Extracting Contextonyms from Twitter for Stance Detection

Guillaume Gadek, Josefin Betsholtz, Alexandre Pauchet, Stéphan Brunessaux, Nicolas Malandain, Laurent Vercouter


Opinion mining on tweets is a challenge: short texts, implicit topics, inventive spellings and new vocabulary are the rule. We aim at efficiently determining the stance of tweets towards a given target. We propose a method using the concept of contextonyms and contextosets in order to disambiguate implicit content and improve a given stance classifier. Contextonymy is extracted from a word co-occurrence graph, and allows to grasp the sense of a word according to its surrounding words. We evaluate our method on a freely available annotated tweet corpus, used to benchmark stance detection on tweets during SemEval2016.


  1. Anand, P., Walker, M., Abbott, R., Tree, J. E. F., Bowmani, R., and Minor, M. (2011). Cats rule and dogs drool!: Classifying stance in online debate. In Proceedings of the 2nd workshop on computational approaches to subjectivity and sentiment analysis, pages 1-9. Association for Computational Linguistics.
  2. Andreevskaia, A. and Bergler, S. (2008). When specialists and generalists work together: Overcoming domain dependence in sentiment tagging. In ACL, pages 290- 298.
  3. Baccianella, S., Esuli, A., and Sebastiani, F. (2010). Sentiwordnet 3.0: An enhanced lexical resource for sentiment analysis and opinion mining. In LREC, volume 10, pages 2200-2204.
  4. Bradley, M. M. and Lang, P. J. (1999). Affective norms for english words (anew): Instruction manual and affective ratings. Technical report.
  5. Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V., Aswani, N., Roberts, I., Gorrell, G., Funk, A., Roberts, A., Damljanovic, D., Heitz, T., Greenwood, M. A., Saggion, H., Petrak, J., Li, Y., and Peters, W. (2011). Text Processing with GATE (Version 6).
  6. Feng, Y., Fani, H., Bagheri, E., and Jovanovic, J. (2015). Lexical semantic relatedness for twitter analytics. In Tools with Artificial Intelligence (ICTAI), 2015 IEEE 27th International Conference on, pages 202-209. IEEE.
  7. Fernando, S. and Stevenson, M. (2012). Mapping wordnet synsets to wikipedia articles. In LREC, pages 590- 596.
  8. Gotti, F., Langlais, P., and Farzindar, A. (2013). Translating government agencies tweet feeds: Specificities, problems and (a few) solutions. NAACL 2013, page 80.
  9. Hagberg, A. A., Schult, D. A., and Swart, P. J. (2008). Exploring network structure, dynamics, and function using NetworkX. In Proceedings of the 7th Python in Science Conference (SciPy2008), pages 11-15, Pasadena, CA USA.
  10. Hasan, K. S. and Ng, V. (2013). Extra-linguistic constraints on stance recognition in ideological debates. In ACL (2), pages 816-821.
  11. Hutto, C. J. and Gilbert, E. (2014). Vader: A parsimonious rule-based model for sentiment analysis of social media text. In Eighth International AAAI Conference on Weblogs and Social Media.
  12. Hyungsuk, J., Ploux, S., and Wehrli, E. (2003). Lexical knowledge representation with contexonyms. In 9th MT summit Machine Translation, pages 194-201.
  13. Khan, F. H., Bashir, S., and Qamar, U. (2014). Tom: Twitter opinion mining framework using hybrid classification scheme. Decision Support Systems, 57:245-257.
  14. Maynard, D., Bontcheva, K., and Rout, D. (2012). Challenges in developing opinion mining tools for social media. Proceedings of the@ NLP can u tag# usergeneratedcontent, pages 15-22.
  15. Maynard, D. and Funk, A. (2011). Automatic detection of political opinions in tweets. In The semantic web: ESWC 2011 workshops, pages 88-99. Springer.
  16. Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. (2013). Distributed representations of words and phrases and their compositionality. In Advances in neural information processing systems, pages 3111- 3119.
  17. Miller, G. A. (1995). WORDNET: a Lexical Database for English. Communications of the ACM, 38(11):39-41.
  18. Mohammad, S. M., Kiritchenko, S., Sobhani, P., Zhu, X., and Cherry, C. (2016). Semeval-2016 task 6: Detecting stance in tweets. In Proceedings of the International Workshop on Semantic Evaluation, SemEval, volume 16.
  19. Nakov, P., Kozareva, Z., Ritter, A., Rosenthal, S., Stoyanov, V., and Wilson, T. (2013). Semeval-2013 task 2: Sentiment analysis in twitter.
  20. Owoputi, O., O'Connor, B., Dyer, C., Gimpel, K., Schneider, N., and Smith, N. A. (2013). Improved partof-speech tagging for online conversational text with word clusters. Association for Computational Linguistics.
  21. Pak, A. and Paroubek, P. (2010). Twitter as a corpus for sentiment analysis and opinion mining. In LREC, volume 10, pages 1320-1326.
  22. Palla, G., Dernyi, I., Farkas, I., and Vicsek, T. (2005). Uncovering the overlapping community structure of complex networks in nature and society. Nature, 435:814-818.
  23. Pang, B. and Lee, L. (2008). Opinion mining and sentiment analysis. Foundations and Trends in Information Retrieval, 2(1-2):1-135.
  24. Pennebaker, J. W., Francis, M. E., and Booth, R. J. (2001). Linguistic inquiry and word count: Liwc 2001. Mahway: Lawrence Erlbaum Associates, 71:2001.
  25. Perez-Tellez, F., Pinto, D., Cardiff, J., and Rosso, P. (2010). On the difficulty of clustering company tweets. In Proceedings of the 2nd international workshop on Search and mining user-generated contents, pages 95-102. ACM.
  26. Ploux, S. and Ji, H. (2003). A model for matching semantic maps between languages (french/english, english/french). Computational linguistics, 29(2):155- 178.
  27. Rei, M. and Briscoe, T. (2014). Looking for hyponyms in vector space. In Proceedings of the 18th Conference on Computational Natural Language Learning, pages 68-77.
  28. S¸erban, O. (2013). Detection and integration of affective feedback into distributed interactive systems. PhD thesis, Citeseer.
  29. Tan, C.-M., Wang, Y.-F., and Lee, C.-D. (2002). The use of bigrams to enhance text categorization. Information processing & management, 38(4):529-546.
  30. Tsytsarau, M. and Palpanas, T. (2012). Survey on mining subjective data on the web. Data Mining and Knowledge Discovery, 24(3):478-514.
  31. Wang, R., Zhao, H., Ploux, S., Lu, B.-L., and Utiyama, M. (2016). A bilingual graph-based semantic model for statistical machine translation. In International Joint Conference on Artificial Intelligence .
  32. Wiebe, J. and Mihalcea, R. (2006). Word sense and subjectivity. In Proceedings of the 21st International Conference on Computational Linguistics and the 44th annual meeting of the Association for Computational Linguistics, pages 1065-1072. Association for Computational Linguistics.
  33. Wilson, T., Wiebe, J., and Hoffmann, P. (2005). Recognizing contextual polarity in phrase-level sentiment analysis. In Proceedings of the conference on human language technology and empirical methods in natural language processing, pages 347-354. Association for Computational Linguistics.
  34. Zesch, T., M üller, C., and Gurevych, I. (2008). Using wiktionary for computing semantic relatedness. In AAAI, volume 8, pages 861-866.

Paper Citation

in Harvard Style

Gadek G., Betsholtz J., Pauchet A., Brunessaux S., Malandain N. and Vercouter L. (2017). Extracting Contextonyms from Twitter for Stance Detection . In Proceedings of the 9th International Conference on Agents and Artificial Intelligence - Volume 2: ICAART, ISBN 978-989-758-220-2, pages 132-141. DOI: 10.5220/0006190901320141

in Bibtex Style

author={Guillaume Gadek and Josefin Betsholtz and Alexandre Pauchet and Stéphan Brunessaux and Nicolas Malandain and Laurent Vercouter},
title={Extracting Contextonyms from Twitter for Stance Detection},
booktitle={Proceedings of the 9th International Conference on Agents and Artificial Intelligence - Volume 2: ICAART,},

in EndNote Style

JO - Proceedings of the 9th International Conference on Agents and Artificial Intelligence - Volume 2: ICAART,
TI - Extracting Contextonyms from Twitter for Stance Detection
SN - 978-989-758-220-2
AU - Gadek G.
AU - Betsholtz J.
AU - Pauchet A.
AU - Brunessaux S.
AU - Malandain N.
AU - Vercouter L.
PY - 2017
SP - 132
EP - 141
DO - 10.5220/0006190901320141