EEG and Eye Movement Maps of Chess Players

Laercio R. Silva Junior, Fabio H. G. Cesar, Fabio T. Rocha, Carlos E. Thomaz

Abstract

Due to a number of advantages to work in the chess environment and its cognitive complexity nature, this game has been used a lot in scientific experiments in order to study the human cognitive process. This article describes the steps to acquisition and processing of electroencephalography signals (EEG) and eye tracking of volunteers with different levels of proficiency in chess and, after the application of mathematical and statistical methods, maps are generated to discuss and verify patterns among the chess players. Results show neural activations in different brain areas as well as distinct eye movements for the investigated chess questions and volunteers who participated in this study.

References

  1. Amidzic, O., Riehle, H. J., Fehr, T., Wienbruch, C., and Elbert, T. (2001). Pattern of focal ?-bursts in chess players. Nature, 412(6847):603-603.
  2. Bilalic, M., Kiesel, A., Pohl, C., Erb, M., and Grodd, W. (2011a). It takes two-skilled recognition of objects engages lateral areas in both hemispheres. PLoS One, 6(1):e16202.
  3. Bilalic, M., Langner, R., Ulrich, R., and Grodd, W. (2011b). Many faces of expertise: fusiform face area in chess experts and novices. The Journal of Neuroscience, 31(28):10206-10214.
  4. Blignaut, P. J., Beelders, T. R., and So, C. (2008). The visual span of chess players. In Proceedings of the 2008 symposium on Eye tracking research & applications, pages 165-171. ACM.
  5. Bussab, W. d. O. and Morettin, P. A. (2010). Estatística básica. Saraiva.
  6. Calderwood, R., Klein, G. A., and Crandall, B. W. (1988). Time pressure, skill, and move quality in chess. The American journal of psychology, pages 481-493.
  7. Cesar, F. H. G., Rocha, F. T., and Thomaz, C. E. (2015). Chesslab: Um arcabouc¸o computacional para aquisic¸a˜o e processamento de sinais de rastreamento ocular em jogadas de xadrez. In 2015 28th SIBGRAPI Conference on Graphics, Patterns and Images, page 4pp.
  8. Davis, M. D., Morgenstern, O., Hegenberg, L., and da Mota, O. S. (1973). Teoria dos jogos: uma introduc¸a˜o na˜o-técnica.
  9. Duan, X., Long, Z., Chen, H., Liang, D., Qiu, L., Huang, X., Liu, T. C.-Y., and Gong, Q. (2014). Functional organization of intrinsic connectivity networks in chinese-chess experts. Brain research, 1558:33-43.
  10. Duchowski, A. T. (2002). A breadth-first survey of eyetracking applications. Behavior Research Methods, Instruments, & Computers, 34(4):455-470.
  11. Gazzaniga, M., Ivry, R., and Mangun, G. (2009). Cognitive Neuroscience: The Biology of the Mind. Norton.
  12. Gobet, F. (1998). Expert memory: A comparison of four theories. Cognition, 66(2):115-152.
  13. Hänggi, J., Brütsch, K., Siegel, A. M., and Jäncke, L. (2014). The architecture of the chess player s brain. Neuropsychologia, 62:152-162.
  14. Hyötyniemi, H. and Saariluoma, P. (1999). Chess-beyond the rules. Finnish Artificial Intelligence Society.
  15. Jasper, H. H. (1958). The ten twenty electrode system of the international federation. Electroencephalography and clinical neurophysiology, 10:371-375.
  16. Johnson, R. and Wichern, D. (2007). Applied Multivariate Statistical Analysis. Applied Multivariate Statistical Analysis. Pearson Prentice Hall.
  17. Kasparov, G. (2003). My Great Predecessors, Parts 1-5, volume 1857444043.
  18. Kazemi, F., Yektayar, M., and Abad, A. M. B. (2012). Investigation the impact of chess play on developing meta-cognitive ability and math problem-solving power of students at different levels of education. Procedia-Social and Behavioral Sciences, 32:372- 379.
  19. Martin, J. (2014). Neuroanatomia - 4ed: Texto e Atlas. AMGH Editora.
  20. Nichelli, P., Grafman, J., Pietrini, P., Alway, D., Carton, J. C., and Miletich, R. (1994). Brain activity in chess playing. Nature.
  21. Reingold, E. M., Charness, N., Pomplun, M., and Stampe, D. M. (2001). Visual span in expert chess players: Evidence from eye movements. Psychological Science, 12(1):48-55.
  22. Reingold, E. M. and Sheridan, H. (2011). Eye movements and visual expertise in chess and medicine. Oxford handbook on eye movements, pages 528-550.
  23. Rocha, F. T., de Magalhaes Junior, R. G., Horta, T. O., Cesar, F. H. G., D'Israel, D. M., da Silva, W., and Thomaz, C. E. (2016). Eeg acquisition and processing for cognitive brain mapping during chess problem solving. IEEE Latin America Transactions, 14(3):1129-1134.
  24. Rocha, F. T., Rocha, A. F., Massad, E., and Menezes, R. (2005). Brain mappings of the arithmetic processing in children and adults. Cognitive Brain Research, 22(3):359-372.
  25. Rocha, F. T., Thomaz, C. E., da Rocha, A. F., and Massad, E. (2014). Brain mapping and interpretation of reading processing in children using eeg and multivariate statistical analysis. In 2014 27th SIBGRAPI Conference on Graphics, Patterns and Images, pages 251-258. IEEE.
  26. Ross, P. E. (2006). The expert mind. Scientific American, 295(2):64-71.
  27. Saariluoma, P. (1995). Chess players' thinking: A cognitive psychological approach. Psychology Press.
  28. Salvucci, D. D. and Goldberg, J. H. (2000). Identifying fixations and saccades in eye-tracking protocols. In Proceedings of the 2000 symposium on Eye tracking research & applications, pages 71-78. ACM.
  29. Shannon, C. E. (1949). Communication theory of secrecy systems. Bell system technical journal, 28(4):656- 715.
  30. Sheridan, H. and Reingold, E. M. (2015). Expert vs. novice differences in the detection of relevant information during a chess game: evidence from eye movements. Psychological perspectives on expertise, page 11.
  31. Teplan, M. (2002). Fundamentals of eeg measurement. Measurement science review, 2(2):1-11.
  32. Vanlierde, A., De Volder, A. G., Wanet-Defalque, M.-C., and Veraart, C. (2003). Occipito-parietal cortex activation during visuo-spatial imagery in early blind humans. Neuroimage, 19(3):698-709.
  33. Volke, H.-J., Dettmar, P., Richter, P., Rudolf, M., and Buhss, U. (2002). On-coupling and off-coupling of neocortical areas in chess experts and novices as revealed by evoked EEG coherence measures and factor-based topological analysis-a pilot study. Journal of Psychophysiology, 16(1):23.
  34. Wright, M. J., Gobet, F., Chassy, P., and Ramchandani, P. N. (2013). Erp to chess stimuli reveal expert-novice differences in the amplitudes of n2 and p3 components. Psychophysiology, 50(10):1023-1033.
Download


Paper Citation


in Harvard Style

R. Silva Junior L., H. G. Cesar F., T. Rocha F. and E. Thomaz C. (2017). EEG and Eye Movement Maps of Chess Players . In Proceedings of the 6th International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM, ISBN 978-989-758-222-6, pages 434-441. DOI: 10.5220/0006191404340441


in Bibtex Style

@conference{icpram17,
author={Laercio R. Silva Junior and Fabio H. G. Cesar and Fabio T. Rocha and Carlos E. Thomaz},
title={EEG and Eye Movement Maps of Chess Players},
booktitle={Proceedings of the 6th International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM,},
year={2017},
pages={434-441},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006191404340441},
isbn={978-989-758-222-6},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 6th International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM,
TI - EEG and Eye Movement Maps of Chess Players
SN - 978-989-758-222-6
AU - R. Silva Junior L.
AU - H. G. Cesar F.
AU - T. Rocha F.
AU - E. Thomaz C.
PY - 2017
SP - 434
EP - 441
DO - 10.5220/0006191404340441