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Abstract: This paper analyzes the location of a distribution center in an urban area using a single-source Weber problem
with continuous piecewise fixed cost to find a global optimal location. The fixed cost is characterized by
a Kriging interpolation method. To make the fixed cost tractable, we approximate this interpolation with
a continuous piecewise function that is convex in each piece, using Delaunay triangulation. We present a
decomposition formulation, a decomposition conic formulation and a conic logarithmic disaggregated convex
combination model to optimally solve the single-source Weber problem with continuous piecewise fixed cost.
Although our continuous approach does not guarantee the global optimal feasible location, it allows us to
delimit a zone where we can intensify the search of feasible points. For instances we tested, computational
results show that our continuous approach found better locations than the discrete approach in 23.25% of the
instances and that the decomposition formulation is the best one, in terms of CPU time.

1 INTRODUCTION finite set of convex polygons, each one with constant
fixed costs, is considered a good first approximation
to characterize the variating nature of this cost. In this
paper we propose that the fixed cost on each convex
polygon is a function of its vertices, allowing us to
better model the fixed costs in an urban area.

The location of a distribution center (DC) in an ur-
ban area, considering the transportation and installa-
tion costs, can be treated as an uncapacitated facility
location problem (UFLP) or as a Weber problem with
fixed cost. Itis known that the solution of the UFLP is The objective of this paper is to find the best for-
feasible but not necessarily optimal, due to the use of 1, ation to locate asingle DC in an urban area, where
an incomplete set of possible locations. On the other ihe fixed costs depend on the location in a continu-
hand, the Weber problem with fixed cost gives an op- gys way. The fixed cost function is characterized by
timal location probably not feasible. a Kriging interpolation method using a set of nodes
This paper analyzes the installation of a single DC where the cost is known. To make the formulation
in an urban area, using the single-source Weber prob-tractable, we approximate the interpolation with a
lem with fixed cost to find an optimal location that al-  continuous piecewise function that is convex in each
lows us to delimit a zone around the optimal location piece. This is constructed through a convex combi-
previously found, but smaller than the original one. nation of the vertices of a mesh created with a De-
This way, we can focus the search of feasible points, |Jaunay triangulation. The sinlge-source Weber prob-
obtaining a more reliable and complete set of possible [em with continuous piecewise fixed cost is formu-
locations such that, when an UFLP is applied, we find |ated as an MINLP pr0b|em_ We take advantage of
theoptimal feasible location the problem’s structure to propose three solution ap-
To the best of our knowledge, few papers deal with proaches. The first approach considers a conic re-
the inclusion of the fixed costs into the Weber prob- formulation of the single-source Weber problem with
lem. Fixed costs have been considered as a constantontinuous piecewise fixed cost usindogarithmic
cost for all the plane (Brimberg et al., 2004), as zone disaggregated convex combination mod&he sec-
dependent with a constant cost in a specific convex ond consists of a decomposition method, where we
polygon (Brimberg and Salhi, 2005),(Hosseininezhad solve a non-linear convex problem for each Delaunay
et al., 2015), or as a proportion between the fixed cost triangle, and using complete enumeration we deter-
of two zones and their relative distance, (Luis et al., mine the optimal solution. The last one, consider a
2015). To consider that a plane can be partitioned in a conic reformulation for each sub-problem of the sub-

337

Iriarte G., Escalona P, Angulo A. and Stegmaier R.

A Single-source Weber Problem with Continuous Piecewise Fixed Cost.

DOI: 10.5220/0006191003370344

In Proceedings of the 6th International Conference on Operations Research and Enterprise Systems (ICORES 2017), pages 337-344
ISBN: 978-989-758-218-9

Copyright (© 2017 by SCITEPRESS — Science and Technology Publications, Lda. All rights reserved



ICORES 2017 - 6th International Conference on Operations Research and Enterprise Systems

sequent decomposition formulation. Each approach on the multi-source Weber problem there is Brimberg
was implemented in a series of experiments to com- et al. (2000) and Brimberg et al. (2008).
pare their performance in CPU time. The inclusion of the fixed cost to the Weber prob-

The main contributions of this paper arei) & lem has little reviews, there are four papers to the best
new way to represent the fixed costs in an urban areaof our knowledge. First it is included as a constant
and (i) to identify the best solution approach for the cost for all plane in Brimberg et al. (2004). Later,
single-source Weber problem with continuous piece- in Brimberg and Salhi (2005), it was extended to
wise fixed cost. a zone-dependent fixed cost, where zones are non-

The paper is organized as follows: Section 2 overlapping convex polygons with a constant fixed
presents our related work. Section 3 presents acost for each zone. In Hosseininezhad et al. (2015) is
single-source Weber problem with continuous piece- developed a metaheuristic Cross Entropy for a contin-
wise fixed cost. Section 4 presents three different ap- uous location problem, with an fixed cost depending
proaches to solve the problem defined in the previouson the zone and on the facility to install. And Luis
section. Section 5 presents some experimental resultst al. (2015), proposed a multi-source Weber problem
for all the different approaches. Our conclusions and with capacity and zone-dependent fixed cost using the
highlights are presented in section 6. second-order Voronoi regions.

In general, data gathering is expensive in terms of
monetary and time-consuming costs (Helbich et al.,
2013). Therefore, there is a necessity to estimate
the land values in unvisited locations, as geostatis-
. . , tical methods Luo (2004), Cellmer et al. (2014).
The_contlnuous location problem for a S|_ng|e-_source Here, we use a Kriging method of interpolation
or single-source \Weber problem, described in We- q|iyer and Webster, 1990). This method was rec-
ber and Friedrich (1929), has been extensively stud- ; nmended over other interpolation approaches in

ied. To find the solution there are different ap- aApgelin and Le Gallo (2006) and Fernandez-Aviles
proaches: a one-point iterative method better known ¢ o (2012), in an air quality and pollution stud-

as the Weiszfeld algorithm (Weiszfeld and Plastria, joq respectively. The possibilities and limitations of

2009), a unified cutting plane method (Plastria, 1987), 46 qstatistical methods to approximate the land values
a dual method (Planchart and Hurter, 1975), a primal- - .o qiscussed in Cellmer (2014). A comparison be-
dual algorithm involving mixed norms (Michelotand  yeen Kriging methods for the real estate market is

Lefebvre, 1987), or a primal-dual potential reduction  yiscyssed in Kuntz and Helbich (2014). The Kriging
algorithms with the problem formulated in conic form e mqjation is used to find the value of land for dif-

(Xue and Ye, 1997). A compr_ehensive review of the ¢orent cities by Liang and Yi (2012), Hu et al. (2015),
Weber problem can be found in Drezner etal. (2002). | 5¢raz and Poblacin (2013).

The multi-source Weber problem, or location-

2 RELATED WORK

In summary, there are few previous works on

allocation problem, is an NP-hard problem (Megiddo
and Supowit, 1984). There are few heuristics that
solve it to optimality but they work only in small prob-

lems (Cooper, 1972), (Sherali et al., 2002), (Chen
et al., 1998). For the heuristic approach to solve
the problem to near optimum, there are more pub-
lications: Cooper (1964) explored different algo-
rithms with computational experiments. The alter-
nating location-allocation heuristic is used by Cooper
(1972). The method used by Bongartz et al. (1994)

relaxes the binary constraints on the allocations, and

solves both location and allocation simultaneously.

single-source and multi-source Weber problem that
include a second order cone formulation and, to the
best of our knowledge, only one paper presents a so-
lution approach. The few papers that include fixed
costs make a simplistic representation of them that do
not reflect their variations in an urban area. Unlike
them, we make a more realistic representation of the
fixed costs, considering different possible approaches
for the Weber problem with fixed costs.

An approach based on a nonlinear second-order cone3 MODEL FORMULATION

program reformulation is found in Chen et al. (2011).
The approach to use the discrete models in solving
the continuous location-allocation problems is widely
used by Hansen et al. (1998), Brimberg et al. (2014),
and others. For this, a survey in the p-median problem

3.1 Single-source Weber Problem with
Continuous Piecewise Fixed Costs

with the aim in procedures based on metaheuristics The generalized single-source Weber problem with
rules (Mladenovic et al., 2007) is useful. For a survey fixed costs considers the localization of a single
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source with coordinate;,y) € R?. This source must
supply a set] of customers with known coordinates,
(xcj,yc;j) for everyj € J. Let f(x,y) be the fixed cost
incurred when the source is installed(iy). Letw;

be the the expected demand weighted by the trans-

portation ratios, for alj € J. The problem is to deter-
mine the optimal location for the single source such
that the transportation and the fixed costs are mini-

mized. The generalized single-source Weber problem

with fixed costs can be expressed as follows:

min %wj¢<x‘—xcj>2+<y‘—ycj>2+f(x—,w (1)
st (Xy) e R? (2)

We consider a convenient sétof nodes with
known information of their fixed cost§;, and their
coordinates(xij, yii ), for everyi € |. In our paper, the
way to address the fixed costs is by applying a Kriging
interpolation method and defining a continuous func-
tion for the cost in every point of the convex hull of
I. This cost function is not simple and could not be
convex. To make the continuous fixed cost function
tractable, we are going to approximate the Kriging in-
terpolation with a piecewise function that is convex in
each piece. For this, we partition the convex hull of
| through a polyhedral mesh and defined the continu-
ous piecewise fixed cost function as the convex com-
bination of the vertices of the mesh. To the best of our
knowledge, it is better to use the smallest subset of in-
formation nodes possible with empty interior to create
the polyhedra, i.e, using Delaunay triangulation.

We applied a Delaunay triangulation over the set
| obtaining a seK of triangles; each triangl&-th
will be denoted a, with B, = {(x,y) € R?|(x,y) =
52N (X, Vi ), S AK = 1 VAR 1 AR > 0}, where
(X > Yig )y (X5 Yip) @Nd (X3, Yi;) are the vertices of
thek-th triangle andCy, , Cy,, C, their fixed cost. We
haveAk as the convex combination vector for the ver-
tices of the triangl& € K andl = 1,2, 3 the vertices of
the triangle. The set of all possible locatiopkek Pk,

Problem(PO0):

3

J (k; Ii)\kl)(k' - ch)2+ (keZﬂ:%i)\klyk' - ycj)z

3)
3
S.t. Z A= Z, vk € K (4)
I=1
=1 (5)
2
A >0, vl €{1,2,3},keK  (6)
Z €{0,1}, VvkeK 7

In what follows, we present different ways to
solve the probleniPO0).

4 SOLUTION APPROACH

We consider three distinct solution approaches for
(PO). For the first approach, we use a monolithic re-
formulation of (PO). The second approach considers
a decomposition ofP0) by fixing the variableZ and
solving the sub-problem generated; we evaluated all
the possible values &. The last approach considers
a conic reformulation of the previous sub-problems.

4.1 Conic Logarithmic Disaggregated
Convex Combination Model

Now, we reformulatg¢PO0) in two steps. First, we for-
mulate the problem as a Conic Quadratic Non Lin-
ear problem (CQNLP). Afterwards, using theg-
arithmic disaggregated convex combination model
(Vielma et al., 2010), we efficiently solve the contin-

can be non-convex if we clean the areas where we canuous piecewise fixed cost function.

not install, as a lake or a strictly residential area.

Given the above, the facility’s location can be ex-
pressed afy) = ek i1 AN (X, Yk ) and its fixed
cost as a convex combination of the vertices of the tri-
angles's costsyck 51 CfA¥. Let Z be a binary
variable that forces the installation to be in only one
triangle, being 1 if it is installed in thk-th triangle
and 0 if itis not.

We can formulate the single-source Weber prob-
lem with continuous piecewise fixed cost as follows:

Next, we formulate the proble(#0) as a CQNLP
in order to eliminate the square root terms. First
we introduce one set of nonnegative continuous vari-
ables dj, to represent the square root termin:

3 3

dj =\ [ (3 XA —xc))2+ (5 yigAM —yey)2,vj e d
=1 =1

8

dj >0,¥jed ©)
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For simplicity, we can add two more sets of auxil-
iary variablesy; andrj, leaving (8) as:

df =Z +wj, vied (10)
3

v,-:gx.q)\“—xc,-, Vied (11)
3

rj= ziym—ycj, Vied (12)
=

Because the nonnegative variablijsare intro-
duced in the objective function ¢P0) with positive
coefficients, and this problem is a minimization prob-
lem, the equation can be further relaxed as the follow-
ing inequalities:

d? > v+ rf, Vjed (13)

Note that the constraints (9) and (13) define
second-order cone constraints. The prob{®@) can
be expressed as the following conic problem:

Problem(CPO):

min (Z w;d C)\"'
Z)\dvrkEK k; J J+z k

$1.(4),(5),(6),(7),(9),(11),(12),(13)

The logarithmic disaggregated convex combina-
tion modelconsists in replacing the piecewise func-
tion f(X,y) for its epigraptepi( f) and setting the co-
ordinate(x,y) to be contained by one and only one
of the domains off. For a minimization, solving the
function f is equivalent to solvingpi(f). To con-
struct a model with the least number of binary vari-
ables and constraints, we identify each triangle with
a binary vector in{0,1}"°%2IXIl through an injective
functionB : K — {0,1}'°9%2/KIl and useflogy|K|] bi-
nary variablesm € {0,1}/°%IK[1 to ensure that the
coordinates are in only one triangle. L@beepi(f).

Using thelogarithmic disaggregated convex com-
bination modeland a second order cone formulation
to reformulatgP0), leaves the following:
Problem(DlogCPO):

(14)

i J;Wjdj +Q (15)
3
st. Y z CkA <Q (16)
keK 1=
3
z z = (17)
keK =1

Vte T(K) (18)

k
ke KZ(B,t) I;A =M
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zi)\k'< (1-m),vt € T(K)

keK

(19)
>0 vl €1,2,3 ke K (20)
m € {0,1} vt e T(K) (21)
(9),(11),(12),(13)

whereB : K — {0,1}°%2IIl is any injective func-
tion, K*(B,t) = {ke K : B(k); = 1}, KO(B,t) = {k

K :B(k)y =0} andT(K) = {1,...,[logz|K]|]}. This
problem is a mixed integer conic quadratic nonlinear
problem with a linear objective function and can be
solved by solvers like GUROBI, CPLEX or MOSEK.

4.2 Decomposition Formulation

From the probleniP0), we can observe that the vari-
ables\ andZ are related in only one constraint. And,
fixing the variablez, the problem is separable jK|
sub-problems where we force the localization of the
DC to be in thek-th Delaunay triangle, i.e., forcing
Zy =1 andZy = 0 for all K € K\ k. Then thek-th
sub-problem can be written as:

Sub-Problen{SPO(k)):

3
m|n ij\/x Xcj)? (y_—YCj)2+IZCk|)\I(|
=1

(22)

s.t. th =1 (23)
I=1

AN>0 Wle{123} (24)

This sub-problen{SFO(k)) is a convex nonlinear
problem with linear constraint and can be efficiently
solved by MINOS or IPOPT solvers.

Let A" be the optimal solution of the problem
(SPO(K)); FO(srorky) (A<") be the optimal cost of the
objective function in the problertSFO(k)), and let
(A,Z) be the optimal solution of the proble(0).
The optimal solution for th¢P0) problem is the best
solution for all of the sub- problen(sPO( )) i.e.A=
A&, whereks = argminey {FO(srosg) (A¥")}. Forz,
the value ofZ, = 1 for k = ky andZ, = 0 for every
otherk.

4.3 Decomposition Conic Formulation

The squared root term in the objective function of
problem(SFO(k)) can give rise to difficulties in the
optimization procedure. Following the logic exposed
for the first approach, we reformulat8F0(k)) as a
CQONLP, leaving the following conic problem:
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Sub-Problen{SCRO(K)):
min

3
Akdv.r %Wj dj * |ZlCkl )\kl
s.t.(23),(24),(9),(11),(12), (13)

The problem(SCPRO(k)) can be trivially shown to
be equivalent tqSFO(k)), but it has now conic and
nonlinear constraints with a more simple linear objec-
tive function. The optimal solution fdiPO) is the best
solution for all the sub-problem$&CRO(K)), equiva-
lently to the decomposition formulation.

The advantage of the CQNLP formulation is that
it can be solved directly using standard optimiza-
tion software packages such as CPLEX, GUROBI or
MOSEK.

(25)

5 COMPUTATIONAL STUDY

In this section, we present our humerical study and
its results. The main objectives of this computational

study is to show which solution approach has the best

performance in terms of CPU time, and to compare
them to an UFLP. To characterize the different ap-

proaches, we carried out 400 instances that we denote

test set We also corroborate the installation of a sin-
gle DC in every instance with the UFLP.

All the problems were programmed using AMPL.
To solve the decomposition formulation we use the
solver MINOS. For(DlogCP0) and the decomposi-
tion conic formulation we solve it through CPLEX
solver. The Kriging interpolation method and the De-
launay triangulation were made in MATLAB. Tlest
setwere run on a PC with AMD FX 4,00 GHz pro-
cessor and 12 GB RAM, and the UFLP were run on a
PC with Intel i3 2,10 Ghz and 4 GB RAM.

51 Test Set

In order to determine which one has the best perfor-
mance in CPU time, we generated 100 experiments.
In each experiment, we fixed the number of customer
nodes and used 4 refinements of the triangulation.
Therefore, we have 400 instances. For simplicity, we
consideredv; = 1, for anyj € J.

Each experiment has the same initial set of 100
information nodes, generated randomly. For a bet-
ter piecewise convex approximation of the continuous
fixed cost function, we proposed the following refine-
ment of the mesh. We consider the Delaunay triangu-
lation of the initial set of information nodes as the first
refinement, shown in figure 1. The second refinement
is generated by creating additional information nodes

where their location is at the center of the edge of ev-
ery triangle and their fixed cost is determined by the
Kriging interpolation. Then the Delaunay triangula-
tion is used over the original séplus the additional
information nodes. The third and fourth refinements
are applied over the second and third triangulation, re-
spectively. In figure 2 the fourth refinement is shown.

N
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o
o
o

Fixed Cost

2000

100
100

50

00 X
Figure 1: First refinement.

8000
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4000

Fixed Cost

2000

0.-
100
100

Figure 2: Fourth refinement.

We modified the number of customer nodes from
100 to 1000 customers, i.e., the first 10 experiments
have 100 customer nodes, the next 10 experiments
have 200 customer nodes, and so on. Each customer
location is obtained making random locations, i.e.,
where(xcj, y¢j) € ({0,100, [0,100).

Figure 3 shows the performance profile based on
theperformance ratiof the CPU time for each model
(Dolan and Moré, 2002). Considering thgh, is the
CPU time for solving the instangeby the modem,
we have theperformance ratio

_ fpm
fom = min{tom: me M}’
where M = {DlogCP0, minek{(SFO(k))},
Minek { (SCRO(K))}}.
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We obtain an average speedup of 7.98x and 7.72x

150 - | Methods for the decomposition formulation over the decompo-
—  min,k(SPO(k)) sition conic formulation an@DlogCP0), respectively.
-==-mingk(SCPO(K)) Our numerical results show that the performance
- DlogCPO from the conic formulations(DlogCP0) and the de-

100+

size of the customer set. This is because the conic
formulations creaté]| cones and [3| new variables,
M so the problem grows faster than the number of cus-
50+ I tomers. For this reason, even tfiBtogCP0) can bet-
fi ter handle a big set of information nodes, this only is
e seen with a small set of customers.
___________' The performance of the decomposition formula-
07 | I — T ] . tion, shown in figure 3, is the most stable of the per-
0.00 0.25 0.50 0.75 1.00 formances of the three solution approaches, i.e., with
P(r<1) less difference in the extremes values ofpesfor-
Figure 3: Performance Profile. mance rgtlo This indicates that if the decomposn!on
formulation does not have the best performance in an
We observe in figure 3 that the best model instance, its CPU. time is closer.to the be'tter.one.
performance is the decomposition formulation, i.e., . 1Ne average improvement in the objective func-
minek {(SFO(k))}, because in 80% of the instances tion using _the different refinements, compared with
has the lowest time, overcome blogCF0), in less the first rgflnement, are.@3% for the sec_:ond,.04%
than 20% of the instance. The decomposition formu- for the third, and 129% for the fourth refinement.
lation has the best performance with the greater effi- _ We can observe in table 1 that in instances
ciency, solving all the instances withra< 5. with small numper.of customers is better to use
There is a pattern in every refinement where (DIogC_PO),conSIderlng th"?‘t_ can havea_speedup_O\_/er
(DlogCRO) has the best performance in the instances #X @dainst the decomposition formulation, but it is
with a small set of customers nodes, and get outper-Whe.n he LU 'tlmes gie el  SEEILD) In al
formed by the decomposition formulation in the rest the instances withl| =100, _although we have a bet-
of the instances. This is shown in table 1, where ter average of CPU time W|_t(_~DIogCP0), t_he worst
it shows that the average speedup in the CPU time CPU time for the decomposmqn fqrmulat|on does not
of the decomposition formulation ovéDlogCFO) is get over 250 sec_onds. Considering that the decom-
greater than 2for all the refinements in the instances position formulation has a more stable _performance
with || = 100. Considering the second and third re- With the better overall average in CPU time, and be-
finement,(DIogCFO) is better, in average, for the in- auSe his solves a strategic decision, we recommend
stances with|J| < 200. For the fourth refinement, to moqel the single source Weber prqblem with fixed
(DlogCRO) is better in instances witll| < 300 and cost with the decomposition formulation.

with an average speedup of overvthen|J| = 100. . .
5.2 Discrete Model: Uncapacitated
Facility L ocation Problem

[
[
i
1
i
i
! composition conic formulation) are sensible to the
1
!
[}
]
]
1

Table 1: Average Speedup in CPU time of

mingek { (SFO(k))} over (DlogCFO).
The following experiments where made using the in-

Refinement ) . . .
] Eirst Secondl Third T Eourth §tances preV|o.ust des.crlbed in MI set conS|der_—
100 | 1.556x | 2.035x | 2.808x | 4.125x ing the set of mformatlo_n nodes_ without the reflne_-
500 | 0.574x| 1.185x | 1.548x| 1.944x ments. We conS|_der the |r_1format|on nodes as the dis-
300 1 0.382x| 0.865x | 0.840x | 1.149x cre:e sekt)|0f|20055|brl]e locations, mgdelle_d by an UFLP.
n table 2 are the average and maximum percent-
288 82;3? ggggi 82%? ggggi age of_ the imp_rovement in. lowering the value of the
500 0.301x 0.530x 0.410x 0.330x objectlye funcpon of thg smgle—spurce Weber prob-
=00 0.226x 0.447x 0.416x 0.099x lem with continuous piecewise fixed cost over the
: : : : UFLP, and the number of cases where this happened.
800 | 0.214x]| 0.387x | 0.385x| 0.036x Table 2 shows, for the fourth refinement an aver-
900 | 0.184x| 0.373x | 0.367x| 0.020x age improvement of 22%. From the total of exper-
1000 0.172x| 0.309x | 0.312x] 0.012x iments solved with the fourth refinement, the 67% of

342



A Single-source Weber Problem with Continuous Piecewise Fixed Cost

Table 2: Percentage of improvement for the continuous it is more probable to find theptimal feasible loca-

model over the UFLP. tion, thus reducing the search effort of feasible points.
Refinement With this, we can apply an UFLP over the new ket

First | Second| Third Fourth The computational results show that the best ap-

Average | 0.13%] 0.21% | 0.86% | 1.42% proach for the single-source Weber problem with con-

Max 1.62% | 5.80% | 16.83% 18.58% tinuous piecewise fixed cost, in terms of average CPU

N° Cases| 27 ) 25 33 time, is the decomposition method, with an average

speedup of 7.98x and 7.72x over the decompaosition

the instances have the same result as the UFLP Butconic method and the conic monolithic reformulation,

in the 33% where they are different, the average im- respectively. The first approach has the bes_t perfor-

provement is of £97% mance and can better handle a bigger set of informa-
The better solutions found in 2% of the in-  tion nodes only with a small number of customers,

stances with the single-source Weber problem over but this happens in the instances where the difference

the UFLP is because the UFLP only consider the in- P€Ween the CPU times are smaller.

formation nodes as possible locations and not always]c ¢ Thereare e;]numt;]er C.’f questl(lnns and '\?\fl‘.'efs lﬁjft for
is consider the global optimum in that set. With the [Uture research, such as) {o apply some Weizfield-

inclusion of more information nodes, i.e. closer to K€ algorithm to improve the performance of the

reality, the average savings and the number of bettergecompogltlon formurl1at|?n, g';/e.n thaft that Wﬁs the
cases tend 1o grow. est one, i{) to use the formulation of a stochastic

We also observed that in all the instances only one model O_f the single_-source Weber PTOb"?m with fi>_<ed
facility is installed. This is in accordance to say that, cost using the varance . the.Krlglng.mterpolatlon
in an urban area, the fixed cost of an extra DC tends method, {i) to consider a location-routing problem,

to be bigger than the savings in transportation. and {v) the extension to a multi-source Weber prob-
lem with continuous dependent fixed cost considering

the best solution approach we obtain.
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