A Single-source Weber Problem with Continuous Piecewise Fixed Cost

Gabriela Iriarte, Pablo Escalona, Alejandro Angulo, Raul Stegmaier

Abstract

This paper analyzes the location of a distribution center in an urban area using a single-source Weber problem with continuous piecewise fixed cost to find a global optimal location. The fixed cost is characterized by a Kriging interpolation method. To make the fixed cost tractable, we approximate this interpolation with a continuous piecewise function that is convex in each piece, using Delaunay triangulation. We present a decomposition formulation, a decomposition conic formulation and a conic logarithmic disaggregated convex combination model to optimally solve the single-source Weber problem with continuous piecewise fixed cost. Although our continuous approach does not guarantee the global optimal feasible location, it allows us to delimit a zone where we can intensify the search of feasible points. For instances we tested, computational results show that our continuous approach found better locations than the discrete approach in 23.25% of the instances and that the decomposition formulation is the best one, in terms of CPU time.

References

  1. Anselin, L. and Le Gallo, J. (2006). Interpolation of air quality measures in hedonic house price models: spatial aspects. Spatial Economic Analysis, 1(1):31-52.
  2. Bongartz, I., Calamai, P. H., and Conn, A. R. (1994). A projection method forl p norm location-allocation problems. Mathematical Programming, 66(1):283-312.
  3. Brimberg, J., Drezner, Z., Mladenovic, N., and Salhi, S. (2014). A new local search for continuous location problems. European Journal of Operational Research, 232(2):256-265.
  4. Brimberg, J., Hansen, P., Mladenovic, N., and Salhi, S. (2008). Survey of solution methods for the continuous location-allocation problem. International Journal of Operations Research, 5(1):1-12.
  5. Brimberg, J., Hansen, P., Mladenovic, N., and Taillard, E. D. (2000). Improvements and comparison of heuristics for solving the uncapacitated multisource weber problem. Operations Research, 48(3):444-460.
  6. Brimberg, J., Mladenovic, N., and Salhi, S. (2004). The multi-source weber problem with constant opening cost. Journal of the Operational Research Society, 55(6):640-646.
  7. Brimberg, J. and Salhi, S. (2005). A continuous locationallocation problem with zone-dependent fixed cost. Annals of Operations Research, 136(1):99-115.
  8. Cellmer, R. (2014). The possibilities and limitations of geostatistical methods in real estate market analyses. Real Estate Management and Valuation, 22(3):54-62.
  9. Cellmer, R., Belej, M., Zrobek, S., and S?ubic-Kovac?, M. (2014). Urban land value maps a methodological approach. Geodetski vestnik, 58(3):535-551.
  10. Chen, J.-S., Pan, S., and Ko, C.-H. (2011). A continuation approach for the capacitated multi-facility weber problem based on nonlinear socp reformulation. Journal of Global Optimization, 50(4):713-728.
  11. Chen, P.-C., Hansen, P., Jaumard, B., and Tuy, H. (1998). Solution of the multisource weber and conditional weber problems by d.-c. programming. Operations Research, 46(4):548-562.
  12. Cooper, L. (1964). Heuristic methods fot locationallocation problems. SIAM Review, 6(1):37-53.
  13. Cooper, L. (1972). The transportation-location problem. Operations Research, 20(1):94-108.
  14. Dolan, E. D. and Moré, J. J. (2002). Benchmarking optimization software with performance profiles. Mathematical programming, 91(2):201-213.
  15. Drezner, Z., Klamroth, K., Schöbel, A., and Wesolowsky, G. O. (2002). 1 the weber problem.
  16. Fernández-Avilés, G., Minguez, R., and Montero, J.-M. (2012). Geostatistical air pollution indexes in spatial hedonic models: the case of madrid, spain. Journal of Real Estate Research.
  17. Hansen, P., Mladenovic, N., and Taillard, E. (1998). Heuristic solution of the multisource weber problem as a pmedian problem. Operations Research Letters, 22(2- 3):55-62.
  18. Helbich, M., Jochem, A., Mücke, W., and Höfle, B. (2013). Boosting the predictive accuracy of urban hedonic house price models through airborne laser scanning. Computers, environment and urban systems, 39:81- 92.
  19. Hosseininezhad, S. J., Salhi, S., and Jabalameli, M. S. (2015). A cross entropy-based heuristic for the capacitated multi-source weber problem with facility fixed cost. Computers & Industrial Engineering, 83:151- 158.
  20. Hu, S., Tong, L., Frazier, A. E., and Liu, Y. (2015). Urban boundary extraction and sprawl analysis using landsat images: A case study in wuhan, china. Habitat International, 47:183-195.
  21. Kuntz, M. and Helbich, M. (2014). Geostatistical mapping of real estate prices: an empirical comparison of kriging and cokriging. International Journal of Geographical Information Science, 28(9):1904-1921.
  22. Larraz, B. and Poblacin, J. (2013). An online real estate valuation model for control risk taking: A spatial approach. Investment Analysts Journal, 42(78):83-96.
  23. Liang, H. and Yi, W. (2012). Effect of rent spatial distribution to urban business district planning. In Advanced Materials Research, volume 374, pages 2001-2008. Trans Tech Publ.
  24. Luis, M., Salhi, S., and Nagy, G. (2015). A constructive method and a guided hybrid grasp for the capacitated multi-source weber problem in the presence of fixed cost. Journal of Algorithms & Computational Technology, 9(2):215-232.
  25. Luo, J. (2004). Modeling urban land values in a gis environment. University of Wisconsin. Milwaukee, USA.
  26. Megiddo, N. and Supowit, K. (1984). On the complexity of some common geometric location problems. SIAM Journal on Computing, 13(1):182-196.
  27. Michelot, C. and Lefebvre, O. (1987). A primal-dual algorithm for the fermat-weber problem involving mixed gauges. Mathematical Programming, 39(3):319-335.
  28. Mladenovic, N., Brimberg, J., Hansen, P., and MorenoPerez, J. A. (2007). The p-median problem: A survey of metaheuristic approaches. European Journal of Operational Research, 179(3):927-939.
  29. Oliver, M. A. and Webster, R. (1990). Kriging: a method of interpolation for geographical information systems. International Journal of Geographical Information System, 4(3):313-332.
  30. Planchart, A. and Hurter, A. P. J. (1975). An efficient algorithm for the solution of the weber problem with mixed norms. SIAM Journal on Control, 13(3):650665.
  31. Plastria, F. (1987). Solving general continuous single facility location problems by cutting planes. European Journal of Operational Research, 29(1):98-110.
  32. Sherali, H. D., Al-Loughani, I., and Subramanian, S. (2002). Global optimization procedures for the capacitated euclidean and lp distance multifacility location-allocation problems. Operations Research, 50(3):433-448.
  33. Vielma, J. P., Ahmed, S., and Nemhauser, G. (2010). Mixed-integer models for nonseparable piecewise linear optimization: Unifying framework and extensions. Operations Research, 58(2):303-315.
  34. Weber, A. and Friedrich, C. J. (1929). Alfred Weber's Theory of the Location of Industries. The University of Chicago Press, Chicago, Illinois.
  35. Weiszfeld, E. and Plastria, F. (2009). On the point for which the sum of the distances to n given points is minimum. Annals of Operations Research, 167(1):4-41.
  36. Xue, G. and Ye, Y. (1997). An efficient algorithm for minimizing a sum of euclidean norms with applications. SIAM Journal on Optimization, 7(4):1017-1036.
Download


Paper Citation


in Harvard Style

Iriarte G., Escalona P., Angulo A. and Stegmaier R. (2017). A Single-source Weber Problem with Continuous Piecewise Fixed Cost . In Proceedings of the 6th International Conference on Operations Research and Enterprise Systems - Volume 1: ICORES, ISBN 978-989-758-218-9, pages 337-344. DOI: 10.5220/0006191003370344


in Bibtex Style

@conference{icores17,
author={Gabriela Iriarte and Pablo Escalona and Alejandro Angulo and Raul Stegmaier},
title={A Single-source Weber Problem with Continuous Piecewise Fixed Cost},
booktitle={Proceedings of the 6th International Conference on Operations Research and Enterprise Systems - Volume 1: ICORES,},
year={2017},
pages={337-344},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006191003370344},
isbn={978-989-758-218-9},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 6th International Conference on Operations Research and Enterprise Systems - Volume 1: ICORES,
TI - A Single-source Weber Problem with Continuous Piecewise Fixed Cost
SN - 978-989-758-218-9
AU - Iriarte G.
AU - Escalona P.
AU - Angulo A.
AU - Stegmaier R.
PY - 2017
SP - 337
EP - 344
DO - 10.5220/0006191003370344