, but also the assessment of their waiting 
decisions. The formula cwDF is obtained from cDF 
formula by replacing the term ܴܿܵሺݐሻ	by the term 
 in the cDF formula, i.e. by replacing the	ሻݐሺܴܵݓܿ
term (2) by the term ܴܿܵݓሺݐሻ in the formula (1). 
The term  ܴܿܵݓሺݐሻ,	 called Crossing-and-Waiting 
Based Success Ratio (cwSR), is defined for each ݆݅ 
entry of the KB table at time t as follows: 

ሻݐሺܴܵݓܿ ൌ ሼܦܥܥሺݐ െ 1ሻ െ ݐሺܦܥܫ െ 1ሻ െ
ݐሺܦܹܥ െ 1ሻ 	ܦܹܫሺݐ െ 1ሻሽ/ܵሺݐ െ 1ሻ,										   

(3)

where ܦܥܥሺݐ െ 1ሻ is the number of CCDs, 
ݐሺܦܥܫ െ 1ሻ is the number of ICDs, ܦܹܥሺݐ െ 1ሻ 
is the number of CWDs and ܦܹܫሺݐ െ 1ሻ is the 
number of IWDs in the KB table entry ݆݅, where each 
of these numbers is being recorded up to time ݐ െ 1.  
The term ܵሺݐ െ 1ሻ is the sum of the numbers of CDs 
and WDs, regardless of their assessments, recorded in 
all the entries of the KB table up to time ݐ െ 1,	i.e.  

ܵሺݐ െ 1ሻ ൌ ∑ሼܦܥܥሺݐ െ 1ሻ  ݐሺܦܥܫ െ 1ሻ 
																							ܦܹܥሺݐ െ 1ሻ  ݐሺܦܹܫ െ 1ሻሽ. 

(4)

Thus, the new formula cwDF can be written as 
follows 

ሻݐሺܨܦݓܿ ൌ ሻݐሺܴܵݓܿ  ሻ݁ݎ݅ݏ݁ܦሺݒ 
																								െݒሺݎܽ݁ܨሻ, 																												 . (5)

where the term ܴܿܵݓሺݐሻ is defined in (3), and as 
before ݒሺ݁ݎ݅ݏ݁ܦሻ and ݒሺݎܽ݁ܨሻ are the values of an 
active creature Desire and Fear attributes/parameters.  

An active creature decides to cross the highway 
only when the outcome of ܿܨܦݓ is greater or equal 
to 0. Otherwise, the active creature will wait and 
additionally it may move to another crossing point, if 
the simulation setup allows this. Recall that the 
Desire and Fear attributes are distributed uniformly 
and independently with probability 0.5 each among 
all the generated creatures. Thus, each active creature 
makes its decision to cross the highway or to wait 
based on both, the Crossing-and-Waiting Based 
Success Ratio formula ܴܿܵݓሺݐሻ and its own values 
of Desire and Fear attribute/parameters as shown in 
Table 2.  

Table 2: Expression of cwDF depending on an active 
creature attributes of Fear and Desire and their values. 

Type of Creature Decision Formula 
 (ࡲࡰ࢝ࢉ)

No Desire & No Fear  ܴܵݓܿ
No Desire & Fear ܴܵݓܿ െ ሻݎܽ݁ܨሺݒ
Desire & No Fear ܴܵݓܿ  ሻ݁ݎ݅ݏ݁ܦሺݒ

Desire & Fear ܴܿܵݓ  ሻ݁ݎ݅ݏ݁ܦሺݒ
െ  ሻݎܽ݁ܨሺݒ

 

At each time ݐ, an active creature decision-making 
process incorporates the assessments of all previous 
active creatures’ decisions, through the cwSR part in 
cwDF formula (5), in such a way, that it encourages 
the active creature to cross the highway, if it is safe to 
do so, and it encourages it to wait, if it is not safe to 
cross. Additionally, to this self-feedback mechanism, 
i.e. incorporating the results of the assessment of 
crossing decisions and which was also considered in 
cDF formula (1), the cwDF formula (5) incorporates 
the self-feedback mechanism of the assessment of the 
waiting decisions of active creatures, i.e. it 
encourages each active creature to wait if it is not safe 
to cross and it discourages the creature to wait if it is 
safe to cross.  

Our simulations show that the incorporation of 
these two self-feedback mechanisms into creatures’ 
decision-making process contributes to the creatures’ 
better performance, i.e. more creatures cross the 
highway successfully, the numbers of kills creatures 
stay almost the same and the numbers of queued 
creatures are smaller at the simulation ends. Thus, 
when the creatures use cwDF instead of cDF in their 
decision-making process some queued creatures are 
converted into the successful ones during simulation 
runs with almost no change in the numbers of killed 
creatures.   

2.4 Model Simulation Loop 

After the program reads in the configuration and 
knowledge base files described above, it executes the 
main simulation loop of the model once for every 
time step in the simulation. The main simulation loop 
of the model consists of: (1) generating cars at the 
beginning of the highway using the car creation 
probability CCP; (2) generating creatures at each 
crossing point CP with their attributes of Fear and 
Desire; (3) updating the car speeds according the 
Nagel-Schreckenberg model; (4) moving the 
creatures from their CP queues into the highway (if 
the decision algorithm indicates this should occur); 
(5) updating locations of the cars on the highway and 
checking if any creature has been killed; (6) 
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advancing the current time step. After the simulation 
has been completed, the results are written to output 
files using output functions. 

3 MODEL PARAMETERS SETUP 
AND SIMULATION DATA 

This research focuses on the comparison of the 
performance of creatures using cDF with their 
performance when they use cwDF instead in their 
decision-making process. Thus, two types of data sets 
were generated, one when cDF was used and another 
one when cwDF was used instead. This was the only 
difference between these two generated data sets, and 
both data sets were generated using the same software 
implementation, the same values of the parameters 
and the same number of repeats.  

We consider the model parameters as factors with 
various levels in the sense of the experimental design 
paradigm (Dean and Voss, 1999). The 
parameters/factors that remain constant through our 
simulations are: (1) the single lane highway of a 
length of 120 cells (i.e., a stretch of a highway of the 
length of 900 meters); (2) the single Crossing Point 
(CP) set at the initialization step at cell 60; (3) each 
simulation run of duration of 1511 time steps; (4) 30 
repetitions for each simulation set up; (5) at each CP 
representation of the KB table by 3 by 4 matrix with 
the extra entry. Each KB table has 3 groupings of 
distance and 4 groupings of speed. A car is perceived 
as: close, if it is 0 to 5 cells away, medium far if it is 
6 to 10 cells away, far if it is 11 to 15 cells away and 
out of range if it is 16 or more cells away, regardless 
of the velocity of a car, and this is encoded in the extra 
entry of the KB table. A car is perceived as: slow if 
its perceived velocity is 0 to 3 cells per time step; 
medium speed if its perceived velocity is 4 or 5 cells 
per time step, fast if its perceived velocity is 6 or 7 
cells per time step and very fast if its perceived 
velocity is 8 to 11 cells per time step.  A car’s max 
speed can be 11 cells per time step. 

There are 6 parameters/factors values which vary 
through the main simulation loop. These parameters 
are: (1) car creation probability, i.e. CCP; (2) Fear 
parameter; (3) Desire parameter; (4) the KB transfer 
direction parameter KBT; (5) random deceleration 
RD and (5) horizontal movement HM of an active 
creature.  

The car creation probability, i.e. CCP, determines 
the density of the cars traffic and it varies between the 
values: 0.1, 0.3, 0.5, 0.7, and 0.9.  

The values of Fear and Desire parameters both 
vary between the values: 0.00, 0.25, 0.5, 0.75, and 

1.00. Being a part of the decision-making formula, 
these values influence the creatures’ decision-making 
process of whether to cross or not the highway. The 
creature’s Fear may be interpreted as its aversion to 
risk taking and the creature’s Desire may be 
interpreted as its propensity to risk taking.  

The KB transfer direction parameter KBT can be 
set as: “none” (KBT=0), or “forward” (KBT=1). The 
parameter KBT determines if the KB table of the 
initial CP can be transferred or not at the end of a 
simulation run with lower CCP value to the beginning 
of the simulation run with immediately higher value 
of CCP. When KBT=0, the KB tables are never 
transferred from a traffic environment with a lower 
CCP value to the one with immediately higher CCP 
value, or any other value. When KBT=1, the KB table 
is always transferred at the end of a simulation run 
from a traffic environment with lower CCP value to 
the beginning of the simulation run in the traffic 
environment with immediately higher CCP value. In 
this case, each simulation in the traffic environment 
with CCP= 0.1 starts with the KB table tabula rasa, 
i.e. with the KB table containing all the entries of 
(0,0,0,0). The KB table built in this simulation is 
transferred next to the simulation in the traffic 
environment with CCP=0.3 at its beginning. This 
process continues until the simulation in the traffic 
environment with CCP=0.9 starts. Thus, the 
simulations with CCP=0.9 start with the KB table 
accumulated over the other four less dense traffic 
environments. This process of transferring KB tables 
is carried out for each simulation repeat.  

To simulate erratic drivers, the model allows a 
random deceleration of cars; i.e. if RD=1 it allows 
decreasing by one the speed of each car, randomly 
with probability 0.5; if RD=0 this is not allowed.  

The horizontal movement (HM) of an active 
creature takes value 0 or 1. This parameter is used to 
determine whether the active creatures can move 
along the highway away from their original crossing 
point in either direction when they decide not to cross 
the highway, i.e. if they decide to wait. The creatures 
are only allowed to move along the highway when 
HM equals 1. For this paper, we set the number of 
horizontal cells a creature may move in one-time step 
to 1 and the maximum distance a creature may deviate 
from its original crossing point in both directions to 
5. When HM equals to 0 the active creatures are not 
allowed to move, i.e. to change their original crossing 
point.  

Notice, that the parameter HM determines the 
upper bound on a potential number of successful 
creatures. According to the model design, it takes 2 
time steps for an active creature to cross the highway 
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successfully: in the first time step the creature moves 
onto the highway from its queue, in the second time 
step it moves away from the highway when it is not 
hit by a vehicle, or it is being hit/killed. When HM 
equals 0, the creatures are not allowed to leave the 
original crossing point. Thus, at most only one 
creature can cross the highway per each two time 
steps. Since a creature is generated at each time step 
this implies that the maximum number of possible 
successful creatures at each simulation end can be 
only half of all the generated creatures, i.e. 
1511/2≈755. In other words, when the movement of 
the creatures is not allowed, i.e. when HM=0, at each 
simulation end at most 50% of all generated creatures 
can cross the highway successfully and 50% of all 
generated creatures are always in the queue waiting 
to cross. While setting HM=1 allows creatures 
simultaneously to cross the highway at potentially 11 
crossing points, as they are allowed to move 5 cells 
away from the CP=60 in each direction. Thus, setting 
HM=1 removes the 50% bound on the maximum 
number of all possible successful creatures. This 
observation of the role of the parameter HM is 
important one for the discussion of the simulation 
results. 

The full simulation means the simulation carried 
out for all the described values of all the discussed 
parameters.  

4 DECISION FORMULAS 
PERFORMANCE ANALYSIS  

In this section, we compare the creatures’ 
performance in learning to cross the highway for cDF 
in their decision-making process with those when 
they use cwDF instead. Because of the upper bound, 
imposed by the model design on the maximal number 
of potentially successful creatures, which is at most 
50% of all generated creatures when HM=0 and the 
fact that such bound does not exist when HM=1 we 
split the full simulation data into two subsets, one for 
HM=0 and another one for HM=1.  For each of these 
subsets we analyse the average number of each 
creature type, i.e., successful, killed, and queued type, 
at simulation end, and examine how the selection of 
the decision formula affects these averaged numbers.   

4.1 Performance of Creatures using 
cDF 

Average of numbers, respectively, of successful, 
killed and queued creatures at simulation ends, 

expressed as percentage, and calculated from the 
simulation data set with HM=0 is displayed in Figure 
1, and calculated from the simulation data set with 
HM=1 is displayed in Figure 2. In these simulations 
creatures used cDF in their decision-making process. 

When HM=0, Figure 1 shows that on average only 
14.80% of all generated creatures cross the highway 
successfully, which is quite low even when one takes 
under consideration the imposed upper bound of 
50%. Furthermore, the sum of the average of numbers 
of successful creatures and the average of numbers of 
killed creatures is only 15.17%. This implies that 
overall only few creatures tried to cross the highway 
during the simulations. However, when HM=1, 
Figure 2 shows that on average 62.36% of all the 
creatures crossed the highway successfully. Thus, the 
parameter HM has a significant influence on the 
performance of the model.  

 

Figure 1: Average of numbers, respectively, of successful, 
killed and queued creatures at simulation ends, expressed in 
percentage, and calculated from the subset of simulation 
data with HM=0, when creatures used cDF.  

 

Figure 2: Average of numbers, respectively, of successful, 
killed and queued creatures at simulation ends, expressed in 
percentage, and calculated from the subset of simulation 
data with HM=1, when creatures used cDF. 

When HM=1 more creatures simultaneously try to 
cross a highway, hence more of them may succeed. 
Though the result of 62.36% is much better than 
14.80%, still there are on average 36.83% of queued 
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creatures at simulation end when HM=1. Even though 
there is an improvement in the model performance 
when HM=1, the above results show that the 
creatures’ performance is not the best one, regardless 
whether HM=0 or HM=1. 

To better understand the model performance with 
cDF we split each of these two simulation data sets 
further into subsets depending on the values of the 
parameters KBT (Knowledge Base Transfer), RD 
(Random Deceleration, i.e. presence or absence of 
erratic drivers). For each of these new subsets 
characterized by the values of the parameters KBT, 
RD, HM, we calculate the average of numbers of each 
type of creatures (i.e., successful, killed and queued, 
respectively) at simulation ends. 

Table 3 displays the average of numbers of each 
creature type at simulation ends, expressed as 
percentage, for each subset of the simulation data 
depending on the values of the model parameters 
KBT, RD and HM. The values of these parameters 
are listed in the rows in the first three columns of the 
table. For each selection of the values of the 
parameters KBT, RD and HM the average of numbers 
of successful, killed and queued creatures at 
simulation ends, expressed as percentage, is listed in 
the corresponding row in the last three columns of the 
table, respectively. Observe that for each creature 
type each entry of the last row of Table 3 is the 
average of the numbers listed above in the 
corresponding column. Thus, these averages give on 
average the percentage of the successful, killed and 
queued creatures at simulation ends in the full 
simulation data set. 

Table 3: Average of numbers, respectively, of successful, 
killed, queued creatures at simulation ends, expressed in 
percentage, and calculated from the simulation data sets 
characterized by different values of the parameters KBT, 
RD and HM, when the cDF was used in these simulations. 
The value “0” means “without” and the value “1” means 
“with” KB transfer (KBT), random deceleration (RD), and 
creatures movement (HM), respectively. 

KBT RD HM Succe-
ssful 

Killed Queued

0 0 0 13.22% 0.37% 86.41%
0 0 1 51.18% 0.82% 48.00%
0 1 0 13.81% 0.50% 85.69%
0 1 1 50.39% 1.03% 48.58%
1 0 0 16.80% 0.20% 83.00%
1 0 1 73.98% 0.48% 25.54%
1 1 0 15.36% 0.42% 84.22%
1 1 1 73.94% 0.90% 25.16%

Average 38.59% 0.59% 60.82%

Looking at Table 3 we can draw the following 
conclusions. The transfer of KB, i.e. when KBT=1 
instead of KBT=0, always increases the percentage of 
successful creatures and decreases the percentage of 
queued and killed creatures. The magnitudes of these 
changes vary and they depend on the values of RD 
and HM parameters. In general, the effect of transfer 
of KB on the decrease in the percentage of killed 
creatures is very small. However, the transfer of KB 
has much bigger effect on the increase of the 
percentage of successful creatures and the decrease of 
the percentage of queued creatures. In some cases, 
this effect is quite noticeable.  For example, when 
RD=1 and HM=1 the percentage of successful 
creatures increases from 50.39% to 73.94% and the 
percentage of queued creatures decreases from 
48.58% to 25.16% when KBT takes place.  

Overall the effects of erratic drivers on the 
changes in the percentage values of creatures’ types 
are rather small in comparison with the effects of the 
other parameters. The presence of erratic drivers, i.e. 
when RD=1, always decreases the percentage of 
successful creatures, and increases the percentage of 
killed creatures. It also increases the percentage of 
queued creatures, except for the case when KBT=1 
and HM=1.  

Table 3 confirms that the HM parameter has the 
most influence on the changes in the percentage 
values of successful and queued creatures. Allowing 
creatures to move to different crossing points, i.e. 
when HM=1, significantly increases the percentage 
of successful creatures and decreases the percentage 
of queued creatures, because many more creatures 
may attempt to cross the highway at each time step. 
Also, Table 3 shows that the parameter HM has small 
effect on the changes in the percentage values of 
killed creatures, which is not surprising, as the 
numbers of killed creatures have been always very 
small in comparison with the numbers of the two 
other types of creatures.  

From Table 3 we notice that the percentage of 
queued creatures is always high, regardless of the 
values of the parameters. It reaches its maximum of 
86.41% when KBT=0, RD=0 and HM=0, and it 
reaches its minimum of 25.16% when KBT=1, RD=1 
and HM=1. However, even in this case still almost a 
quarter of the creatures is queuing. Thus, the queuing 
creatures are always a significant part of all the 
creatures at each simulation end and if one wants to 
improve the model performance one needs to 
decrease their number. Table 3 shows that the transfer 
of KB always decreases on average percentage of 
queuing creatures at simulation ends. However, given 
the fact that these numbers are still relatively high one 
needs to look for some other mechanisms than KB 
transfer to improve creatures’ performance.  
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4.2 Performance of Creatures using 
cwDF and Its Comparison with 
Performance When They Use cDF 

In this section, we discuss the performance of 
creatures when they use cwDF instead of cDF in their 
decision-making process. The average of numbers, 
respectively, of successful, killed and queued 
creatures at simulation ends, expressed in percentage, 
and calculated from the simulation data set with 
HM=0 are displayed in Figure 3, and calculated from 
the simulation data set with HM=1 are displayed in 
Figure 4.  

 

Figure 3: Average of numbers, respectively, of successful, 
killed and queued creatures at simulation ends, expressed in 
percentage, and calculated from the subset of simulation 
data with HM=0, when creatures used cwDF. 

 

Figure 4: Average of numbers, respectively, of successful, 
killed and queued creatures at simulation ends, expressed in 
percentage, and calculated from the subset of simulation 
data with HM=1, when creatures used cwDF. 

Comparing Figure 3 with Figure 1 and Figure 4 
with Figure 2 we notice that cwDF has significant 
effect on the values of percentages of each creature 
type at simulation ends. We notice that the use of 
cwDF instead of cDF: (1) considerably decreases the 
percentages of queued creatures; (2) significantly 
increases the percentages of successful creatures; (3) 
and causes only a very small change in the 
percentages of killed creatures. More precisely, we 
notice that when HM=0 (i.e. from comparing Figure 

3 with Figure 1), the percentage of queued creatures 
decreases by 23.59%, the percentage of successful 
creatures increases by 23.68%, and the percentage of 
killed creatures decreases by 0.09%. When HM=1, 
from comparing Figure 4 with Figure 2, we notice 
that the percentage of queued creatures decreases by 
11.05% and the percentage of successful creatures 
increases by 10.97%. The observed changes in the 
percentages of queued creatures and successful ones 
confirm our intuition that by incorporating the 
assessment of WDs into DF a significant number of 
queued creatures would be converted on average into 
the successful ones. This is because the built in 
additional feed-back mechanism into cwDF, about 
the “correctness” of creatures’ waiting decisions, 
increases their chances of making more often correct 
crossing decisions in every time step, i.e. of choosing 
more often to cross the highway instead of to wait 
when the traffic conditions allow to do so.  

Table 4: Average of numbers, respectively, of successful, 
killed, queued creatures at simulation ends, expressed in 
percentage, and calculated from the simulation data sets 
characterized by different values of the parameters KBT, 
RD and HM, when cwDF was used in these simulations. 
The value “0” means “without” and the value “1” means 
“with” KB transfer (KBT), random deceleration (RD), and 
creatures movement (HM), respectively. 

KBT RD HM Succe-
ssful 

Killed Queued

0 0 0 32.95% 0.26% 66.79%
0 0 1 68.88% 1.03% 30.09%
0 1 0 32.32% 0.39% 67.29%
0 1 1 68.29% 1.17% 30.54%
1 0 0 44.27% 0.12% 55.61%
1 0 1 77.98% 0.56% 21.46%
1 1 0 44.39% 0.34% 55.27%
1 1 1 77.80% 1.17% 21.03%

Average 55.61% 0.63% 43.76%
 

The average of numbers of each creature type at 
simulations ends, expressed in percentage, and 
calculated from the subsets of the date obtained by 
partitioning the full simulation data set in to the 
subsets depending on the values of the parameters 
KBT, RD and HM is presented in Table 4. The 
organization of the results displayed in Table 4 is the 
same one as of Table 3.  

By comparing Table 4 with Table 3 one observes 
the increases in the percentage of successful creatures 
as the result of the decrease in the percentage of 
queued creatures and a very small change in the 
percentage of killed creatures for all the considered 
combinations of the parameters’ values. These 
changes can be seen better from Table 5, which 

Comparison of AgentsâĂŹ Performance in Learning to Cross a Highway for Two Decisions Formulas

217



displays the values of differences between the values 
of respective entries of Table 4 and Table 3.  

Table 5: Difference in averages of numbers, respectively, 
of successful, killed, queued creatures at simulation ends, 
expressed in percentages, and calculated by taking the 
difference between the values of respective entries of Table 
4 and Table 3. The value “0” means “without” and the value 
“1” means “with” KB transfer (KBT), random deceleration 
(RD), and creatures movement (HM), respectively. 

KBT RD HM Succe-
ssful 

Killed Queued 

0 0 0 +19.73% -0.10% -19.62% 

0 0 1 +17.70% +0.21% -17.91% 
0 1 0 +18.51% -0.11% -18.40% 
0 1 1 +17.89% +0.15% -18.04% 
1 0 0 +27.47% -0.08% -27.39% 
1 0 1 +4.00% +0.09% -4.08% 
1 1 0 +29.03% -0.08% -28.94% 
1 1 1 +3.86% +0.27% -4.13% 

Average +17.27% +0.05% -17.32% 
 

From Table 5 one can see easily that the use of 
cwDF in creatures’ decision-making process reduces 
the percentages of queued creatures and allocates 
these gains mostly into the percentages of the 
successful ones, i.e. the use of cwDF converts on 
average some previously waiting creatures into the 
successful ones. 

Additionally, Table 5 shows how cwDF improves 
the creature’s performance for all the considered 
combinations of the parameters’ values. For instance, 
the best improvement in the creatures’ performance is 
achieved in simulations with KBT=1, RD=1 and 
HM=0. However, when KBT=1, RD=1 and HM=1, 
the use of cwDF does not enhance the creatures’ 
performance too much, most likely, because the 
results were already quite good when the creatures 
used cDF in their decision-making process.  

As about killed creatures, when cwDF is used 
instead of cDF, Table 5 shows that their percentages 
always increase when HM=0 (i.e., the differences are 
positive) and they always decrease when HM=1 (i.e., 
the differences are negative), regardless of the values 
of the other two parameters, KBT and RD. This is 
because when HM=0 the creatures have only two 
options to choose from: to cross or to wait. Thus, 
when the numbers of waiting creatures decrease the 
numbers of crossing creatures increase automatically. 
This increases their chances of making incorrect 
crossing decisions, and results in more creatures 
being killed. This is not the case when HM=1, 
because when HM=1, the creatures have 3 options to 
choose from: to cross, to wait or to change the 
crossing point. Thus, when the creatures decide not to 

wait they are not forced automatically to cross and 
they may move to another crossing point. This 
increase their chances of avoiding making incorrect 
crossing decisions that would cause an increase in the 
numbers of creatures being killed.  

5 CONCLUSIONS 

We have investigated performance of simple 
cognitive agents learning to cross a CA based 
highway for two decision formulas used by the 
agents’ in their decision-making process. We 
measured the agents’ performance by the numbers of 
agents who crossed successfully, who were killed and 
those who were still queuing to cross at simulation 
ends. We described the main features of the 
simulation model and the agents observational social 
learning strategy. In the decision-making process, 
depending on the simulation setup, the agents used 
one of the two decisions formulas: cDF, which was 
based only on the assessment of the outcomes of the 
agents crossing decisions, or cwDF, which was based 
on the assessment of the outcomes of the agents 
crossing and waiting decisions.  

Our simulations showed that the performance of 
agents using cwDF in their decision-making process 
was much better than the performance of the agents 
using cDF instead. This is because in cwDF is built in 
the additional feed-back information about the 
“correctness” of the agents waiting decisions. This 
feed-back mechanism of cwDF increases agents’ 
chances of making more often correct decisions in 
every time step. Since in cDF this feed-back 
mechanism is missing the agents may choose to wait 
even when the traffic conditions allow them to safely 
cross the highway.  

Furthermore, our simulations showed, that 
transfer of accumulated knowledge base from traffic 
environment with lower car creation probability to the 
one with immediately higher car creation probability 
improves agents’ performance, regardless what 
decision formula they used. Thus, accumulation of 
knowledge base helps the agents to be more 
successful. Additionally, our simulations showed: (1) 
that noise in the traffic environment, i.e. the presence 
of erratic drivers, decreases, but not so much, the 
agents’ performance; (2) allowing agents to move to 
other crossing points improves noticeably their 
performance. Again, in both cases the agents’ 
performance was improved when transfer of 
accumulated knowledge base was allowed.  

Since autonomous robots may be identified with 
cognitive agents, thus their process of learning in 
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dynamically changing environments can be studied 
through modelling and simulation of cognitive agents 
in such environments. The presented work 
contributes to this area of research and investigates 
how various model parameters affects the agents’ 
performance.  
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