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Abstract: Large installation of distributed generations (DGs) of renewable energy sources (RESs) on distribution net-

work has been one of the challenging tasks in the last decade. According to the installation strategy of Japan,
long-term visions for high penetration of RESs have been announced. However, specific installation plans have
not been discussed and determined. In this paper, for supporting the decision-making of the investors, a new
scenario-based two-stage stochastic programming problem for long-term allocation of DGs is proposed. This
problem minimizes the total system cost under the power system constraints in consideration of incentives to
promote DG installation. At the first stage, before realizations (scenarios) of the random variables are known,
DGs’ investment variables are determined. At the second stage, after scenarios become known, operation and
maintenance variables that depend on scenarios are solved. Furthermore, a new scenario generation procedure
with clustering algorithm is developed. This method generates many scenarios by using historical data. The
uncertainties of demand, wind power, and photovoltaic (PV) are represented as scenarios, which are used in
the stochastic problem. The proposed model is tested on a 34 bus radial distribution network. The results
provide the optimal long-term investment of DGs and substantiate the effectiveness of DGs.

1 INTRODUCTION gramming, and nonlinear programming. However,
the above methods can not fully handle the uncer-
1.1 Background tainties. Consequently, stochastic programming and

Large penetration of RESs-based DGs in distribution
network implies that distribution companies (DIS-

metaheuristic-based approaches have been used these
days, to consider the uncertainties at the energy plan-
ning (Payasietal., 2011; Jordehi, 2016).

COs) need to deal with the intermittent nature of

RES such as wind speed and solar radiation in order1-2 Related Work

to maintain the demand-and-supply balance contin-

uously, and accommodate expected demand growthMuch attention has been paid to solving several
over the planning horizon (Eftekharnejad et al., stochastic problems for one-type capacity planning.

2013). DGs refer to small-scale energy generations For multi-resource type, the scenario-based tech-
and are most generally used to guarantee that suf-niques also have been proposed to consider various
ficient energy is available to meet peak demand. uncertainties (Huang and Ahmed, 2009; Baringo and

Distributed generation planning (DGP), which de- Conejo, 2013b; Munoz et al., 2016).

termines the optimal siting, sizing, and timing, is In power system planning on transmission and

modeled to tackle above problem. The objective of distribution network, many approaches have been
DGP is to ensure that the reliable power supply to developed considering some RESs, energy conver-
the consumers is achieved at a lowest possible cost.sion and transmission, and the uncertainties that are
DGP plays an important role as a strategic-level plan- caused by demand, pricing, and intermittent renew-

ning in modern power system planning. Commonly ables (Verderame et al., 2010). An energy planning in

used approaches to solve the DGP are: sensitivity individual large energy consumers was formulated as
analysis-based approaches, mixed-integer linear pro-a mixed integer linear programming model by using
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fuzzy parameters in (Mavrotas et al., 2003). (Atwa lem of ESS allocation was solved by using alterna-
et al., 2010) proposed a probabilistic mixed integer tive direction method of multipliers. In (Asensio
nonlinear problem for distribution system planning. et al., 2016a; Asensio et al., 2016b), the allocation

Several studies related to stochastic optimization Problem of DGs and energy storage was formulated
of DGP have been proposed. In (Fu et al., 2015), as a stochastic programming model for maximizing
a chance-constrained stochastic programming modelthe net social benefit taking account of demand re-
was formulated for managing the uncertainty of PV, sponse. Since the cost of ESS is very expensive and
which was solved by an algorithm combining the ESS seems notto be efficient at this stage, ESS is ex-
multi-objective particle swarm optimization with sup-  cluded from consideration in this paper.
port vector machines. (Abdelaziz et al., 2015) pro-  In solving the two-stage stochastic programming,
vided an energy loss minimization problem which de- an effective methodology to create proper scenarios
termines the optimal location of RES-based DGs and must be needed to represent various uncertainties be-
the location and daily schedule of dispatch-able DG. cause itis very difficult to realistically obtain all of the
In the problem, the uncertainties between wind power, information about the uncertainty and computation-
PV and demand were considered using the diago-ally incorporate it into the model. In case some proba-
nal band Copula and sequential Monte Carlo method. bility distributions are analytically estimated and used
In (Saif et al., 2013), the uncertainties of wind en- instead, the problem commonly becomes very com-
ergy, PV, and energy storage system were produced aglexed, even if the problem is small. Hence, when
chronological ones for a two-layer simulation-based the partial information of the uncertainty is available,
allocation problem. In (Pereira et al., 2016), the al- the stochastic programing model normally needs to be
location problem of VAR compensator and DG was Solved using scenarios. There exist many techniques
formulated as a mixed-integer nonlinear problem and of scenario generation (DupacCova et al., 2000). The
solved by using meta-heuristic algorithms. uncertainty modeling such as demand and wind speed

A two-stage architecture is commonly used in Were developed to create scenarios in (Baringo and
stochastic programming approaches. At the first COnejo, 2011). The proposed method uses dura-
stage, DGs' investment variables are determined be-10n curves which is approximated by some demand
fore realizations of random variables are known, i.e., Plocks. (Baringo and Conejo, 2013a) performed the
scenarios. At the second stage, after scenarios beScenario reduction by using K-means clustering algo-

come known, operation and maintenance variables/ithm to arrange the historical scenarios of demand
which depend on scenarios are solved. and wind into clusters according to the similarities.

(Sadeghi and Kalantar, 2014) used Monte Carlo sim-
ulation and probability generation load matrix for ob-
taining the uncertainty of fuel and electricity price,
DG outputs, and load. In (Mazidi et al., 2014), the
Latin hypercube sampling was used to prepare sce-
narios of RESs. In (Seljom and Tomasgard, 2015), an
iterative-random-sampling-based scenario generation
algorithm was developed. They evaluated whether
the number of scenarios is enough to obtain reliable
results. In (Nojavan and allah Aalami, 2015), the
normal distribution and the Weibull distribution were
used for generating the scenarios of electric price, de-
mand, and meteorological data. The created scenarios
were reduced by the fast forward selection based on
Kantorovich distance approach. In (Montoya-Bueno
etal., 2016), a probability density function-based sce-
nario generation method was proposed for the alloca-
tion problem of wind power and PV.

(Carvalho et al., 1997) modeled a two-stage
scheme problem of distribution network expansion
planning under uncertainty in order to minimize an
expected cost along the horizon and solved by the pro-
posed hedging algorithm in an evolutionary approach
to deal with scenario representation efficiently. In
(Krukanont and Tezuka, 2007), a two-stage stochas-
tic programming for capacity expansion planning was
provided in a power system of Japan. This model
includes the uncertainties of the demand, carbon tax
rate, operational availability. In (Wang et al., 2014), a
two-stage robust optimization-based model consider-
ing uncertainties of DG outputs and demand was pro-
vided for the optimal allocation of DGs and micro-
turbine. (Montoya-Bueno et al., 2015) proposed a
stochastic two-stage multi period mixed-integer lin-
ear programming model of renewable DG allocation
problem considering the uncertainties affected by de-
mand and renewable energy production. o

As an allocation problem of energy storage sys- 1.3 Contribution
tem (ESS), (Nick et al., 2014) formulated the op-
timal allocation problem as a two-stage stochas- Most of scenario generation have not considered
tic mixed-integer second-order cone programming the correlation between the uncertainties (e.g., de-
(SOCP) model. In (Nick et al., 2015), SOCP prob- mand and solar radiation) and usually the uncertainty
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Figure 1: Outline of scenario generation. This figure shdwsprocedure focused on a block in Step 2.

separations to the levels have been made manually cussed at the Conference of the Parties to the UN-
(Baringo and Conejo, 2011; Montoya-Bueno et al., FCCC to achieve a clean environment and the
2016). It is necessary, however, to create scenarios government generally, in order to reach high re-
automatically in consideration of the correlations for newable penetration levels, subsidizes the DIS-
appropriate scenarios based on data. In optimization = COs that invest RES to their distribution system.
problem mentioned above, many researches of opti-

mal DG allocation problem that takes into accountthe 1.4 Paper Organization

uncertainties have been performed. Most of the stud-

ies have considered only one-year's allocation and The reminder of this paper is organized as follows. In
daily/annual system operation. Realistically, in order Section 2, the details of the proposed scenario gen-
to accomplish the optimal system operation in multi- eration procedure is described. Section 3 provides
period, obtaining the long-term optimal siting, sizing, the stochastic programming model. The results of the
and timing is required. Hence, this study provides the numerical simulations are presented and discussed in
two main contributions as follows. Section 4. Finally, the paper is concluded providing

e A new scenario generation method with K-means
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some insights and summaries in Section 5.

is proposed to create scenario-levels automati-

cally by using similarity measure. This procedure

uses historical data and can be implemented read-2 SCENARIO GENERATION

ily. If K-means algorithm is simply applied to

the available data, it is not possible to take into This Section describes the proposed scenario gener-
account the correlation between demand and me-ation method that applies K-means to historical data
teorological data or seasonal characteristics (e.g.,(i.e. load, wind speed, solar radiation) in stages. The
summer and winter). Hence, in the proposed ap- goal is to obtain the scenario levels of demand, elec-
proach K-means clustering is utilized in stages by tricity price, wind speed, and solar radiation for creat-
focusing on demand and seasons. Many scenariosing specific scenarios. The role of K-means is to clas-
of demand, wind speed, and solar radiation are sify a original dataset into a certain number of clus-
generated and appropriate probabilities of each tersK. The centroid of each cluster is the mean value
scenario are calculated (not equal-probability) by of the data allocated to each cluster. The algorithm
use of divided time blocks. is based on the iterative fitting process as following

A new long-term allocation problem of RES- steps:

based DGs is proposed. This model is formu- 1. Select the number of clustet§ according to
lated as a two-stage stochastic programming prob-  the specific problem. Randomly plagepoints,

lem with the objective of minimizing the total which represent the initial cluster centroids, into
system cost. In the proposed model, some de- the space represented by the clustered dataset.
vices and constraints are integrated for improv- 5 aAssign each data to the closest centroid base on
ing distribution system (i.e., limitation of reverse the distances.

power flow, generation of DG considering lag- i

ging/leading power factor, capacitor bank (CB)). 3. When all data hav_e beer_1 assigned, recalculate the
Furthermore, the carbon emission costs and in-  N€W cluster centroids using data allocated to each
centives are considered from the point of view  Cluster.

of international trends and economics because the 4. Repeat Steps 2 and 3 iteratively until there are no
problems of carbon emissions are actively dis- changes in any mean, i.e. the centroids no longer
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move. As a result, the clustered dataset is sepa- *°
rated into groups minimizing an objective func- oo | || ‘
tion, in this paper a quadratic distance is used. - MM LWW L W i)

e
<

Historical data need to be available for scenario cre-
ation, i.e. hourly demand, wind speed, solar radiation,
and electricity price data for the 8760 hours of the
year. Figure 1 shows the overview of the proposed
scenario generation. The steps are described below:

Demand(p.u.)
<3
o

o
o)

O T -,,,,mmmwmmwm |

1000 2000 3000 4000 5000 6000 7000 8000 9000
Hour

Figure 2: The clusters of demand in Step 2 (time blocks).

4
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Step 1) Normalize data into the [0.0,1.0] interval by
dividing by the maximum value of each feature

and simultaneously separate into two seasons : |ated as:

summer (April-September) and winter (October-

March). Each seasonal group consists of 4380 Phs= Pf]é),gdx P'ﬁ‘.’? X P’ﬁ\s/
hours block.

Note that the time block represents the demand pe-
Step 2) Apply K-means (the number of clustérs= riods related to season (e.g., high-demand in summer,

4)to only the demand in each seasonal groups cre-low-demand in winter) and the indeepresents the
ated in Step 1 and allocate each data into four scenarios in the time block (e.g., (high demand,
groups. Figure 2 shows the clusters of the de- |arge wind, large PV), (low-demand, middle wind,
mand. Moreover, wind speed, solar radiation and small PV)).
price indexed to each demand data are also allo-
cated to the same clusters of the demand. Each

divided group is defined astame block b which 3 OPTIMAL LONG-TERM

is related to the representatives of demand clusters

(e.g., peak-load of summer, middle-load of sum- ALLOCATION PROBLEM OF
mer, low-load of winter). Total of the number of DISTRIBUTED GENERATION

hours in time bloclb is represented asQOUfS.

Step 3) Apply K-meansK = 3) again into the de- Two-stage' stochastic linear program_ming is used as
mand, wind speed, and solar radiation of the data & formulation of the long-term aIIo_cat|on problgm of
group created in Step 2 respectively and 9 data DG_s. Thg_model uses the scenarios and provides the
groups are created per one block. Step 3-5 in Fig. optimal siting, sizing, and timing of RES-based DGs

1 focus on the flow of the one of the data blocks 0 be installed (wind power and PV). The nomencla-
in Step 2. ture related to the problem formulation described in
Appendix.
Step 4) The mean values of each data block in Step
3 are used as a block representative to create the3 1 Objective Function
factors of demand, wind speed, and solar radia-

tion. Note that the price levels are determined ;g o el minimizes the total system cost consisting
by the mean values of the price within each de- ¢ ¢ jnyestment costi"™ and operation & mainte-
mand block. Renewable production models in e cost in consideration of the incentiy. The

(Edu_ardo, 1994) and (Atwa et al., 2010) are used expected value of the O&M cost in yeais shown as:
in this paper so that renewable observation data

are transformed into power output (i.e., wind gen- % nfiours g PhipsTths t€Qr (1)
eration factor and PV generation factor) bés  s0g,

Step 5) Considering the combination of each factor
made in Step 4, 27 scenarios are obtained for
each time block. Therefore, 216 scenarios are
obtained as the total number of scenarios. The
probabilities of the factors within each time block,
Poad Pi®, PIPY are defined by the ratio of the
number of hours of the blocks divided in Step3
to the corresponding block in Step2, i.Bifours
Hence, the scenario probabilities,Rrare calcu- Qg = Qg, N'g""s=Nj°"" Qg = Qg Plips = Plbs,

where,Qg, is the set of time blocks in year N!"

is the total hours of time blockint, Qg , is the set

of the scenarios ihandb, Pt p s is the probability of

the scenari in t andb, andTPy's is the O&M cost

per unit time irnt, b, ands. In this paper, it is assumed
that the time blocks and scenarios are the same every
year,

99



ICORES 2017 - 6th International Conference on Operations Research and Enterprise Systems

because, in the same region, the trend of the demand MGe =T 5 SBMFTIT (10)
profile and the average of the weather data are consid- nmMeQN

ered not to change significantly. Itis importantto note NS _ [ENS hasgENSN (11)
that the operational environment of the power sys- b neZ!L ths

temis different.in each year since the time—depende.nt S _ 55,58 PaseSSh
parameters exist, such as demand growth factor, dis- ”tsbs s”t Z to,s? 12)

count rate, and price increasing factor, although the nelss

scenarios do not change. o pase % (VPRI 4 vt PtV‘éDS ", (13)
Therefore, the aim of the model is minimizing the ne
i i CB,
tota'\IA?r)]/;t]?Zn; _cost over the planning horizbn n[cb = _ cpase % “ngt 8 sn’ (14)
. ne
_ m| SS mi,DG
o .ninv Nhours =1 sn?b _ nc t Tf ’ (1%)
2 P 2 e miSs_ nem'sbase % OSSR (16)
e n<Dss
whereay = gy is the present value factor. Mi.DG _ pemighase ¥+ CO2 ( ViR
netiL 17
3.11 Investment Costs VPV PV.n) 17
emi' t.bs

The following equations show the investment costs of
the substation, wind turbine, PV, and CB. The costs
are, respectively, annualized by using the interest rate
and lifetime of the devices. Therefore, the previous
year’s investment cost is added to the next one except

3.1.3 Incentive

Incentive will be paid for the new investment of DGs
by using the subsidy rare.

i i WD, PV,
for the first year. pine — % (V\s’YBEVrY\PN " RVIEVX ,n) )
n __ T§Su>§ssn+ (nlgv&(th,n ne as)
- n n
ne%ss nefl (3)
+ DXV L rCBXEE ™ ™t > 1, 3.2 Constraints
s )
W= % X+ Y (T 3.2.1 Power Balance Constraints
neQss neQp (4)
+ VDX VDN CB A CBNY t=1, The following constraints describe the active and re-
L5 active power balance of the load and substation buses.
n§ TR?W 1+1i) 5) It should be mentioned that the scenario of demand,
nu— )LSS_ 1’ E'g’gd, is used by multiplying the peak load of each
. | WD us
WD T"?N (1+ )L n,m S
— v A\ 7 ,mysarn,m mn
Tanu (1+i )LWD 1’ (6) Z (Pt.b.sfrnmlt.b.s )7 Z (Pt.b.s)
oy n,meQn mneQN (19)
Vi(L+i)t ENS WD, PV,
Tans = % (7) +Phs+Pbe +Pps = NiNpatPom,
n,m ,mysasn,m m,n
Tf: i(1+1) LCB z (Pt,b,s_ rr mlt,b,s ) - z (Ptbs>
T'gnu %. (8) nmeQy mneQy (20)
_ |:,SSm Nt nloadploadm
t,b,s ’
3.1.2 Operation and Maintenance Costs (Q”'m _ Xn7m|sqr,n,m) B Z (Qm,n)
t,b,s t,b,s t,b,s
O&M costs are shown in the following equations. To- n‘mGSVD m . PVim . ~CBm mnIEQd oad (21)
tal O&M cost includes the power loss cost, unserved +Qips +Qips +Qbs = NiNpe @

energy cost, purchased energy cost, O&M cost of nm  onmsqrnm mn
DGs and CB, and C&emission cost. > (Qt,b,s —Xlibs ) -2 (Qt,b,s)
n,meQn mneQy (22)
OSS
Ths = + T+ Tobs + TEpe+ Teps+ T b s7 +Qt3§2‘f nenfo2dQoadm,
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3.2.2 Voltageand Current Equations 3.24 Maximum DG Size Limits
The nodal voltage equation and power flow equation The following constraint defines the maximum DG
are shown as follows: installation capacity of each bus:
Vibs — 2™ Rips +X™MQby) 23) > (FPXION PPV <Pt (42)
+|Zrn.n|2|tsjgr,sm.n _Vi&rsn _ 07 teQr
325 DG & CB Generation Limits
sgr,m; sqrm,n N2 N 2
Vt,t?,s lt,g,s = tr,?),ns +Qtn,1br,15 : (24)
To transform the non-linear equation (24) into the 0<PIa"< naeppWon, (43)
linear equation, the piecewise linear approximation PVN . pVeavlPVin
described in (Zou et al., 2010) is used in this paper. 0<Rps <npsk ) (44)
The equation is linearized as follows: 0< QEE’SH < QtavI,CB,n. (45)
\/nom2 sarmn _ % (ktmv”thpmﬁvh) Constraints (43) — (45) express the minimum and
t,b,s b,s t,b,s . b
héOy maximum generation of DGs and CB. Note that the
mnh s ~mnh (25) scenarios of the wind power and PV, i.e., produc-
+ (kt7b7s AQps ) ’ tion factorsn'C andnfY, are used by multiplying
heln the maximum available output of each installed DG.
pmN _ ptmn_ p—mn (26) The following constraints show the maximum avail-
t.bs t.bs tbs f .
able output in each year:
Qm,n _otmn_ Qf.mn (27)
t.,s,s t.,b.,sp t,b,s PtavI,WD,n _ W)QWD’HCWD’n;t —1, (46)
be X e <L, (28) LWD.n _ S7D WD L WD
- iy paVRN — pWDYPNCWDn | paVRHIDN- ¢ 1 (47)
x[Qb-s-,m,n_‘_X[Qb—,m,n <1 (29) Iy t—1
,0,8 ,0,S — p PtavI.PV.n — PPV)((PV.nCPVm;t — 1’ (48)
—+,mn —mn __ m,n, N B
Pt,b,s + Pt,b,s = Apt7b7s , (30) PtavI,PV,n _ PPVXtPV,nCPV,n_'_ Pillipv’n;t 1 (49)

heQy

QtavI.CB,n = @)({CB“CCB*";I =1, (50)

—, .n,h
Qe+ Q" = > AQRY. (31)
0, &, Q?VI’CB’n _1 —QCBX(CB’nCCB’n—I— Qtalll’lCB'n;t S (51)

0< AP{E;E“ <A bf‘éh, (32) The number of installations of DG and CB in each
0< AthE,ns’,h <A t;néh’ (33) bus is limited as, -
MR o i XVP" < 3P, (52)
Kb = (2h— 1A} (34) te%T
A = \w (35) t;T X< XEV, (53)
3.2.3 Current, Voltage, and Power Limits t% )(tCB’” < @. (54)
€t

The current on branches, voltage of buses, and power  The constraints of the reactive power produced by
flow on branches should be limited in the allowable DGs are expressed by using leading/lagging power

range: factor:
0 VIO < ST, (36) —tan(cos {(AER)Rpe" < Qoy”

V2V <V, (37) <tan(cos L(AD) RO (55)
O<PRES"SVIIIE™ 38 acos MRV RV < PV
0<RS"SPETY,(39) <tancos YRGL.
0< QR <vremmAxQLm (40) -
0< Qo <vrommaxg Mt (41)
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Figure 3: Distribution system configuration.

3.2.6 Investment Limits

The following constraints refer to the annualized and
actual investment cost limits considering the lifetime.

I t
T'{nv S 'n%v (57)
SS PV,

%‘h[% X+ Y (T

t€0r  né0ss neQ (58)

WD, CB, t
TR 4 TR ) < g
3.2.7 Energy Not Supplied Limits

The unserved power must be less than the demand:

0< RS < nenpadploadn, (59)
0< Q" < nineiQn. (60)

3.2.8 Substation Limits

The following constraints show the generation limit
of the substation.
S’\VLSSn

tbs < V/1+tan(cos 1(ASS))2’ (61)
0< Qn <tan(cos 1ASH)RTY,  (62)
Savl,SSn _ SSSn + Suaw;n7 (63)
g = XSS =1, (64)
FOUN = XSS gt > 1. (65)

The substation expansion is allowed up to the
maximum power:

S?ew,n < ewn,

(66)

4 NUMERICAL SSIMULATION

4.1 Distribution System

Table 1: Simulation parameters.

Total peak load Initial available

5.45 (MVA) ’ 5.50 (MVA)
power substation power
Capacity of wind .
turbine and PV 100, 2.5 (kW) Capacity of CB 100 (kVar)
Base power 10 (MVA) Base voltage 11 (kV)
Maximum power . b
that can be Max_lmum numbers
. 250 (kw) of wind turbine, PV 2,85,5
installed at each
bus modules, and CB
Thermal capacity 6.5 (MVA) Substation voltage 1.04 (p.u.)
Annual demand o Price increasing o
growth 2(%) factor 1(%)
Minimum/ Number of
maximum limits +5% (0.95 and segments used in Py
of voltage 1.05p.u.) the piecewise
magnitude linearization
Increa_smg factor 2 (%) Lifetime of devices 20 (years)
of emission cost
Investment cost of
transformer, wind 20000,125155, O&M costs of wind oioezsvshgom
turbine, PV 3455,38500€) turbine, PV, and CB 0.003€/kVarh)
module, and CB T
Subsidy rate of
wind turbine and 10,5 (%) Power factor at the 0.9013
PV substation
Lagging/leading
Discount rate 12.5 (%) power factor of 0.9013, 0.0
DGs
Cost of CQ
0
Interest rate 8 (%) emission 30 (EMCOy)
Investment budget Emission rate of 0.55
per year 350000 €) purchased energy (tCO2/MWh)
Investment budget Emission rate of
throughout the life 5500000 €) wind turbine and ?ég:;yﬁéG
cycle of devices PV
Maximum
Cost of not 15000 y
N expansion of the 5 (MVA)
supplied energy (€/IMWh) substation
Candidate buses of Candidate buses of 11, 12, 24-27,
wind turbines 13,8 2127 PV 31-34
Table 2: Model information.
Number of continuous variables 2,810,473
Number of general integer variables 444,960
Number of binary variables 570,240
Number of linear constraints 4,578,985
Number of non zero coefficients 14,070,169

4.2 Dataand Parameters

The simulation parameters are shown in Table 1. Ac-
tual load data of Tokyo Electric Power Company
(TEPCO) are used as demand. The wind speed
and solar radiation are the meteorological observation
data of Miyakojima Island in Japan from Jan. 1, 2015
to Dec. 31, 2015. A twenty-year period is used as a
planning horizon. Demand, wind, PV, and price lev-
els are described in Table 3. The problem is solved
using Gurobi 6.5.0 (Gurobi 6.5.0, 2016) on a Linux-
based computer with 4-core Int@Core i7-4770 at
3.4 GHz and 24 GB of RAM. The information about
the overall model is described in Table 2.

4.3 Simulation Cases

The 34-bus three-phase radial feeder, shown in Figure _ .
3, is used to test the proposed scenario generation and Ne following three cases are consided:
allocation problem. The system has 1 substation andCase A: The investment is only allowed for the ex-

33 buses with/without load. Details of the network
are given in (Chis et al., 1997).
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pansion of the substation, i.e., the right-hand side
of Eq. (42) is zero.
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Table 3: Scenario factors of each time block. The values in Table 6: Optimal location and timing (bus).
parentheses represent the factor’s probabilities. = = 5 =
- - Years | SUB CB SUB WD PV CB | SUB WD PV CB
Time Hours Price Demand Wind factors PV factors 1314 1112
Blocks (€/MWh) factors 1221 2426 112 1501 2425 1121
97.63 0.61(0.328) _ 0.41(0.370) _ 0.65(0.163) 1 2223 2425 o5, 2122 2293 2627 2223
1 1370 98.04 0.58 (0.328) 0.16 (0.207) 0.29 (0.602) g? gg 2 34 22 gg 2405 3132 2526
98.28 0.54(0.344)  0.00(0.423)  0.02(0.235) 2627 3334
103.08 0.93(0.433)  041(0.329)  0.68(0.321) 2 i1 14
2 420 103.01 0.84(0.236)  0.20(0.443)  0.41(0.371) 3 24 24
102.44 0.78 (0.331) 0.00 (0.229) 0.06 (0.307) 4 16
97.84 051(0212)  1.00(0423) _ 0.62(0.910) g i n 16
3 1316 97.68 0.48(0.444)  0.23(0.572)  0.28 (0.066) = T =
97.19 0.44(0.344)  0.00(0.005)  0.01(0.024) 5 T
100.60 0.73(0.381) 0092 (0.428) _ 0.68 (0.451) 3 5T o7
4 1286 99.20 0.68(0.171)  0.28(0.022)  0.37(0.271) 10
98.26 0.64(0.448)  0.00(0.550)  0.05(0.278) 11
94.15 052 (0.245) _ 0.69 (0.109) __ 0.59 (0.070) 12 27
5 960 94.15 0.48(0.453)  0.33(0.529)  0.29 (0.060) i3 2131 1 2131 2131
94.15 0.45(0.302)  0.01(0.361)  0.01(0.870) 1 1421 S 1221
94.15 0.73 (0.324) 0.46 (0.236) 0.58 (0.155) 2325 24 27
6 1205 94.15 0.69 (0.381)  0.24(0.441)  0.28(0.207) 15 g ;g 22331 éé g;
94.15 0.66(0.295)  0.00(0.323)  0.03(0.638) T T o
94.15 0.62(0.370) 050 (0.248)  0.57 (0.675) 16 a1 5431 2294
7 1590 94.15 0.59(0.304)  0.25(0.354)  0.27(0.143) 5555 1415
94.15 0.56(0.326)  0.00(0.397)  0.01(0.182) 17 1322 31 2231
94.15 0.88(0502) 049 (0.323) _ 0.56 (0.726) 18 1213 12 1113
8 613 94.15 0.81(0.168)  0.22(0.393)  0.26 (0.096) 2432 26
94.15 0.77 (0.330) 0.00 (0.284) 0.02(0.178) 19 ﬁ ;‘11 1324
1522
20 16 3132
Table 4: O&M costs<€).
Cases A B C . . ..
Losses cost 1,163,844 1,012,212 786,011 Table 7: Optimal sizing (kW).
Not supplied energy cost 45,320 67,221 4,937 Cases A B T
P“’Brg‘%egh:’zgy cost 246975772 14212’7%411'032 57257'5)6’578 Years | SUBCB [ SUB WD PV CB [ SUB WD PV CB
: . ! 1 262. 1 187
Capacitor bank cost 218,980 193,093 134,986 > ?88 600, 625 800 150%0 875 600
Emission cost 4,567,235 4,196,637 3,043,670 3 100 100
O&M system cost 30,971,152 28,451,927 20,738,962 7 100
5 | 1000 100
6 | 1000 1000
Table 5: Total system cost€&}. 7 1000 100
8 100
Cases A B C 9 100 100
O&M system cost 30,971,152 28,451,927 20,738,962 10
Investment costs 413,085 2,228,716 8,369,486 11
Incentive 0 185,179 697,443 12 100
Total costs 31,364,236 30,495,464 28,411,005 5 ggg 1000 32(%’ 1000 23%%
Computational time 25262 s 277680 s 34693 s 5 200 700 200
16 400 500 400
17 400 400 500
Case B: All the constraints are considered. 1 o 100 o0
. ; ; ; 20 100 400
Case C: Case B without investment constraints (57) Total | 2000 4100] 2000 600 2625 3000 2000 1800 1875 3900

and (58).

shown in Table 6, the DGs allow the substation ex-
4.4 Resultsand Discussions pansion to defer. However, the results imply that the

expansion is not inevitable due to the intermittent na-
Tables 4 and 5 show the O&M costs and total system ture of renewable DGs and the demand growth (see
costs. Optimal location, sizing, and timing are shown Table 7).
in Tables 6 and 7. The installation of DGs plays an The O&M cost of CB decreases even if the num-
important role to reduce the total system cost despite ber of CB increases (see Tables 4 and 7), imply-
the fact that the investment costs are increasing. A ing that CB co-exists well with the large amount of
significant contribution is that it drastically reduces the installed DGs. Without the budget constraints,
the O&M costs (see Table 4). This is one of the gen- nearly the same amount of wind turbine and PV are
eral benefits of DG installment. From Table 4, the installed. However, in the consideration of the bud-
greatest cost savings occur in the emission cost be-gets, the wind power to be installed is larger than PV
cause the emission rate of the purchased energy abecause it is affected by the high subsidy rate of wind.
the substation is two times higher than that of the In the same way, the simulations without the in-
DGs. Moreover, the losses cost and purchased energycentive were tested, i.e., the incentives of wind en-
cost are reduced since most DGs are allocated arouncergy and PV are 0. The O&M and total system costs
the terminal buses of radial distribution system. As are shown in Tables 8 and 9. Tables 5 and 9 indi-
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Table 8: O&M costs€).

Cases A B C
Losses cost 1,163,844 1,000,584 795,689
Not supplied energy cost 45,320 71,244 359
Purchased energy cost 24,975,772 22,808,383 16,558,486
DG O&M cost 0 133,506 537,774
Capacitor bank cost 218,980 196,581 133,903
Emission cost 4,567,235 4,191,123 3,105,423
O&M system cost 30,971,152 28,401,420 21,131,633
Table 9: Total system cost&}.
Cases A B C
O&M system cost 30,971,152 28,401,420 21,131,633
Investment costs 413,085 2,262,126 7,914,809
Incentive 0 0 0
Total costs 31,384,236 30,663,546 29,046,443

Table 10: Optimal sizing under no incentive (kW).

Cases A B C

Years | SUB CB | SUB WD PV CB | SUB WD PV CB
1 0 800 0 300 5225 800| O 1000 2055 600
2 0 100 0 0 0 0 0 0 7.5 0
3 0 100 0 0 0 100 0 100 0 0
4 0 0 0 0 0 0 0 100 0 0
5 1000 0 1000 0 0 0 0 0 0 0
6 1000 0 0 0 0 0 0 100 0 0
7 0 0 0 0 0 0 1000 0 0 100
8 0 0 0 0 0 100 0 100 0 0
9 0 100 0 0 0 0 0 100 0 0
10 0 0 0 0 0 100 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0
13 0 200 0 0 0 200 0 0 0 300
14 0 500 0 0 0 300 0 0 0 300
15 0 400 | 1000 0 0 400 [ 1000 0 0 400
16 0 400 0 0 0 500 0 0 0 400
17 0 400 0 0 0 400 0 0 0 400
18 0 500 0 0 0 0 0 0 0 500
19 0 500 0 0 0 0 0 0 0 400
20 0 100 0 0 0 0 0 0 0 500

Total | 2000 4100{ 2000 300 522.5 2909 2000 1500 2062.5 3900

cate that the incentive is helpful to decrease the to-
tal system costs, though the O&M costs of case B is
increased slightly. The optimal sizing under no in-
centive is shown in Table 10. From this result, it is
suggested that PV is installed more than wind power
in the case that there are no incentives.

It is worth pointing out that the DGs have an im-
portant role in terms of system stability as well as cost
minimization. The average of the voltage deviations
of all scenarios in the first- and final- planning years

are illustrated per case in Figure 4. The figure shows e
that the overall voltage drops as the demand increases

for twenty years. Besides, the large installation of

DGs makes the amplitude of the voltage more stable

than no DGs.

5 CONCLUSIONS

Case(year)
--al) | — a(20)
--b(1)  —— b0)
- o) —— o(20)

1.00

9
01234567 8 91011121314151617 181920 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
Buses

Figure 4: Average of the voltages of all scenarios per case
in the first and final year.

insights are summarized as below:

e The long-term optimal solutions for the decision-
making are obtained by solving the stochastic op-
timization problem with the created scenarios.

The uncertainties of scenarios are well-
represented because the substation expansions are
inevitable due to the renewable energy intermit-
tency, while the DG installation reduces the total
distribution system cost.

The proposed method with K-means can be easily
implemented, improved to create many scenarios,
and expanded to a multi-stage architecture.

The proposed problem determines the optimal
long-term siting, sizing, and timing of DGs, con-
sidering the variables and constraints with respect
to the practical equipment and economics.

The results show that an optimal DG allocation is
quite important in order to reduce the system cost.

Future research include the following:

Investigation of the planning results for a large
distribution system.

Comparison with the existing methodologies to
analyze whether the results will be much differ-
ent.

Improvement of the scenario generation by means

of the probability density function and time series
model.

Extension to a multi-stage stochastic program-
ming problem and comparative evaluation of the
validity of the solution.
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APPENDIX

Nomenclature

Sets:
Qp
Qn

QL
QN
Qss
Qr
Qs,

Indices:

Parameters:

Tats Tan T T

o T+ T

gt
inv

gt

£

Tom > Tom: Tom
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Ty

Set of time blocks

Set of blocks used for the piecewise lin-
earization of quadratic power

Set of load buses

Set of branches

Set of substation buses

Set of years

Set of scenarios in time blodk

Time block index

Index of the segment used for the lin-
earization

Index of bus numbers
Time index
Scenario index

Annualized investment costs of trans-
former, wind turbine, PV module, and
capacitor bank

Investment costs of transformer, wind
turbine, PV module, and capacitor bank

Annual investment budget
Investment budget throughout the life-
time of the devices to be installed

Operation and maintenance costs of
wind turbine, PV module, capacitor
bank

nloss
€0
T[ENS
s

WD PV, CB
C ,n’c ,n’c N

d

emi
Nt

Nt
Ss

o J |
=

load
b,s

WD PV
I"|b,s MNps

nm

n.mh
Kibs

i

LSS LWD LPV. LCB
Ngours

P|0ac1n

pWD pPV

pnode
prevmn

)\SS
WD WD
A lead A lag

PV \PV
A lead A lag

QCB
Qload,n

Fnm

ss (WD ,,PV
Vemi:Vemi>Vemi

WD v
Ysub Ysub

T

Cost of power loss

Cost of CQ emission

Cost of energy not supplied

Cost of energy purchased from upper

grid at substation in time block and
scenarics

Binary parameters whether buods the
candidates to install wind turbines, PV
modules, and capacitor banks

Discount rate

Increasing factor of emission cost
Increasing factor of load

Increasing factor of energy cost
Demand factor in time block and sce-
narios

Production factors of wind turbine and

PV module in time block and scenario
s

Maximum current flow of branch, m
Slope of theh-th block of the piecewise

linearization for brancm, m in yeart,
time blockb, and scenaris

Interest rate

Lifetimes of transformer, wind turbine,
PV module, and capacitor bank

Number of hours in time block

Active power of load in bus

Maximum active power generations of
wind turbine and PV module

Maximum active power of RES that can
be installed in each bus

Maximum reverse active power flow in
branchm,n

Power factor at substation
Leading/lagging power factors of wind
turbine

Leading/lagging power factors of PV
module

Maximum reactive power generation
per capacitor bank

Reactive power of load in bus
Resistance of branalnm

Emission rates of purchased energy and
distributed generation

Subsidy rates for investment of wind
turbines and PV modules

Number of segments used in the piece-
wise linearization

Maximum power generation of new
transformers

Maximum transmission capacity of
branchn,m

Maximum new power allowed for in-
vestment in the substation

Existing power in the substation
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Variables:
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Tehs
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(Sarn,m
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t

t

ENSn
Pt,b,s

WD,n ~WD.n
Pt,b,s *Qt,bAs

PV,n ~PV,n
Pt,b,s 7Qt,b,s

Base power
Minimum/maximum voltage magni-
tudes of the distribution network

Nominal voltage of the distribution net-
work

Reactance of branalnm
Maximum number of wind turbines, PV

modules, and capacitor banks to be in-
stalled in bus

Impedance of branch,m
Probability of scenarigin time blockb
Probabilites of demand, wind power

production, and PV production in time
blockb and scenaria

Upper bound oh-th block of the power

flow of branchn, min yeart, time block
b, and scenarig

Present value factor

Operation and maintenance cost of ca-
pacitor banks in yedr time blockb, and
scenarics

Costs of CQ emission in yeat, time
block b, and scenaris

Costs of CQ emission from purchased

energy and DG in yedr, time blockb,
and scenarie

Cost of investment in yedr

Cost of power losses in yedr time
block b, and scenaris

Penalty cost for energy not supplied in
yeart, time blockb, and scenaris
Operation and maintenance costs of dis-

tributed generation in yedr time block

b, and scenarig

Operation and maintenance costs of in
yeart, time blockb, and scenaris

Cost of energy purchased from upper
grid at substation in year, time block

b, and scenaris

Incentive for new installation of the dis-
tributed generations in year

Square of the current flow magnitude of

branchn,min yeart, time blockb, and
scenarics

Total active power available of wind tur-
bines and PV modules to be installed in
busn and yeat

Not served active power in burs yeart,
time blockb, and scenaris
Active/reactive power generation of
wind turbines in busn, yeart, time
block b, and scenaris

Active/reactive power generation of PV

modules in bus, yeart, time blockb,
and scenarie

nm ~nm
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Active/reactive power flow of branch
n,min yeart, time blockb, and scenario
s

Active/reactive power flow (forward) of
branchn,min yeart, time blockb, and
scenarics

Active/reactive power flow (backward)
of branchn,m in yeart, time blockb,
and scenarie

Active/reactive power purchased from
the grid at the substation in bus year

t, time blockb, and scenarig

Value of theh-th block of the piece-
wise linearized active/reactive power of
branchn,min yeart, time blockb, and
scenarics

Total reactive power available of capac-
itor banks to be installed in bus and
yeart

Reactive power compensated by capac-
itor banks in bus, yeart, time blockb,
and scenarie

Total power available in the substation
and yeat

New transformers installed in the sub-
stationn and yeat

Square of voltage magnitude of bug
yeart, time blockb, and scenaris
Number of transformers, wind turbines,
PV modules, and capacitor banks to be
installed in busr and yeat

Binary variable defined for for-
ward/backward active power flow of
branchn,min yeart, time blockb, and
scenarics

Binary variable defined for for-
ward/backward reactive power flow of
branchn,min yeart, time blockb, and
scenarics
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